用户名: 密码: 验证码:
固液两相流旋流泵的数值模拟与性能预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋流泵作为一种无堵塞性能优良的泵,广泛应用于化工、矿山、城市排水等领域。旋流泵内部流动情况比较复杂。目前对旋流泵的流动机理了解的不是很清楚,旋流泵的设计理论也不完善。工程设计中多数是以清水泵设计理论为基础并加以修正来进行设计。设计出的泵效率偏低。因此迫切需要对旋流泵内部流动规律进行深入的研究。
     随着计算机技术和计算流体力学的发展,叶轮机械内部三维流场的研究得到迅速发展,已成为现阶段研究的热点之一。应用计算流体力学(CFD)技术对泵内流场进行数值计算,分析内部流场结构,能够有效预测泵的性能,对泵结构进行优化设计。
     本论文针对某公司型号为JFZ65-310的旋流泵,采用Pro/E三维造型软件进行几何造型,应用Fluent软件,选用雷诺平均N-S方程,标准k—ε紊流模型,结合SIMPLEC算法,对该泵的内部流场进行了三维数值模拟。主要工作及成果如下:
     (1)利用三维造型软件Pro/E对该泵进行三维造型;并用Gambit软件对泵内部流道区域进行非结构化网格划分。
     (2)计算了介质为清水时内部流场的速度、压力分布情况及泵的外部特性。计算结果与泵的试验结果比较吻合。通过对无叶腔中速度场研究发现:约为叶轮半径0.7倍的径向位置,流体的周向速达到最大,之后开始下降。轴向速度在径向位置为145mm附近出现负值,说明流体由叶轮流出。压力在无叶腔及叶轮区沿径向不断增长。
     (3)对固体颗粒密度ρ=2500 kg/m3,体积浓度C=5%,不同固体颗粒直径的情况进行了数值模拟,发现泵的扬程及效率随着颗粒直径的增大而减小,而功率随颗粒直径的增大而增大。当颗粒直径d=2mm时,扬程降低了约1.7m,功率增加约1600W,效率降低了约8%。
     (4)对颗粒密度ρ=2500 kg/m3,直径d=2mm,不同颗粒体积浓度的情况进行了模拟,发现泵的扬程及效率随着颗粒浓度的增大而减小,而功率随浓度的增加而增大。颗粒浓度C=15%时,扬程降低了约4.8m,功率增加了约3500W,效率降低了约15%。
     (5)对颗粒体积浓度C=5%,直径d=lmm,不同颗粒密度的情况进行了数值模拟,发现泵的扬程及效率随着颗粒密度的增大而减小,而功率随颗粒密度的增加而增大。颗粒密度p=2500 kg/m3时扬程降低了约1.6m,功率增加约1400W,效率降低了约8%。
     (6)对输送固液两相介质时泵内部流场、压力、颗粒的分布等进行了数值模拟,结果表明,颗粒浓度较大的地方在长叶片工作面叶片转弯处,在长叶片非工作面及短叶片上颗粒分布较少,在无叶腔中颗粒分布较均匀。
     (7)针对输送磷酸介质情况,假设温度为80℃,则密度ρ=1250kg/m3,运动黏度v=0.001218 m2/s对泵的性能进行了数值模拟,结果表明,泵扬程降低了约3.5m,功率增加了约3450W,效率降低了约14%。
The vortex pump is one kind of non-clogging pumps. It has been widely applied in the chemical engineering, the mine, urban draining and the other fields. The flow in the vortex pump is very complicated and the flow mechanism in vortex pump is not well understood, so the design theory of vortex pump is not perfect. Many examples in applications are based on the common water pump design theory, improved by the experience in application. The efficiency of the common vortex pump is low. In order to improve the performance of the vortex, it is necessary to investigate the flow field in the vortex pump and understand it well.
     With the rapidly development of the computer technique and the calculation fluid dynamics (CFD), the inner flow of the hydraulic machinery has been widely and deeply investigated, which has been being one of the studying hot spot. The pump performance can be predicted and the structure can be optimized by using CFD to calculate the flow of a pump, observing and analyzing interior flows.
     In this dissertation, the vortex pump of JFZ65-310 in some company has been taken an example, and the geometric modeling has been made by Pro/E. The inner flow has been simulated by using Fluent software, according to the Reynolds Average N-S equation and standard k-εturbulence model with pressure-velocity connection algorithm SIMPLEC.
     The main research of the vortex pump and the achievement are as followings:
     (1) The Pro/E software of three-dimensional modeling has been used for the three-dimensional modeling for the pump and the Gambit software has been used for the unstructured meshing of the inner flow channel of the pump region.
     (2) The external characteristics and the distribution of speed and pressure has been calculated when the media is water. The calculation results are agreement with those of the experiment. The results of the velocity field indicate that the circumferential velocity reaches the maximum at the 0.7 times of impeller radius, and then begins to decrease. The negative axial velocity appears near the 145mm along the radial position which indicate the fluid is outflow from the impeller. The results of the pressure distribution indicate that the pressure increases along the radial direction.
     (3) The pump head and efficiency decrease as the particle diameter increasing when the density of particle is 2500kg/m3 and the volume concentration of particle is 5%, but the power decreases as the particle diameter increasing. The pump head decreases by about 1.7m, and power increases by about 1600W, and efficiency decreases by about 8% when the diameter is 2mm.
     (4) The pump head and efficiency decrease as the particle volume concentration increasing when the density of particle is 2500kg/m3 and the diameter of particle is 2mm, but the power decreases as the particle volume concentration increasing. The pump head decreases by about 4.8m, and power increases by about 3500W, and efficiency decreases by about 15% when the volume concentration is 15%.
     (5)The pump head and efficiency decrease as the density increasing when the particle volume concentration is 5%and the diameter of particle is 1mm, but the power decreases as the density increasing. The pump head decreases by about 1.6m, and power increases by about 1400W, efficiency decreases by about 8% when the density is 2500kg/m3.
     (6) The internal flow, pressure and particle distribution of pump has been studied as to the solid and fluid two-phase medium. The results indicate that the distribution of solid particle is small on the short blades and non-working face of long blades, but more on the corner of face of the long blades. The distribution of the solid particle is almost uniform in the non-leaf cavity.
     (7) The pump head decreases by about 3.5m, and power increases by about 3450W, efficiency decreases by about 14% when the phosphate is pumped. As to phosphate, the kinematical viscosity is 0.001218 m2/s and the density is 1250kg/m3 when the temperature is 80℃.
引文
[1]关醒凡.泵的理论与设计.石家庄:机械工业出版社,1986
    [2]陈红勋,旋流泵叶轮内部流动的研究,杭州,江苏工学院博士论文,1991
    [3]郑铭,袁其寿等.旋流泵结构参数对性能的影响.农业机械学报,2000,(2):46-49
    [4]杨小林,杨开明. 新型旋流式无堵塞泵的结构与水力设计.机械,2005,(30):18-21
    [5]Rutschi K. Die Arbeitsweise Von Freistron Pumpen Schweishe. Bauteitung,1968, (8): 86-32
    [6]蔡振成.涡流杂质泵.水泵技术,1979,(2):30-35
    [7]大庭英树等.关于旋流泵内部流动和性能的研究.日本机械学会论文集(B篇),1982,(48):434
    [8]Schivlcy GP. An analytical and experimental study of a vortex pump. Trans ASME,1970, (4):92
    [9]北村,伊东.旋流泵的内部流程.流体工学,1979,(17):5-7
    [10]青木正则.关于旋流泵的研究现状.透平机械,1984,(12):2-3
    [11]沙毅,杨敏官等.污水污物潜水旋流泵性能及设计方法试验研究.农业机械学报,2004,(35):2
    [12]施卫东,汪永志,沙毅等.旋流泵内部流动的研究.农业机械学报,2006,(37):1-4
    [13]陈红勋,关醒凡,陈次昌.旋流泵叶片表面的压力测量.流体工程,1991,(5) :17-19
    [14]王家禄.旋流泵的性能试验研究.排灌机械,1989,7(3):8-15
    [15]沙毅等.旋流泵的特性分析与设计方法探讨.农业机械学报,2004,(1):124-127
    [16]封俊,旋流泵内部流动和性能及应用研究,北京,北京农业大学博士学位论文,1998
    [17]封俊,李世熀.旋流泵无叶腔内部的有限元分析.流体工程,1988(11):24-26
    [18]陈红勋,关醒凡,金树德.旋流泵叶轮中全三维势流的直接边界元解法.流体工程,1992,(6):19-24
    [19]施卫东,汪永志,孔繁余.旋流泵无叶腔内部流场数值模拟.农业工程学报,2005, (21):1-3
    [20]夏朋辉,刘树红,吴玉林.旋流泵全流道三维定常流场的数值模拟.工程热物理学报,2006,27(5):420-422
    [21]高波,旋流泵液固两相流场的计算及PDPA实验研究,杭州:江苏大学硕士论文,2007
    [22]刘天宝,旋流泵内部流动的三维数值模拟,兰州:兰州理工大学硕士论文,2007
    [23]黄道见,关醒凡,刘厚林.旋流泵模型实验研究.水泵技术,2002(2):30-31
    [24]赵斌娟,王泽.离心泵叶轮内流数值模拟的现状和展望.农机化研究,2002,(3):49-52
    [25]戴会超,槐文信,吴玉林等.水利水电工程水流精细模拟理论与应用.北京:科学出版社,2006
    [26]周雪漪.计算水力学.北京:清华大学出版社,1995
    [27]郭鸿志.传输过程数值模拟.北京:冶金工业出版社,1998
    [28]Marzio Piller, Enrico Nobile, Thomas. J. DNS study of turbulent transport at low prandtl numbers in a channel flow. Journal of Fluent Mechanics,2002 (458):419-441
    [29]Wissink J. G. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes. International Journal of Heat and Fluent Flow, 2003,24(4):626-635
    [30]苏耀西.用粘流-无粘流相互作用方法计算翼型的分离和失速.空气动力学学报,1995 13(3):356-359
    [31]Versteeg H. K, Malalasekera W. An introduction to computational fluent dynamics:1995, (The Finite Volume):3-9
    [32]Wissink J. G. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes. International Journal of Heat and Fluid Flow, 2003,24(4):626-635
    [33]Michelassi V, Wissink J. G, Rodi W. Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic of unsteady flow in a low-pressure turbine cascade:A comparison. Journal of Power and Energy,2003,217(4):403-412
    [34]Stephane V. Local mesh refinement and penalty methods dedicated to the Direct Numerical Simulation of incompressible multiphase flows Proceedings of the ASME/JSME Joint Fluids Engineering Conference,2003:1299-1305
    [35]Abbott M. B, Basco D. R. Computationalfluid dynamics-an introduction for engineers. Longman Scientific and Technical,1989, (1):5-12
    [36]Rollet-Miet P, Laurence D, Ferziger J. LES and RANS of turbulent flow in tube bundles. International Journal of Heat and Fluid Flow,1999 20(3):241-254
    [37]Wilcox, D. Turbulence modeling for CFD. DCW Industries, La Canada, CA.1998.
    [38]周光垌.流体力学.北京:高等教育出版社,2000
    [39]Rikke K. Byskov. Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions--Part Ⅱ:Large Eddy Simulations. Journal of Fluids Engineering,2003(125):73-83
    [40]何其有,袁寿其,陈池.CFD进展及其在离心泵叶轮内流计算中的应用.水泵技术,2002(3):23-26
    [41]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001
    [42]熊鳌魁,詹德新.不可压流场数值模拟方法综述.武汉交通科技大学学报,1999,23(5):523-528
    [43]陈池,袁寿其,金树德.离心泵叶轮内流计算方法综述.流体机械,1999,27(2):35-39
    [44]朱刚.叶轮机内部流场的修正Taylor-Calerkin(MDTGFE)有限元.上海力学,1994,15(4):58-63
    [45]将锦良.离心式泵叶轮二元流场计算.流体工程,1989,(6):29-31
    [46]袁卫星,张克危,贾宗谟.离心泵射流-尾迹模型的三元流动计算.水泵技术,1990,(1) : 12-18
    [47]Wu C. H. A. Gentral Theory of Through-dimension Flow in Subsonic and Supersonic Turbomachines of Axial, Radial and Mixed Flow Types. NASA TN-2604,1952:2-5
    [48]Fluent. Inc. Fluent User's Guide. Fluent Inc.2005
    [49]张冶,洪雪,谷丰.Pro/ENGINEER野火版3.0 范例导航.北京:清华大学出版社,2006
    [50]曹岩.Pro/ENGINEER Wildfire 3.0曲面建模实例精解.北京:机械工业出版社,2007
    [51]苏铭德,黄素逸.计算流体动力学.北京:清华大学出版社,1997
    [52]姚征,陈康明.CFD通用软件综述.上海理工大学学报,2002,24(2):2-4
    [53]陶文铨.数值传热学.西安:西安交通大学出版社,1995
    [54]刘爱荣,曹中清,周本等.一种自动划分三维有限元网格的新方法,西南交通大学学报(自然科学版),1997,(3):235-240
    [55]陶文铨.计算传热学的近代进展.北京:科学出版社,2005
    [56]Fluent Inc. Fluent User'Guide. Fluent Inc.2003
    [57]王福军.计算流体动力学分析北京.北京:清华大学出版社,2004
    [58]朱祖超,若干特殊离心泵的设计理论及工程实现,杭州,浙江大学博士后研究报告,1999
    [59]斯捷潘诺夫.泵与鼓风机、两相流.北京:机械工业出版社,1984
    [60]赵敬亭,固体物料对离心泵性能影响的研究.水泵技术,1986,(3):13-16
    [61]王志魁.化工原理(第二版).北京:化学工业出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700