用户名: 密码: 验证码:
稀土—过渡金属氧化物纳米线阵列的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以有序多孔阳极氧化铝膜(AAO)为模板,用化学共沉积法,辅之负压抽滤技术,在AAO模板纳米孔道内制备出LaxZnyOz、LaxMnyOz、LaxFeyOz、 LaxCuyOz、CexFeyOz和TbxOy纳米线阵列。以扫描电镜(SEM)、透射电镜(TEM)、X-射线衍射仪(XRD)、能量散射光谱仪(EDS)表征了它们的形貌、结构及其化学组成。以振动样品磁强计(VSM)测定了LaxZnyOz、LaxMnyO2、LaxFeyOz、 LaxCuyOz、CexFeyOz、TbxOy纳米线阵列的磁性能。以荧光光谱仪(F--4500)研究了Tb, Eu, Sm掺杂浓度对LaxCuyOz、CexFeyOz纳米线阵列荧光强度的影响,探究了激发光波长和Eu, Sm掺杂浓度与TbxOy纳米线阵列荧光强度的对应关系。
     主要研究结果如下:
     1、本文制备的稀土-过渡金属氧化物及稀土氧化物纳米线均为非晶态结构。改变反应物浓度、反应时间、抽滤负压、热分解温度以及AAO模板纳米孔径等参数,可以对稀土-过渡金属氧化物纳米线形貌、化学组成及结构进行调控。
     2、LaxZnyOz、LaxMnyOz、LaxFeyOz、LaxCuyOz、CexFeyOz纳米线阵列在外加磁场下,都具有磁各向异性。除LaxCuyOz外,它们的易磁化方向都是平行于纳米线阵列轴向且磁各向异性来自形状各向异性的贡献。TbxOy纳米线在外加磁场下,表现为顺磁性特征。
     3、Tb, Eu, Sm掺杂浓度在2-30mo1%范围内,LaxCuyOz、CexFeyOz纳米线阵列的荧光强度与掺杂浓度相关。当Tb, Eu掺杂浓度为5mo1%或Sm掺杂浓度为30mo1%时,LaxCuyOz荧光强度最强。当Eu, Sm掺杂浓度分别为10mo1%或Tb掺杂浓度为5mo1%时,CexFeyOz荧光强度最强。Tb, Eu, Sm掺杂超过上述最佳掺杂浓度时,LaxCuyOz、CexFeyOz出现荧光猝灭现象。
     4、TbxOy纳米线阵列荧光强度受激发光波长和Eu, Sm掺杂浓度共同影响。Eu, Sm掺杂浓度在2-20mol%范围内,当激发光波长分别为221nm,394nm, Eu掺杂浓度为2mol%时,Eu掺杂TbxOy纳米线阵列荧光强度最强。当激发光波长分别为221nm,405nm, Sm掺杂浓度分别为5mol%,20mol%时,Sm掺杂TbxOy纳米线阵列荧光强度最强。
In this thesis, LaxZnyOz、LaxMnyOz、LaxFeyOz、LaxCuyOz、CexFeyOz and TbxOy nanowire arrays have been fabricated in the anodic aluminum oxide (AAO) template with chemical deposition reaction via suction filteration at subatmospheric. The SEM、TEM、XRD and EDS were employed to characterize their crystal structure, morphology and chemical composition, respectively. The vibrating sample magnetometer (VSM) was used to study the magnetic performances of LaxZnyOz、 LaxMnyOz、LaxFeyOz、LaxCuyOz、CexFeyOz and TbxOy nanowire arrays, and the fluorescence spectrophotometer (F-4500) was employed to study the fluorescence intensity of LaxCuyOz、CexFeyOz、TbxOy nanowire arrays doped with Tb, Eu or Sm.
     The mainly research results are as follow:
     1. The above nanowire arrays are all amorphous in structure, and their structure, morphology and chemical composition could be adjusted by reactant concentration, reaction time, subatmospheric of suction filtration, thermal decomposition temperature and the pore size of AAO template.
     2. There are obvious magnetic anisotropy of LaxZnyOz、LaxMnyOz、LaxFeyOz、 LaxCuyOz、CexFeyOz nanowire arrays with the applied magnetic field and their easy magnetized direction is parallel to the axis of nanowire except for LaxCuyOz, which is from the shape anistropy of nanowire arrays. The TbxOy nanowire array is paramagnetic with the applied magnetic field.
     3. The fluorescence intensities of LaxCuyOz、CexFeyOz nanowire arrays are related with the doped Tb, Eu or Sm within2-30mol%. The results indicated that there is the strongest fluorescence for LaxCuyOz nanowire arrays, when the optimum doping concentration of Tb, Eu is5mol%and that of Sm is30mol%. When the optimum doping concentration of Eu or Sm is10mol%and Tb is5mol%, the fluorescence of CexFeyOz nanowire arrays is the strongest. The LaxCuyOz or CexFeyOz nanowire array is fluorescence quenching, when Eu or Sm is respectively over the optimum doping concentration.
     4. The fluorescence intensity of TbxOy nanowire array is both influenced by the exciting light and the doping concentrations of Eu·or Sm. there are the strongest fluorescence peaks of TbxOy nanowire arrays, when the doping concentrations of Eu is2mol%, and the exciting light is respectively221nm,394nm. When the doping concentration of Sm is10mol%or20mol%, the exciting light is respectively221nm,405nm, there are the strongest fluorescence peaks of TbxOy nanowire array.
引文
[1]何燕,高月,封文江.纳米科技的发展与应用[J].沈阳师范报,2010,28:211-213.
    [2]Xia Y., Yang P., Sun Y, et al. One-dimension nanostructures:synthesis, characterization and Application [J]. Adv. Mater.,2003,15:353-389
    [3]曾庆辉,张友林,杜创,等.CdTe/CdS核壳量子点与蛋白质荧光标记[J].高等学校化学学报,2009,30:1158-1160
    [4]秦杰明,田立飞,赵东旭,等.一维氧化锌纳米结构生长及器件制备研究进展[J].物理学报,2011,60:107307
    [5]梁爽,赵孝文,王刚毅,等.石墨烯的制备及应用进展[J].黑龙江科学,2013,4:58-61
    [6]TuanV.A., Cuong T.M., Phuong D.T., et al. Novel nano-structured materials: synthesis and application [J]. Int. J Nanotechnol.,2011,8:255-267
    [7]李瑞雪.新型磁性纳米功能材料的制备与性能研究[D].广州:华南理工大学,2010.
    [8]刘鸿飞.磁性纳米催化剂的合成及其催化性能研究[D].北京:北京化工大学,2013.
    [9]车如心.纳米复合磁性材料的制备及磁性能研究[D].大连:大连交通大学,2008.
    (10]闫中杰.阵列结构的磁性纳米材料研究[D].兰州:兰州大学,2007.
    [11]任勇.磁性纳米线阵列制备及其各向异性调控研究[D].兰州:兰州大学,2010.
    [12]都有为,罗河烈.磁记录材料[M].电子工业出版社,1992.
    [13]田民波.磁性材料[M].北京:清华大学出版社.2000.
    [14]钟文定,《铁磁学》(中)[M].科学出版社,2000.
    [15]张艺.稀土掺杂发光纳米材料的制备及其荧光性质[D].安徽师范大学,2010.
    [16]Zhong W.W. Nanomaterials in fluorescence-based biosensing [J]. Anal. Bioanal. Chem.2009,394:47-59
    [17]Kyhm K., Kim J., Yang H.S., et al. Sub-picosecond spin relaxation of bright excitons and imbalance suppression in asymmetric Cdse/Zns nanocrystal quantum dots under an applied magnetic field [J]. J Nanosci. Nanotech.,2012, 12:2919-2923
    [18]Kim S.W., Zimmer J.P., Ohnishi S., et al. Engineering InAsxP1-x/InP/ZnSe alloyed core-shell quantum dots for the near-infrared [J]. J Am. Chem. Soc., 2005,127:10526-10532
    [19]Chang Y.P., Liu K.H., Chao C.S., et al, Synthesis and characterization of mesoporous Gd2O3 nanotube and its use as a drug-carrying vehicle [J]. Acta Biomaterialia,2010,6:3713-3719
    [20]Hu K.W., Hsu K.C., Yeh C.S. pH-Dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging [J]. Biomaterials,2010,31:6843-6848
    [21]Song H W, Yu H Q, Pan G H, et al, Electrospinning Preparation, Structure, and Photoluminescence Properties of YBO3:Eu3+ Nanotubes and Nanowires [J]. Chem. Mater.2008,20:4762-4767
    [22]Xu L, Dong B, Wang Y, et al, Porous In2O3:RE (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb) Nanotubes:ElectrospinningPreparation and Room Gas-Sensing Properties[J]. J. Phys. Chem. C,2010,114:9089-9095
    [23]Xin Y, Qi Y X, Ma X C, et al, Rare-earth (RE=Nd, Sm, Eu, Gd and Y) enhanced CeO2 solid solution nanorods prepared by co-precipitation without surfactants [J]. Mater. Letters,2010,64:2659-2662.
    [24]Xin Y, Wang Z P, Qi Y X, et al, Synthesis of rare earth (Pr, Nd, Sm, Eu and Gd) hydroxide and oxide nanorods (nanobundles) by a widely applicable precipitation route [J]. J Alloy Compd.,2010,507:105-111.
    [25]张璐.一维纳米线(阵列)的电化学组装、表征及其性能研究[D].天津:天津大学,2005.
    [26]Fuentes R O, Munoz F F,. Acun-a L M, et al, Preparation and characterisation of nanostructured gadolinia-dopedceria tubes [J]. J. Mater. Chem.,2008,18: 5689-5695.
    [27]Tang Z W, Zhou L Q, Yang L, et al, Preparation and luminescence study of Eu (Ⅲ) titanate nanotubes and nanowires using carbon nanotubes as removable templates [J]. J Lumin.,2010,130:45-51.
    [28]曲晓飞.AAO模板及钕化合物一维纳米材料的制备与结构表征[D].青岛:中国海洋大学,2008.
    [29]王玲.AAO模板双扩散水热合成一维无机纳米材料[]D].青岛:中国海洋大学,2012.
    [30]侯学功.AAO模板合成一维介孔纳米材料及其光致发光性能[D].齐齐哈尔:齐齐哈尔大学,2012.
    [31]王利娜.制备条件对AAO模板有序性的影响[D].北京:首都师范大学,2008.
    [32]张信义.准一维纳米材料有序阵列体系的模板合成及表征[D].合肥:中科院固体所,2001.
    [33]Heydon GP, Hoon S.R., Farley A.N., et al. Magnetic properties of electrodeposited nanowires, J Phys. D,1997,30:1083-1093
    [34]Martin C.R., Nishizawa M. J. Controlling ion-transport selectivity in gold nanotubule membranes [J]. Adv. Mater.,2001,13:1351-1362
    [35]Parthasarathy R.V., Phani K.L.N., Martin C.R. Template synthesis of graphitic Nanotubules [J]. Adv. Mater.,1995,7:896-8974
    [36]Martin C.R., Membrane-based synthesis of nanomaterials [J]. Chem. Mater., 1996,8:1739-1743
    [37]Liu J., Liu C.P., Wan Y.L., et al. Facile synthesis of NiCo2O4 nanorod arrays on Cu conductive substrates as superior anode materials for high-rate Li-ion batteries [J]. CrystEngComm,2013,15:1578-1585
    [38]Lagos N., Sigalas M.M., Niarchos D. The optical absorption of nanowire arrays [J]. Photonic Nanostruct,2011,9:163-167
    [39]Hagfeldt A., Boschloo G, Sun L.C., et al. Dye-Sensitized Solar Cells [J]. Chem. Rev.,2010,110:6595-6663
    [40]Zhu L.W., Zhou L.K., Li H.X,,et al. One-pot growth of free-standing CNTs/TiO2 nanofiber membrane for enhanced photocatalysis [J]. Mater. Lett., 2013,95:13-16
    [41]Kou X.M., Fan X., Dumas R.K., et al. Memory Effect in Magnetic Nanowire Arrays [J]. Adv. Mater.,2011,23:1393-1397
    [42]Gao M., Dai L., Wallace GG Glucose sensors based on glucose oxidase containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes [J]. Syn. Metals,2003,137:1393-1394
    [43]Sosnova M. V., DmitrukN. L., Korovin A. V., et al. Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications [J]. Appl. Phys. B,2010,99:493-497
    [44]Chen X.P., Wong C.K.Y., Yuan C.A., et al. Nanowire-based gas sensors [J]. Sensor and Actuat., B,2013,177:178-195
    [45]Zhang N., Yi R., Zhou L.B.,et al. Lanthanide hydroxide nanorods and their thermal decomposition to lanthanide oxide nanorods [J]. Mater. Chem. Phys., 2009,114:160-167
    [46]Han W.Q., Wu L.J., Zhu Y.M., Formation and oxidation state of CeO2-x nanotubes [J]. J Am. Chem. Soc.,2005,127:12814-12815
    [47]Xin Y., Qi Y.X., Ma X.C., et al. Rare-earth (RE=Nd, Sm, Eu, Gd and Y) enhanced CeO2 solid solution nanorods prepared by co-precipitation without surfactants [J]. Mater. Lett.,2010,64:2659-2662
    [48]Wu G.S., Xie T.,Yuan X.Y., et al. An improved sol-gel template synthetic route to large-scale CeO2 nanowires [J]. Mater. Res. Bull.,2004,39:1023-1028
    [49]Yada M., Taniguchi C., Torlkai T., et al. Hierarchical two-and three-dimensional microstructures composed of rare earth compound nanotubes [J]. Adv. Mater. 2004,16:1448-1453
    [50]Wu G.S., Zhang L.D., Cheng B.C., et al. Synthesis of Eu2O3 nanotube arrays through a facile sol-gel template approach [J]. J Am. Chem. Soc.,2004,126: 5976-5977
    [51]Fang Y.P., Xu A.W.,You L.P., et al. Hydrothermal synthesis of rare earth (Tb, Y) hydroxide and oxide nanotubes [J]. Adv. Funct. Mater.,2003,13:955-960
    [52]Zhang J.L., Hong G.Y. Synthesis and photoluminescence of the Y2O3:Eu3+ phosphor nanowires in AAO template [J]. J. Solid State Chem.,2004,177: 1292-1296
    [53]La R.J., Hua Z.A., Li H.L., et al, Template synthesis of CeO2 ordered nanowire arrays [J]. Mater. Sci. Eng. A,2004,368:145-148
    [54]王传洗.多功能含金属纳米材料的制备与性质研究[D].长春:吉林大学,2013.
    [55]Hou Z., Chai R., Zhang M., et al. Fabrication and luminescence lroperties of one dimensional CaMoO4:Ln3+(Ln= Eu, Tb, Dy) nanofibers via electrospinning process [J]. Langmuir,2009,25:12340-12348
    [56]Barichard A., Frezet L., Potdevin A., et al. Influence of hydrothermally-synthesized LaPO4:Tb3+ nanorods on the physical and physico-chemical properties of photo-structured acrylate material [J]. Mater. Chem. Phys.,2013,141:138-144
    [57]Dolinskaya Y.A., Kolesnikov I.E., Kurochkin A.V., et al. Sol-gel synthesis and luminescent properties of YVO4:Eu nanoparticles [J]. Glass Phys. Chem.,2013, 39:308-310
    [58]Hu C.G., Liu H., Dong W.T., et al. La(OH)3 and La2O3 nanobelts-synthesis and physical properties [J]. Adv. Mater.,2007,19:470-474
    [59]Bai X., Song H.W., Yu L.X., et al. Luminescent properties of pure cubic phase Y2O3/Eu3+ nanotubes/nanowires prepared by a hydrothermal method [J]. J Phys. Chem. B,2005,109:15236-15242
    [60]Du P.F., Song L.X., Xiong J., et al. Preparation and the luminescent properties of Tb3+-doped Gd2O3 fluorescent nanofibers via electrospinning Nanotechnology [J].2011,22:1-5
    [61]Liu G.C., Duan X.C., Li H.B., et al. Preparation and photoluminescence properties of Eu-doped Ga2O3 nanorods [J]. Mater. Chem. Phys.,2008,110: 206-211
    [62]Jia G., Liu K., Zheng Y.H., et al. Highly uniform Gd(OH)3 and Gd2O3:Eu3+ nanotubes:Facile synthesis and luminescence properties [J]. J Phys. Chem. C, 2009,113:6050-6055
    [63]Liu L.X., WangY., Su Y.R., et al. Synthesis and white light emission of rare earth-doped HfO2 nanotubes [J]. J Am. Ceram. Soc.,2011,1-5
    [64]Lin Z.W., Kuang Q., Lian W. Preparation and optical properties of ThO2 and Eu-doped ThO2 nanotubes by the sol-gel method combined with porous anodic aluminum oxide template [J]. J Phys. Chem. B,2006,110:23007-23011
    [65]Hasegawa Y., Afzaal M., OBrien P., et al. A novel method for synthesizing EuS nanocrystals from a single-source precursor under white LED irradiation [J]. Chem. Commun.,2005,242-243
    [66]Thongmee S., Pang H.L., Yi J.B., et al. The structure and magneticproperties of metal and alloy nanowires via AAO template [J]. Int. J Nanoscience,2009,8: 75-80
    [67]Thongmee S., Pang H.L., Ding J., et al. Fabrication and magnetic properties of metallic nanowires via AAO templates [J]. J Magn. Magn. Mater.,2009,321: 2712-2716
    [68]Jung J.S., Jung Y.K., Kim E.M., et al. Synthesis and magnetic characterization of ZnFe2O4 nanostructure in AAO template [J]. Magnetics, IEEE Transactions, 2005,41:3403-3405
    [69]Luo H.M., Lin Q.L., Baber S., et al. Surfactant-templated mesoporous metal oxide nanowires [J]. J Nanomater.,2009,2010:34-39
    [70]Brinker C.J., Dunphy D.R. Morphological control of surfactant-templated metal oxide films [J]. Curr. Opin. Colloid In.,2006,11:126-132
    [71]Gu C.P., Li S.S., Huang J.R., et al. Preferential growth of long ZnO nanowires and its application in gas sensor [J]. Sensor Actuat. B,2013,177,453^459
    [72]Zhuo B.S., Li Y.G., Zhang X.K., et al. Preparation and characterization of amorphous SiO2 nanowires [J]. Mater. Sci. Eng. B,2010,172:15-17
    [73]Noh S.I., Park D.W., Shim H.S., et al. Fabrication and Photovoltaic Properties of Heterostructured TiO2 Nanowires [J]. J Nanosci. Nanotechno.,2012,12: 6065-6068
    [74]Yang M.R., Chu S.Y., Chang R.C. Synthesis and study of the SnO2 nanowires growth [J]. Sensor Actuat. B,2007,122:269-273
    [75]Xia H., Feng J.K., Wang H.L., et al. MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors [J]. J Power Sources,2010,195: 4410-4413
    [76]Ozgiir C., Alivov Y.I., Liu C., et al. A comprehensive review of ZnO materials and devices [J], J Appl. Phys.,2005,98:041301
    [77]Djurisic A.B., Chen X.Y., Leung Y.H., et al. ZnO nanostructures:growth, properties and applications [J]. J. Mater. Chem.,2012,22:6526-6535
    [78]Ozgiir U., Ieee M., Hofstetter D., et al. ZnO devices and applications:a review of current status and future prospects [J]. Proceedings of the Ieee,2010,98: 1255-1268
    [79]Arya S.K., Shibu S., Ramirez-Vick J.E., et al. Recent advances in ZnO nanostructures and thin films for biosensor applications:Review [J]. Anal. Chim. Acta,2012,737:1-21
    [80]Sanchez F.A.L., Takimi A.S., Rodembusch F.S., et al. Photocatalytic activity of nanoneedles, nanospheres, and polyhedral shaped ZnO powders in organic dye degradation processes [J]. J Alloys Compd.,2013,572:68-73
    [81]王东兴.一维氧化锌纳米阵列的制备、表征及其荧光特征[D].青岛:青岛科技大学,2009.
    [82]Park W. Controlled synthesis and properties of ZnO nanostructures grown by metalorganic chemical vapor deposition:a review [J]. Met. Mater Int,2008,14: 659-665
    [83]Zacharias M., Subannajui K., Menzel A., et al. ZnO nanowire arrays:pattern generation, growth and applications [J]. Phys. Status Solidi B,2010,247: 2305-2314
    [84]Gonzalez-Valls I., Lira-Cantu M. Vertically-aligned nanostructures of ZnO for excitonic solar cells:a review [J]. Energy Environ. Sci.,2009,2:19-34
    [85]Chen Y.J., Zhu C.L., Xiao G. Ethanol sensing characteristics of ambient temperature sonochemically synthesized ZnO nanotubes [J]. Sensor Actuat. B,2008,129:639-642
    [86]Pan Z.W., Dai Z.R., Wang,Z.L., Nanobelts of Semiconducting Oxides [J]. Science,2001,291:1947-1949
    [87]Wan Q., Lin C.L., Yu X.B., et al. Room-temperature hydrogen storage characteristics of ZnO nanowires [J]. Appl. Phys. Lett.,2004,84:124-126
    [88]Li P.G., Tang W.H., Wang X., Synthesis of ZnO nanowire arrays and their photoluminescence property [J]. J Alloys Compd.,2009,479:634-637
    [89]Fang Y.J., Wang Y.W., Wan Y.T., et al. Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation [J]. J. Phys. Chem. C,2010,114:12469-12476
    [90]Zhang L.C., Ruan Y.F., Wang D.L., et al. Synthesis and photoluminescence properties of ZnO nanowire Arrays [J]. Cryst. Res. Technol.,201146:405-408
    [91]Riaz M., Song J.H., Nur O.,et al. Study of the piezoelectric power generation of ZnO nanowire arrays grown by different methods [J]. Adv. Funct. Mater.,2011, 21:21628-21633
    [92]Chen C.Y., Huang J.H., Song J.H., et al. Anisotropic outputs of a nanogenerator from oblique-aligned ZnO nanowire arrays [J]. ACS Nano,2011,5:6707-6713
    [93]Xu C.K., Wu J.M., Desai U.V., et al. Multilayer assembly of nanowire arrays for dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2011,133:8122-8125
    [94]El-Shaer A., Dev A., Richters J.P., et al. Hybrid LEDs based on ZnO-nanowire Arrays [J]. Phys. Status Solidi B,2010,247:1564-1567
    [95]Huang M.H., Mao S., Feick H., et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science,2001,292:1897-1899
    [96]Hames Y., Alpaslan Z., Kasemen A., et al. Electrochemically grown ZnO nanorods for hybrid solar cell applications [J]. Solar Energy,2010,84:426-431
    [97]Hua GM., Zhang Y, Zhang J.X. Fabrication of ZnO nanowire arrays by cycle growth in surfactantless aqueous solution and their applications on dye-sensitized solar cells [J]. Mater. Lett.,2008,62:4109-4111
    [98]罗元香,陆路德,汪信,等.纳米级过渡金属氧化物对高氯酸铵催化性能的研究[J].含能材料,2002,10:148-152
    [99]Yan H., Liu X.W., Xu R., et al. Synthesis, characterization, electrical and catalytic properties of CuO nanowires [J]. Mater. Res. Bull.,2013,48: 2102-2105
    [100]Farbod M., Ghaffari N.M., Kazeminezhad I. Effect of growth parameters on photocatalytic properties of CuO nanowires fabricated by direct oxidation [J]. Mater. Lett.,2012,81:258-260
    [101]Li D.D., Hu J., Wu R.Q., et al. Conductometric chemical sensor based on individual CuO nanowires [J]. Nanotechnology,2010,21:485502
    [102]Hoa N.D., Quy N.V., Jung H., et al. Synthesis of porous CuO nanowires and its application to hydrogen detection [J]. Sensor Actuat. B 2010,146:266-272
    [103]Wang S.B., Hsiao C.H., Chang S.J., et al. A CuO nanowire infrared photodetector [J]. Sensor Actuat. A,2011,171:207-211
    [104]Shang D.J., Yu K., Zhang Y.S., et al. Magnetic and field emission properties of straw-like CuO nanostructures [J]. Appl. Surf. Sci.,2009,255:4093-4096
    [105]Chen L.B., Lu N., Xu C.M., et al. Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries [J]. Electrochim. Acta,2009,54,4198-4201
    [106]Wang Z.Y., Su F.B., Madhavi S. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithiumstorage [J]. Nanoscale,2011, 3:1618-1623
    [107]Wang S.B., Hsiao C.H., Chang S.J., et al. CuO Nanowire-Based Humidity Sensor [J]. Sensors Journal, IEEE,2012,12:1884-1888
    [108]Kim Y.S., Hwang I.S., Kim S.J., et al. CuO nanowire gas sensors for air quality control in automotive cabin [J]. Sensor Actuat. B,2008,14,298-303
    [109]Zhang P., Zhan Y, Cai B., et al. Shape-controlled synthesis of Mn3O4 nanocrystals and their catalysis of the degradation of methylene blue [J]. Nano Res.,2010,3:235-243
    [110]Li Y.G, Wu Y.Y. Formation of Nao.44Mn02 nanowires via stress-induced splitting of birnessite nanosheets [J]. Nano Res.,20092:54-60
    [111]Wang X., Li Y. Selected-control hydrothermal synthesis of α- and P-MnO2 single crystal nanowires [J]. J Am. Chem. Soc.,2002,124:2880-2881
    [112]Omomo Y, Sasaki T., Wang L., et al. Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide [J]. J Am. Chem. Soc., 2003,125:3568-3575
    [113]Ahmad T., Ramanujachary K.V., Lofland S.E., et al. Nanorods of manganese oxalate:a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4) [J]. J Mater. Chem.,2004,14:3406-3410
    [114]Wang X., Li Y.D. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods [J]. Chem. A Eur. J,2003,9:300-306
    [115]Yan D., Yan P.X., Yue G.H., et al. Self-assembled flower-like hierarchical spheres and nanobelts of manganese oxide by hydrothermal method and morphology control of them [J]. Chem. Phys. Lett.,2007,440:134-138
    [116]Zhou F., Zheng H.G., Zhao X.M., et al. Large-area synthesis of high-quality β-MnO2 nanowires and the mechanism of formation through a facile mineralization process [J]. Nanotechnology,2005,16:2072-2076
    [117]Chen H.M., He J.H. Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment [J]. J Phys. Chem. C, 2008,112:17540-17545
    [118]Zhang W.X., Yang Z.H., Wang X., et al. Large-scale synthesis of β-MnO2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye [J]. Cata. Commun.,2006,7:408-412
    [119]Xu L., Zhang W., Ding Y, et al. Formation, characterization, and magnetic properties of Fe3O4 nanowires Encapsulated in Carbon Microtubes [J]. J Phys. Chem. B,2004,108:10859-10863
    [120]Zhang L.Y, Gu H.C., Wang X.M. Magnetite ferrofluid with high specific absorption rate for application in hyperthermia [J]. J Magn. Magn. Mater.,2007, 311:228-233
    [121]Liu X.J., Liu J.F., Chang Z., et al. α-Fe2O3 nanorod arrays for bioanalytical applications:nitrite and hydrogen peroxide detection [J]. RSC Advances,2013, 3:8489-8494
    [122]Wang R.M., Chen Y.F., Fu Y.Y., et al. Synthesis and microstructures of α-Fe2O3 bicrystalline nanowires [J]. Mater. Res. Soc. Symp. Proc.,2005,839: 151-156
    [123]Wang C., Wang F.F., Ren C. Temperature and pressure dependent electrical property of Fe2O3 nanorod [J]. Mater. Lett.,2012,68:209-211
    [124]Mohapatra S.K., John S.E., Banerjee S., et al. Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays [J]. Chem. Mater.,2009,21:3048-3055
    [125]Xie K.Y., Li J., Lai Y.Q., et al. Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage [J]. Electrochem. Commun.,2011, 13:657-660
    [126]Yue Z.G, Wei W., You ZX, et al. Oxide nanotubes for magnetically guided delivery and pH-activated release of insoluble anticancer drugs [J]. Adv. Funct. Mater.,2011,21:3446-3453 &
    [127]Khatamian, M., Khandar, A.A., Divbanda, B., et al. Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+ or Sm34) doped ZnO nanoparticles [J]. J Mol. Catal. A- Chem.,2012,365: 120-127
    [128]He, J.Q., Yin, J., Liu, D., et al. Enhanced acetone gas-sensing performance of La2O3-doped flowerlike ZnO structure composed of nanorods [J]. Sensor Actuat B:Chem,2013,182:170-175
    [129]Jia, T., Wang, W.M., Long, F., et al. Fabrication, characterization and photocatalytic activity of La-doped ZnO Nanowires [J]. J Alloys Compd,2009, 484:410-415
    [130]Suwanboon, S., Amornpitoksuk, P., Bangrak, P., et al. Structural, optical and antibacterial properties of nanocrystalline Zn1-xLaxO compound semiconductor [J]. Mat. Sci. Semicon. Proc.,2013,16:504-512
    [131]Lan, W., Liu, Y.P., Zhang, M., et al. Structural and optical properties of La-doped ZnO films prepared by magnetron sputtering [J]. Mater. Lett.,2007, 61:2262-2265
    [132]Bouznit, Y., Beggah, Y., Ynineb, F. Sprayed lanthanum doped zinc oxide thin films [J]. Appl..Surf. Sci.,2012,258:2967-2971
    [133]Young, S.L., Chen, H.Z., Kao, M.C., et al. Magnetic properties of La-doped and Cu-dopedZnO nanowires fabricated by hydrothermal method [J]. Int. J Mod. Phys. B,2013,27:1362006
    [134]Wang D.D., Chen Q., Xing G.Z., et al. Robust room-temperature ferromagnetism with giant anisotropy in Nd-doped ZnO nanowire arrays [J]. Nano Lett.,2012,12:3994-4000
    [135]Reddy L.H., Reddy GK., Devaiah D., et al. A rapid microwave-assisted solution combustion synthesis of CuO promoted CeO2-MxOy (M= Zr, La, Pr and Sm) catalysts for CO oxidation Appl. Catal. A,2012,445-446:297-305
    [136]Liu Z.G., Zhou R.X., Zheng X.M. Influence of rare-earth metal doping on the catalytic performance of CuO-CeO2 for the preferential oxidation of CO in excess hydrogen [J]. J Nat. Gas Chem.,2008,17:283-287
    [137]Ding R.M., Liu J.P., Jiang J., et al. Mixed Ni-Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor [J]. Anal Methods,2012,4:4003-4008
    [138]Moghtaderi B., Song H. Reduction properties of physically mixed metallic oxide oxygen carriers in chemical looping combustion [J]. Energy Fuels,2010, 24:5359-5368
    [139]Zou Y.Q., Wang Y. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries [J]. Nanoscale,2011,3:2615-2620
    [140]Liu S.W., Liu J.Y., Liu Y.H. Ultrasonic-assisted fabrication of LaNiOx composite oxide nanotubes and application to the steam reforming of ethanol [J]. Catalysis Today,2011,164:246-250
    [141]El-Shobaky GA., Radwan N.R.E., El-Shall M.S., et al. Physicochemical, surface and catalyic properties of nanocrystalline CuO-NiO system as being influenced by doping with La2O3 [J]. Colloid and Surface A,2009,345: 147-154
    [142]Li B., Metiu H. Dissociation of methane on La2O3 surfaces doped with Cu, Mg, or Zn [J]. J Phys. Chem. C,2011,115:18239-18246
    [143]Gao L.Z., Chua H.T., Kawi S. The direct decomposition of NO over the La2Cu04 nanofiber catalyst [J]. J Solid State Chem.,2008,181:2804-2807
    [144]Tokura Y, Nagaosa N. Orbital physics in transition-metal oxides [J]. Science, 2000,288:462-468.
    [145]Weber W.H., Merlin R. Raman scattering in materials science [M]. Berlin: Springer,2000:449-478.
    [146]Ravindran P., Kjekshus A., Fjellvag H., et al. Ground-state and excited-state properties of LaMnO3 from full-potential calculations [J]. Phys. Rev. B,2002, 65:064445
    [147]Sambasivam S., Li GJ., Jeong J.H., et al. Structural, optical, and magnetic propertiesof single-crystalline Mn3O4 nanowires [J]. J Nanopart. Res.,2012,14: 1138-1146
    [148]Yuan Y.F., Pei Y.B., Guo S.Y, et al. Sparse MnO2 nanowires clusters for high-performance supercapacitors [J]. Mater. Lett.,2012,73:194-197
    [149]Antonio D., Dolz M.I., Pastoriza H. Magnetization measurement of single La0:67Ca0:33MnO3 nanotubesin perpendicular magnetic fields using a micromechanical torsional oscillator [J]. J Magn. Magn Mater.,2010,322: 488-493
    [150]Chen Y., Yuan H.M., Tian G., et al. Hydrothermal synthesis and magnetic properties of RMn2O5 (R=La, Pr, Nd, Tb, Bi) and LaMn2O5+δ, J Solid State Chem.,2007,180:1340-1346
    [151]Spinicci R., Faticanti M., Marini P., et al. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion [J]. J. Mol. Catal. A Chem., 2003,197:147-155
    [152]Silva P.R.N., SoaresI A.B. Lanthanum based high surface area perovskite-type oxide and application in CO and propane combustion [J]. Ecletica quimica,2009,34:31-38
    [153]Wang Y.X., Cui X.Z., Li Y.S. A simple co-nanocasting method to synthesize high surface area mesoporous LaCoO3 oxides for CO and NO oxidations [J]. Micropor. and Mesopor. Mat.,2013,176:8-15
    [1.54]Weidenkaff A., Ebbinghaus S.G., Lippert T. Ln1-xAxCoO3 (Ln= Er, La; A= Ca, Sr)/Carbon Nanotube Composite Materials Applied for Rechargeable Zn/Air Batteries [J], Chem. Mater.,2002,14:1797-1805
    [155]Gao P., Li N., Wang A.Q., et al. Perovskite LaMn3 hollow nanospheres:The synthesis and the application in catalytic wet air oxidation of phenol [J]. Mater. Lett.,2013,92:173-176
    [156]Shen M.Q., Zhao Z., Chen J.H. Effects of calcium substitute in LaMnO3 perovskites for NO catalytic oxidation [J]. J Rare Earths,2013,31: 119-123
    [157]Tchoua N.P.H., Bahlawane N. Chemical vapor deposition and electric characterization of perovskite oxides LaMO3 (M=Co, Fe, Cr and Mn) thin films [J]. J Solid State Chem.,2009,182:849-854
    [158]Hu J., Shao GJ., Huang H., et al. Preparation of nanometer perovskite-type oxide La0.8Sr0.2MnO3 by organic solvent sol-gel method and capability testing [J]. Rare Metals,2008,27:131-133
    [159]Ma X.Y., Zhang H., Xu J., et al. Synthesis of La1-xCaxMnO3 nanowires by a sol-gel process [J]. Chem. Phys. Lett.,2002,363:579-582
    [160]Hu Z.A., Wu H.Y., Shang X.L., Template synthesis of LaMnO3+sordered nanowire arrays by converse diffusion or convection [J]. Mater. Res. Bull.,2006, 41:1045-1051
    [161]Dacquin J.P., Lancelot C., DujardinC., et al. Support-induced effects of LaFeO3 perovskite on the catalytic performances of supported Pt catalysts in DeNOx Applications [J]. J Phys. Chem. C.,2011,115:1911-1921
    [162]Bai S.L., Shi B.J., Ma L.J., et al. Synthesis of LaFeO3 catalytic materials and their sensing properties [J]. Science China-Chemistry,2009,7:2106-2113
    [163]ToanN.N., Saukko S., LanttoV. Gas sensing with semiconducting perovskite oxide LaFeO3 [J]. Physica-Section B,2003,327:279-282
    [164]Lee W.Y., Yun H.J., Yoon J.W. Characterization and magnetic properties of LaFeO3 nanofibers synthesized by electrospinning [J]. J Alloy Compd.,2014, 583:320-324
    [165]Grilli M.L., DiBartolomeo E., Traversa E. Electrochemical NOx sensors based on interfacing nanosized LaFeO3 perovskite-type oxide and ionic conductors [J]. J Electrochem. Soc.,2001,148:H98-102
    [166]Yoon J.W., Grilli M.L., Bartolomeo E.D., et al. The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes [J]. Sensor Actuat. B,2001,76:483-488
    [167]Berchmans L.J., Sindhu R., Angappan S. Effect of antimony substitution on structural and electrical properties of LaFeO3 [J]. J Mater. Process. Tech.,2008, 207:301-306
    [168]Asada T., Kayama T., Kusaba H., et al. Preparation of alumina-supported LaFeO3 catalysts and their catalytic activity for propane combustion [J]. Catalysis Today,2009,139:37-42
    [169]Shen H., Cheng G.F., Wu A.H., et al. Combustion synthesis and characterization of nano-crystalline LaFeO3 powder [J]. Phys. Status Solidi A,2009,206: 1420-1424
    [170]Grepstad J.K., Takamura Y., Scholl A., et al. Effects of thermal annealing in oxygen on the antiferromagnetic order and domain structure of epitaxial LaFeO3 thin films [J]. Thin Solid Films,2005,486:108-112
    [171]Wang Q., Yang X.W., Li S.M., et al. Hydrothermal-induced oriented growth of Fe-Co alloy and Sm3+-substitutedmagnetite nanowire composites[J]. J Magn. Magn. Mater.,2008,320:3297-3302
    [172]Song P., Wang Q., Yang Z. Preparation, characterization and acetone sensing properties of Ce-doped SnO2 hollow spheres [J] Sensor Actual. B,2012,173: 839-846
    [173]Shao Y, Ma Y. Mesoporous CeO2 nanowires as recycled photocatalysts [J]. Sci. China Chem.,2012,55:1303-1307
    [174]Feng Y.J., Liu L.L., Wang X.D., et al. Hydrothermal synthesis and automotive exhaust catalytic performance of CeO2 nanotube arrays[J]. J Mater. Chem.,2011, 21:15442-15448
    [175]Rovira L.G, Delgado J.J., ElAmrani K. Synthesis of ceria-praseodimia nanotubes with high catalytic activity for CO oxidation [J], Catalysis Today, 2011,180:167-173
    [176]Wang Y., Fan H.J. Improved thermoelectric properties of La1-xSrxCoO3 nanowires [J]. J Phys. Chem. C,2010,114:13947-13953
    [177]薛飞.稀土氧化物准一维纳米阵列的制备及磁性能研究[D].合肥:安徽大学,2012.
    [178]于海玲.稀土氧化物纳米线的制备及其性能研究[D].合肥:安徽大学,2013.
    [179]樊锐.稀土氧化物纳米结构的可控合成及性能研究[D].合肥:安徽大学,2013.
    [180]朱冬梅.稀土氧化物纳米管阵列的制备及其性能研究[D].合肥:安徽大学,2013.
    [181]Sellmyer D.J., Zheng M., Skomski R. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays [J]. J. Phys. Condens. Matter,2001,13:R433-460
    [182]Whitney T.M., Jiang J.S., Searson P.C., et al. Fabrication and magnetic properties of arrays of metallic nanowires [J]. Science,1993,261:1316-1319
    [183]Kato S., Shinagawa H., Okada H., et al. Application of ferromagnetic nano-wires in porous alumina arrays for magnetic force generator [J]. Sci. Technol. Adv. Mat.,2005,6:341-343
    [184]Prins W.J., Fiser B.L., Judith R., et al. Fabrication of surface-attached magnetic post arrays for biosensing applications [J]. Biophys. J,2013,104:528a
    [185]Xu Y.,Xue D.S., Gao D.Q., et al. Ordered CoFe2O4 nanowire arrays with preferred crystal orientation and magnetic anisotropy [J]. Electrochim. Acta, 2009,54:5684-5687
    [186]Lavin R., Denardin J.C., Espejo A.P., et al. Magnetic properties of arrays of nanowires:Anisotropy, interactions, and reversal modes [J]. J. Appl. Phys., 2010,107:09B504
    [187]Kim C.H., Chun H.J., Kim D.S., et al. Magnetic anisotropy of vertically aligned Fe2O3 nanowire array [J]. Appl. Phys. Lett.2006,89:223103
    [188]Normanda B., Ricea T.M. Magnetic Properties of the Ladder Compound LaCuO2.5 [J]. Physica C,1997,282-287:1113-1114
    [189]Jacob A., Parema C., Boutinaud P., et al. Luminescent properties of delafossite-type oxides LaCuO2 and YCuO2 [J]. Solid State Commun.,1997, 103:529-532
    [190]Spijker HV, Simon D, Ooms F. Photocatalytic water splitting by means of undoped and doped La2CuO2 photocathodes [J]. International Journal of Hydrogen Energy 2008,33:6414-6419
    [191]Sushkov O.P., Kotov V.N. Photocatalytic water splitting by means of undoped and doped La2Cu04 photocathodes [J]. Phys. Rev. B,2008,77:054506
    [192]Kachkachi H., Ezzir A., Nogues M., et al. Surface effects in nanoparticles: application to maghemite γ-Fe2O3 [J]. Eur. Phys. J B,2000,14:681-690
    [193]Wang Y., Cao J.L., Wang S.R., et al. Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors [J]. J Phys. Chem. C,2008, 112:17804-17808
    [194]Wu C.Z., Yin P., Zhu X., et al. Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors [J]. J Phys. Chem. B,2006,110:17806-17812
    [195]Suresh K., Murthy K.V.R., Rao C.A., et al. Synthesis and characterization of nano Sr2CeO4 doped with Eu and Gd phosphor [J]. J Lumin.,2013,133: 96-101
    [196]Gouveia-Neto A.S., Silva A.F., Bueno L.A., et al. Luminescent features of sol-gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application [J]. J Lumin.,2012,132:299-304
    [197]Fadlalla H.M.H., Tang C.C., Elsanousi A., et al. Solution-combustion synthesis of Tb3+-doped Y3Al5O12 nanoparticles [J]. J Lumin.,2009,129:401-405
    [198]Jin Y., Li C.X., Xu Z.H., et al. Microwave-assisted hydrothermal synthesis and multicolor tuning luminescence of YPxV1-xO4:Ln3+(Ln=Eu, Dy, Sm) nanoparticles [J]. Mater. Chem. Phys.,2011,129:418-423
    [199]Xiao Y, Wu D.P., Jiang Y, et al. Nano-sized Y2O3:Eu3+ hollow spheres with enhanced photoluminescence properties [J]. J'Alloy Compd.,2011,509: 5755-5760
    [200]Sin J.C., Lam S.M., Lee K.T., et al. Preparation and photocatalytic properties of visible light-driven samarium-doped ZnO nanorods [J]. Ceram. Int.2013,39: 5833-5843
    [201]Zhang Y., Wu M.Y., Zhang W.F. Enhanced photoluminescence of Sm3+/Bi3+ co-doped La2O3 nanophosphors by combusition synthesis [J]. Mod. Phys. Lett. B,2010,24:475-485
    [202]Liu Z.W., Chang P.C., Chang C.C., et al. Shape anisotropy and magnetization modulation in hexagonal cobalt nanowires [J]. Adv. Funct. Mater.,2008,18: 1573-1578
    [203]Shpaisman N., Givan U., Kwiat M., et al. Controlled synthesis of ferromagnetic semiconducting silicon nanotubes [J]. J. Phys. Chem. C,2012,116:8000-8007
    [204]Zhang GJ., Ning Y. Silicon nanowire biosensor and its applications in disease diagnostics:A review [J]. Anal. Chim. Acta,2012,749:1-15
    [205]Liu X.F., Zhang Q., Yip J.N., et al. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-moss effect [J]. Nano Lett.,2013,13:5336-5343
    [206]Chen X.P., Wong C.K.Y., Yuan C.A., et al. Nanowire-based gas sensors [J]. Sensor Actual. B,2013,177:178-195
    [207]Pasquali M., Liang J., Shivkumar S. Role of AAO template filling process parameters in controlling the structure of one-dimensional polymer nanoparticles [J]. Nanotechnology 2011,22:375605
    [208]Wang F., Huang H.B., Yang S.G. Synthesis of ceramic nanotubes using AAO templates [J]. J Eur. Ceram. Soc.,2009,29:1387-1391
    [209]Liu J.J., Wang F., Zhai J.Y., et al. Controllable growth and magnetic characterization of electrodeposited nanocrystalline Ni-P alloy nanotube and nanowire arrays inside AAO template [J]. J Electroanal. Chem.,2010,642: 103-108
    [210]Zhang L.Y., Zhang Y.F. Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters [J]. J Magn. Magn. Mater.,2009,321:L15-20
    [211]Fu X.W., Liao Z.M., Liu R., et al. Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires [J]. ACS Nano,2013,7: 8891-8898
    [212]Zhou L.Y., Wei J.S., Shi J.X., et al. A novel green phosphor GdCaAlO4:Tb3+ for PDP application [J]. J Lumin.,2008,128:1262-1266
    [213]Yadav R.S., Dutta R.K., Kumar M., et al. Improved color purity in nano-size Eu3+-doped YBO3 red phosphor [J]. J Lumin.,2009,129:1078-1082
    [214]Xu Z.H., Kang X.J., Li C.X., et al. Ln3+(Ln= Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies:hydrothermal synthesis, growing mechanism, and luminescent properties [J]. Inorg. Chem., 2010,49:6706-6715
    [215]Yang D.M., Kang X.J., Shang M.M., et al. Size and shape controllable synthesis and luminescent properties of BaGdFs:Ce3+/Ln3+(Ln=Sm, Dy, Eu, Tb) nano/submicrocrystals by a facile hydrothermal process [J]. Nanoscale,2011,3: 2589-2595
    [216]Tao F., Wang Z.j., Yao L.Z., et al. Synthesis of Tb(OH)3 nanowire arrays via a facile template-assisted hydrothermal approach [J]. Nanotechnology,2006,17: 1079-1082
    [217]Yang J., Li G.G., Peng C., et al. Homogeneous one-dimensional structured Tb(OH)3:Eu3+ nanorods:Hydrothermal synthesis, energy transfer, and tunable luminescence properties [J]. J Solid State Chem.,2010,183451-457
    [218]Mendez M., Carvajal J.J., Cesteros Y, et al. Photoluminescence and Cathodoluminescence of La2O3:Eu nanoparticles synthesized by several methods [J]. Physics Procedia,2010,8:114-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700