用户名: 密码: 验证码:
锂离子电池用一维纳米材料的制备与电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着电子和信息产业的迅速发展,特别是便携式电子设备如笔记本电脑、移动电话、数码相机、数码摄像机等,以及航空航天和军用电子设备、混合电动汽车(HEV)的发展,对于其移动电源的能量密度,循环性能和可靠性等提出了更高的要求。为了满足世界范围内对能源转化和储备日益增长的需求,目前大量的研究工作直接与寻找新的材料概念以及多样化的合成方法相联系。在电极材料方面的突破是下一代锂离子电池成功开发的关键正逐步被广泛接受。纳米材料,纳米复合材料作为嵌锂材料,由于其特殊的纳米微观结构和形貌,可望更加有效的提高材料的可逆嵌锂容量和循环寿命。纳米材料具有大的比表面积和孔体积,锂离子嵌脱深度小,因而在大电流的充放电下表现出极化程度小、可逆性能高、循环稳定性好等优点。
     本论文主要采用湿化学方法或电沉积方法和氧化铝模板相结合的方式,合成各种一维纳米材料,包括碳纳米管、碳纳米管包覆的单晶和多晶SnO_2一维纳米阵列、碳纳米管包覆的多晶LiFePO_4纳米阵列、金属锡纳米管,以及TiO_2多晶纳米管。湿化学方法包括柠檬酸溶液法和以柠檬酸为络合剂的溶胶凝胶法。其中,溶胶凝胶法可以通过调节pH值、水量的大小以及温度等因素改变溶胶前驱体的交联度,提高阳极氧化铝模板的填充度。课题采用各种测试手段对合成材料进行物化表征,和电化学性能表证,研究其在锂离子电池中的应用。内容包括以下几个部分:
     首先,论文在第三章采用二次阳极氧化方法,在草酸电解液中制备出具有纳米级孔洞的高度有序的多孔阳极氧化铝膜。实验结果显示,氧化铝多孔膜的纳米孔纵横比大,孔道垂直有序、尺寸均一,孔密度可达10~(10)/cm~2,而且孔径大小可通过改变温度、后续扩孔处理等方式,在一定范围内进行调节。电化学测试结果显示,氧化铝模板是一种惰性基体,它对纳米电极阵列的电化学容量不产生较大影响。因此,氧化铝模板既可以在后续处理中加以去除,也可以作为惰性分散体,为微型电极阵列的基础和应用研究提供微型反应场所。
     碳纳米管(CNT)可以和金属一样有效地沿着其狭长的轴线导热和导电,同时,由于碳纳米管在管壁之间和管腔之中存在大量空间,因此它作为储氢材料、锂离子电池负极材料以及超级电容器材料得到了广泛的研究。论文第四章采用柠檬酸溶液-氧化铝模板法成功制备出了CNT材料和CNT/Al_2O_3复合材料。物化表征结果显示,制备的CNTs形貌均一,管壁厚度及长径比可调,而且采用这种方法制备碳纳米管产率高,重现性好,有望运用于场电子发射器材或储能器材领域。进一步的表征结果显示,氧化铝模板在450℃-600℃之间对碳纳米管的石墨化具有催化效果;而在热处理温度高于600℃时,两相界面对氧化铝基体的晶化更具催化效果,促使氧化铝在低于热力学的晶化温度即开始结晶,生成四方相的Al_2O_3晶体。电化学测试结果表明,CNT/Al_2O_3复合材料相比较CNT材料,具有更高的嵌脱锂容量,电化学循环稳定性较高,倍率放电性能优良,是一种较好的储锂材料。但是这种材料的电导性有待进一步提高。
     论文第五章首先研究了SnO_2粉体的电化学嵌脱锂性能,并进一步采用溶胶凝胶.氧化铝模板法成功制备出了碳纳米管包覆的SnO_2单晶纳米阵列和多晶纳米阵列,该合成方法对于合成其他碳纳米管包覆的单晶或多晶氧化物纳米阵列具有一定指导意义。研究结果证实,由于晶体SnO_2材料具有较小的电荷传递阻抗和较快的锂离子扩散速率,因而晶体SnO_2的电化学嵌脱锂容量和首次库仑效率高于无定形SnO_2;而另一方面,由于无定形SnO_2的物质形态有助于首次电化学还原反应生成弥散的金属锡,有效防止金属锡的团簇,因而具有较好的循环稳定性。通过对SnO_2一维合成材料的研究发现,SnO_2单晶纳米线阵列的填充度较好,纳米线的长度在1μm左右;进一步研究表明,单个纳米线具有不同的晶体生长方向,因而纳米线阵列不显示明显的晶体择优取向。通过降低溶胶前驱的pH值和增大溶胶的水量,可以成功合成出长度达数十微米的SnO_2多晶纳米线。电化学测试结果表明,CNT包覆的SnO_2一维纳米阵列综合两者优势,具有较高的锂离子扩散系数和径向电导,获得了较高的电化学嵌脱锂容量。另一方面,由于纳米阵列有限的自由空间和纳米线本身的尺寸效应,限制了SnO_2活性材料的体积膨胀,加上一维纳米材料充放电过程的一致性,都使得复合材料具有较好的循环稳定性。
     第六章首先采用恒流电沉积技术制备了金属锡薄膜,研究不同电流密度下电沉积锡薄膜的形貌、结构及其电化学嵌脱锂性能。并结合阳极氧化铝模板,采用恒压电沉积技术,在氧化铝模板的纳米孔洞中进行电化学沉积,制备金属锡的一维纳米结构材料。研究结果证实,恒电流沉积的电流密度越小,生成的锡膜越趋向于热力学稳定结构,即电极结构和晶界结构越致密,与基体结合越紧密,因而电化学循环性能较好,但是容量较低。分析认为,低电流密度下沉积得到的致密的电极结构和晶界结构,使得材料在嵌脱锂过程中能够保持结构的稳定,但是这种致密结构的较慢的嵌脱锂动力学过程,也限制了材料的电容量。相反,较高电流密度下获得的沉积膜为动力学稳定结构,电极结构和晶界结构较疏松,因而材料具有较高嵌脱锂容量,但是嵌脱锂过程中剧烈的体积膨胀,又使得材料粉化、脱落现象严重,循环性能变差。改性热处理可以在一定程度上结合两者的优势。在氧化铝模板中电沉积得到的金属锡的产物为管状的一维纳米材料,具有一定首创性。管状结构的生成与氧化铝模板及溅射的金膜的孔洞结构有关;另一方面,由于电镀液中的柠檬酸络合剂易吸附在孔道内壁,一定程度上也促进了管状电沉积产物的生成。相比较金属锡薄膜,锡纳米管的循环稳定性有一定程度的提高。以0.5mA/cm~2沉积的锡膜为例,首次可逆容量为497mAh/g,循环至20周,容量衰减为88mAh/g;金属锡纳米管首次脱锂容量达到423mAh/g,循环20周后,容量保持在223mAh/g左右。这说明,纳米结构对电化学循环稳定性有一定改善作用,但是,由于合金化过程中固有的结构性膨胀没有得到根本性解决,因此,锡纳米管的容量衰减还比较大,循环稳定性还需进一步改进。
     本论文第七章采用超声、浸泡等不同手段,初步探索了溶胶凝胶-氧化铝模板法制备TiO_2纳米管的合成方法,并对合成的纳米管进行物化和电化表征。由于TiO_2和Al_2O_3的等电点在5~6之间和6~8之间,在酸度较大的溶液中,两种氧化物的表面均带有正电,具有静电排斥作用,因而TiO_2在氧化铝模板孔洞中的填充难度较大。实验证实,采用超声和浸泡等手段能够合成出具有一维纳米形貌的材料,但是填充率不高。物化表征显示,合成材料均为锐钛矿型TiO_2多晶纳米管。电化学测试显示,相对本体材料,TiO_2多晶纳米管的循环容量、循环稳定性及嵌脱锂动力学过程均有所促进。
     最后,论文第七章采用溶胶凝胶-氧化铝模板法初步合成出了碳纳米管包覆的磷酸亚铁锂多晶纳米线。进一步证实了溶胶凝胶-氧化铝模板法合成碳纳米管包覆的半导体一维纳米材料的有效性。
The protable batteries with higher energy density,better cycliability and reliability are most urged recently by the rapid development of the electronic and communication devices,such as notebook,mobile telephone,camera,aerial and space equipments,as well as Hybrid-Electric Vehicel(HEV).More and more researchers focus on the discoveries of new material concept and the synthesis diversification to meet the increasingly demand for energy conversion and storage.Scientists have realized that breakthrough in the electrode materials is the key point for the next generation of the lithium ion batteries.Nano-materials and nano-composites are expectable for the higher capacity and better cycliability due to their special microstructure and micro morphology,which have higher specific surface area and bigger pore spaces.They can exhibit little polarization,better reversibility and cyliability when charged and discharged under large current density due to the short length of lithium ion diffusion.
     In this dissertaion,several one-dimensional nano-materials were synthesized by using the methods of combining the wet chemistry or electro-deposition with anodic aluminum oxide(AAO) template.These one-dimensional nano-materials include carbon nano-tubes(CNTs),CNT-coated single-crystal and polycrystalline SnO_2 nanoarrays,CNT-coated polycrystalline LiFePO_4 nanoarrays,tin nanotubes and polycrystalline TiO_2 nanotubes.The wet chemistry methods primarily include the citric acid solution method and the sol-gel method which uses the citric acid as chelating agent.The pH value,water volume and temperature of the sol could affect the chelation degree and then enhance the loading rate of the AAO template.These one-dimensional nano-materials were physically characterized and electrochemically tested as electrode materials for lithium ion batteries.
     At first(3rd chapter),nanometer-scale alumina template with highly ordered and closely packed hexagonal pore structure was prepared by two-step anodizing process in oxalic acid solution.The nanometer-scale pore holes have high aspect ratio with a pore density of 10~(10)/cm~2,and the pore size can be adjusted by tunning the temperature of the electrolytic cell and the following immersion in phosphoric acid.The electrochemical tests show that AAO template is an electrochemically inactive substrate,which has the least influence on the electrochemical capacities of the nanoarray materials.As a result,AAO template can not only be removed in the follow-up process but also be an inactive substrate to supply the absolute microtubes for the experiments of the microelectrode arrays.
     CNT has electronic and thermal conductivity in the axis direction like metal,and the large space in and between the nanotubes supplies the potential application in the fields of hydrogen storage,lithium ion storage and super capacitor.In the fourth chapter,large scale and uniform CNTs and CNT/Al_2O_3 composite were successfully synthesized by using citric acid solution-AAO template method.The wall thickness of the nanotube and the aspect ratio can be adjusted.These CNT arrays have potential application in Field Emission Display(FED) devices.Further investigation shows that the nanopores of AAO have catalyze the graphization of the CNTs during 450℃-600℃,while the interfaces prefer to catalyze the crystallization of the alumina substrate for the tetrahedral Al_2O_3 above 600℃,which is lower than the thermal crystallization temperature of the AAO.The electrochemical tests show that CNT/Al_2O_3 composite exhibits higher lithium storage capacity compared with CNT material,with excellent cycling property and relatively high rate capacities.However, the electronic conductivity of the composite should be improved.
     In the fifth chapter,the lithiation and delithiation properties of two kinds of SnO_2 powders were investigated at first.Then sol gel-AAO template method was applied to synthesize CNT-coated single-crystal and polycrystalline SnO_2 nanoarrays.This synthesis process is instructive for preparation of the other CNT-coated single-crystal or polycrystalline oxides nano-arrays.According to the results,the crystal SnO_2 exhibits higher capacity and higher coulombic efficiency in the 1st cycle than the amorphous SnO_2 due to the less charge transferring impedance and the faster lithium ion diffusion.In the other hand,the amorphous SnO_2 exhibits better cycliability than crystal SnO_2 because the amorphous structure conduces to forming the highly dispersed tin atoms during the first reduction process.The tin atoms aggregation is avoided,and then good cycliability is obtained.According to the one-dimensional SnO_2 materials,the loading rate of the single-crystal SnO_2 nanoarrays is high,with a length of 1μm or so.Further investigations show that the single-crystal nanowires have random crystallization directions.As a result,the XRD pattern of the nanoarrays shows no strongly preferential orientation.Furthermore,the CNT-coated polycrystalline SnO_2 nanoarrays were successfully synthesized by decreasing the pH value and increasing the water volume of the sole precursor,of which the nanowire length is about several micrometers.Electrochemical tests show that CNT-coated SnO_2 nanoarrays obtained relatively high capacities and greatly improved cycliability due to the combined superiority of both the fast lithium ion diffusion and the good axial conductivity.It is thought that the limited free space in the nanoarrays and the dimensional confinement of the nanowires helped a lot to avoid large volume expansion when lithiation and delithiation processes performed,which promoted the cycling performance.
     In the sixth chapter,several tin films were electrodeposited with different current densities using constant current technique.The morphology,structure and the electrochemical properties of these tin films were investigated.Then we used the AAO template and constant voltage technique to electrodeposit the one-dimensional tin material.Thermaldynamically steady tin films were obtained at low depositing current,which have compacter electrode structure and firmly packed crystalline interface.The tin film and copper substrate also conected to each other firmly.As a result,these tin films exhibited the excellent cycliability while the capacity is low.It is considered that the compact electrode structure and the firmly packed crystalline interface help a lot to the integrity of the electrode during lithiation and delithiation processes,which greatly improved the cycliability,although the capacity was limited by the low lithiation and delithiation processes due to the compact electrode structure. Inversely,the higher capacities and worse cycliability are got for the tin films electrodeposited at high current densities,due to the less compact electrode structures and crystalline structures.According to the one-dimensional tin deposition,it is tubelike shape.The formation of the tin nanotubes is related to the porous structure of the AAO template and the sputtered porous Au film as well.Besides,the inclination of the adsorption of the citric acid chelating agent to the alumina pore wall is accountable.Compared to the tin films,tin nanotube array exhibits further improved cyliability.For example,tin film deposited at 0.5mA/cm~2 exhibited the delithiation capacities of 497 mAh/g and 88 mAh/g in the 1st and 20th cycle,while tin nanotube arrays exhibited the delithiation capacities of 423 mAh/g and 223 mAh/g in the 1st and 20th cycle,which has the better capacity retention ability.As a result,the nanotube morphology improved the electrochemical cyliability due to the dimensional confinement of nanosize effect to a certain degree although the essential structural changes during the alloying process are still unresolved.The cycliability of the tin nanotube arrays still needs further improvement.
     In the seventh chapter,ultrasonic and long-time immersion measurement were used to initiate the primary synthesis of TiO_2 nanotubes through sol-gel-AAO route,then the physical chemistry and the electrochemical properties of the TiO_2 nanotubes were characterized.The isoelectric points of TiO_2(5~6) and Al_2O_3(6~8) are close to each other.That means the surfaces of these two oxides are both positively charged in the high acidic solution,and they will be repulsed by each other.Accordingly,the loading of the TiO_2 into the AAO pore holes will be relatively difficult.Ultrasonic and long-time immersion measurements are effective methods to load TiO_2 sol into the AAO pore holes although the loading rate is low.The end products are polycrystalline TiO_2 nanotubes with anatase phase,which exhibited the promoted electrochemical cycling property and the promoted lithiation dynamics campared to the TiO_2 powder.
     In the last,we primarily synthesized CNT-coated polycrystalline LiFePO_4 nanowire arrays,which further proved the validity of the sol-gel-AAO method for the preparation of CNT-coated one-dimensional semiconductor materials.
引文
[1]M.Wakihara.Recent developments in lithium ion batteries[R].Materials Science and Engineering,2001,R33(4):109-134.
    [2]Y.P.Wu,Elke Rahm,Rudolf Holze.Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries[J].Electrochimica Acta,2002,47(21):3491-3507.
    [3]H.Ikeda,T.Saito,H.Tamura.in Proc.Manganese Dioxide Symp.Vol.1(eds A.Dozawa,R.H.Brodd),IC sample Office,Cleveland,OH,1975.
    [4]J.-M.Tarascon,M.Armand.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359-367.
    [5]吴宇平,戴晓兵,马军旗,程预江.锂离子电池—应用与实践[M].北京:化学工业出版社,2004:3.
    [6]郭丙焜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002:2.
    [7]吕鸣祥,黄长保,宋玉瑾.化学电源[M],天津大学出版社,1992年.
    [8]马树华,李季.作为锂二次电池负极的炭材料[J],炭素技术,1995,3:19-26.
    [9]B.C.H.Steele.in Fast Ion Transport in Solids,North Holland,Amsterdam,W.van Gool(Ed.),1973,p.103.
    [10]M.S.Whittingham,R.Huggins.in Solids,North Holland,Amsterdam,W.van Gool(Ed.),p.645,1973.
    [11]M.Lazzari,B.Scrosati.A cyclable lithium organic electrolyte cell based on two intercalation electrodes[J].J.Electrochem.Soc.,1980,127:773-774.
    [12]K.Mizushima,P.C.Jones,P.J.Wiseman,J.B.Goodenough.Li_xCoO_3(0<x=1):a new cathode material for batteries of high energy density[J].Mat.Res.Bull.,1980,15:783-789.
    [13]M.Mohri.Rechargeable lithium battery based on pyrolytic carbon as a negative electrode[J].J.Power Sources,1989,26:545-551.
    [14]T.Nagamura,K.Tazawa.Prog.Batteries.Sol.Cells.,1983,9:365.
    [15]T.Nagamura,K.Tozawa.Lithium ion rechargeable battery[J].Prog.Batteries Solar Cells,1990,9:209.
    [16]Y.Nishi.Lithium ion secondary batteries;past 10 years and the future[J].J.Power Sources,2001,100(1-2):101-106.
    [17]K.N.Han,H.M.Seo,J.K.Kim,Y.S.Kim,D.Y.Shin,B.H.Jung,H.S.Lim,S.W.Eom,S.I.Moon.Development of a plastic Li-ion battery cell for EV applications[J].J.Power Sources,2001,101(2):196-200.
    [18]陈立泉.我国新能源材料产业化现状[J],新材料产业,2005(7):30-34.
    [19]吴宇平,张汉平,吴锋,李朝晖.聚合物锂离子[M].北京:化学工业出版社,2006:4-5.
    [20]郭丙煜,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002:12-13.
    [21]国家自然科学基金委员会工程与材料科学部主编.学科发展战略研究报告(2006-2010年):无机非金属材料科学[M].北京:科学出版社,2006:141
    [22]R.Bittihn,R.Herr,D.Hoge.The SWING system,a nonaqueous rechargeable carbon/metal oxide cell[J].J.Power Sources,1993,43(1-3):223-231.
    [23]R.K.B.Gover,M.Yonemura,A.Hirano,R.Kanno,Y.Kawamoto,C.Murphy,B.J.Mitchell,J.W.Richardson.The control of nonstoichiometry in lithium nickel-cobalt oxides[J].J.Power Sources,1999,81-82:535-541.
    [24]史延慧,郝万君,陈岗,冯守华.锂电池阴极材料Li(Co_xAl_((1-x)))O_2的溶胶凝胶法合成及表征[J].高等学校化学学报,2000,21(4):497-500.
    [25]吴宇平,方世壁,刘昌炎,周恒辉,江英彦.锂离子电池正极材料氧化钴锂的进展[J].电源技术,1997,21(5):208-209.
    [26]L.J.Liu,Z.X.Wang,H.Li,L.Q.Chen,X.J.Huang.Al_2O_3-coated LiCoO_2 as cathode material for lithium ion batteries[J].Solid State Ionics,2002,152-153:341-346.
    [27]Z.X.Wang,L.J.Liu,L.Q.Chen,X.J.Huang.Structural and electrochemical characterizations of surface-modified LiCoO_2 cathode materials for Li-ion batteries[J].Solid State Ionics,2002,148:335-342.
    [28]H.Cao,B.J.Xia,Y.Zhang,N.X.Xu.LiAlO_2-coated LiCoO_2 as cathode material for lithium ion batteries[J].Solid State Ionics,2005,176:911-914.
    [29]J.Cho.Improved thermal stability of LiCoO_2 by nanoparticle AlPO4 coating with respect to spinel Li_(1.05)Mn_(1.95)O_4[J].Electrochem.Commun.,2003,5: 146-148.
    [30]J.Cho.Correlation between AIPO4 nanoparticle coating thickness on LiCoO_2cathode and thermal stability[J].Electrochim.Acta.,2003,48:2807-2811.
    [31]J.Cho,T-G.Kim,C-J.Kim,J-G.Lee,Y-W.Kim,B-W.Park.Comparison of Al_2O_3- and AlPO_4-coated LiCoO_2 cathode materials for a Li-ion cell[J].J.Power Sources,2005,146:58-64.
    [32]刘汉三,杨勇,张忠如,林祖赓.锂离子电池正极材料锂镍氧化物研究新进展[J].电化学,2001,7(2):145-154.
    [33]Y.Itou,Y.Ukyo.Performance of LiNiCoO2 materials for advanced lithium-ion batteries[J].J.Power Sources,2005,146:39-44.
    [34]S.Jouanneau,K.W.Eberman,L.J.Krause,J.R.Dahn.Synthesis,characterization,and electrochemical behavior of improved Li[Ni_xCo_(1-2x)Mn_x]O_2(0.1≦x≦0.5)[J].J.Electrochem.Soc.,2003,150:A1637-A1642.
    [35]J.K.Ngala,N.A.Chernova,M.M.Ma,M.Mamak,P.Y.Zavalij,M.S.Whittingham.The synthesis,characterization and electrochemical behavior of the layered LiNi_(0.4)Mn_(0.4)Co_(0.2)O_2 compound[J].J.Mater.Chem.,2004,14:214-220.
    [36]Y.Xia,M.Yoshio.Studies on Li-Mn-O spinel system(obtained from melt-impregnation method) as a cathode for 4 V lithium batteries Part Ⅳ.High and low temperature performance of LiMn_2O_4[J].J.Power Sources,1997,66(1-2):129-133.
    [37]T.A.Eriksson,M.M.Doeff.A study of layered lithium manganese oxide cathode materials[J].J.Power Sources,2003,119-121:145-149.
    [38]Z.P.Guo,G.X.Wang,H.K.Liu,S.X.Dou.Structure and electrochemistry of LiCr_xMn_(1-x)O_2 cathode for lithium-ion batteries[J].Solid State Ionics,2002,148:359-366
    [39]A.Eftekhari.Aluminum oxide as a multi-function agent for improving battery performance of LiMn_2O_4 cathode[J].Solid State Ionics,2004,167:237-242.
    [40]M-R.Lim,W-I.Cho,K-B.Kim.Preparation and characterization of gold-codeposited LiMn_2O_4 electrodes[J].J.Power Sources,2001,92:168-176.
    [41]C.Arbizzani,A.Balducci,M.Mastragostino,M.Rossi,F.Soavi.Li_(1.o1)Mn_(1.97)O_4surface modification by poly(3,4-ethylenedioxythiophene)[J].J.Power Sources,2003,119-121:695-700
    [42]N.Ravet,Y.Chouinard,J.F.Magnan,S.Besner,M.Gauthier,M.Armand. Electroactivity of natural and synthetic triphylite[J].J.Power Sources,2001,97-98:503-507.
    [43]K.S.Park,J.T.Sona,H.T.Chungb,S.J.Kimc,C.H.Leea,K.T.Kanga,H.G.Kim.Surface modification by silver coating for improving electrochemical properties of LiFePO_4[J].Solid State Commun.,2004,129:311-314.
    [44]G.X.Wang,L.Yang,Y.Chen,J.Z.Wang,S.Bewlay,H.K.Liu.An investigation of polypyrrole-LiFePO_4 composite cathode materials for lithium-ion batteries[J].Electrochem.Acta,2005,50:4649-4654.
    [45]S.Y.Chung,J.T.Bloking,Y.M.Chiang.Electronically conductive phospho-olivines as lithium storage electrodes[J].Nat.Mater.,2002,10:123-128.
    [46]S.Shi,C.Ouyang,D.S.Wang,Z.Wang,L.Chen,X.Huang.Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations.Phys.Rev.B,2003,68(19):195108/1-195108/5.
    [47]H.Liu,Q.Cao,L.J.Fu,C.Li,Y.P.Wu,H.Q.Wu.Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries LiFePO_4,Electrochemistry Communications,2006,8(10):1553-1557.
    [48]M.Y.Saidi,J.Barker,H.Huang,J.L.Swoyer,G.Adamson.Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium ion batteries[J].Electrochem.Solid-State Lett.,2002,5(7):A149-A151.
    [49]A.K.Padhi,K.S.Najundaswamy,J.B.Goodenough.Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J].J.Electrochem.Soc.,1997,144:1188-1194.
    [50]B.M.Azmi,T.Ishihara,H.Nishiguchi,Y.Takita.Cathodic performance of VOPO_4 with various crystal phases for Li ion rechargeable battery[J].Electrochim.Acta,2002,48(2):165-170.
    [51]吴宇平,戴晓兵,马军旗,程预江.锂离子电池—应用与实践[M].北京:化学工业出版社,2004:222-223.
    [52]J.Y.Song,Y.Y.Wang,C.C.Wan.Review of gel-type polymer electrolytes for lithium-ion batteries[J].J.Power Sources,1999,77(2):183-197.
    [53]K.Xu,S.S.Zhang,U.Lee,J.L.Allen,T.R.Jow.LiBOB:Is it an alternative salt for lithium ion chemistry?[J].J.Power Sources,2005,146(1-2):79-85.
    [54]G.B.Appetecchi,F.Croce,B.Scrosati.High-performance electrolyte membranes for plastic lithium batteries[J].J.Power Sources,1997,66(1-2): 77-82.
    [55]Z.Wang,B.Huang,H.Huang,R.Xue,L.Chen,F.Wang.A vibrational spectroscopic study on the interaction between lithium salt and ethylene carbonate plasticizer for PAN-based electrolytes[J].J.Electrochem.Soc.,1996,143(5):1510-1514.
    [56]X.Liu,T.Osaka.Properties of electric double-layer capacitors with various polymer gel electrolytes[J].J.Electrochem.Soc.,1997,144(9):3066-3071.
    [57]Z.Jiang,B.Carroll,K.M.Abraham.Studies of some poly(vinylidene fluoride)electrolytes[J].Electrochim.Acta,1997,42(17):2667-2677.
    [58]M.S.Whittingham.Chalcogenide battery[P].US Patent:4009052.
    [59]K.Tatsumi,A.Mabuchi.The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries.J.Electrochem.Soc.,1995,142(3):716-720.
    [60]宋怀河,陈晓红,章颂云,高燕.中间相沥青炭微球及其在锂离子二次电池方面的应用[J].炭素技术,2002,(1):28-33.
    [61]H-H.Lee,C-C.Wan,Y-Y.Wang.Identity and thermodynamics of lithium intercalated in graphite[J].J.Power Sources,2003,114(2):285-291.
    [62]K.Sato,M.Noguchi,A.Demachi.A mechanism of lithium storage in disordered carbons[J].Science,1994,264(5158):556-558.
    [63]Y.H.Liu,J.S.Xue,T.Zheng,J.R.Dahn.Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins[J].Carbon,1996,34(12):193-200.
    [64]T.Zheng,Y.H.Liu,J.R.Dahn.Carbon prepared from coals for anodes of lithium-ion batteries[J].Carbon,1996,34(12):1501-1507.
    [65]B.Huang,R.Xue,G.Li,Y.Huang,H.Yan,L.Chen,F.Wang.Lithium-ion rechargeable cells with polyacenic semiconductor(PAS) and LiCoO_2 electrodes [J].J.Power Sources,1996,63(2):281.
    [66]T.Fukutsuka,T.Abe,M.Inaba,Z.Ogumi.Electrochemical properties of carbonaceous thin films prepared by plasma chemical vapor deposition[J].J.Electrochem.Soc.,2001,148(11):A1260-A1265.
    [67]G.T.K.Fey,D.C.Lee,Y.Y.Lin.High-capacity carbons prepared from acrylonitrile-butadiene-styrene terpolymer for use as an anode material in lithium-ion batteries[J].J.Power Sources,2003,119-121:30-44.
    [68]Q.Wang,H.Li,L.Q.Chen,X.J.Huang.Novel spherical microporous carbon as anode material for Li-ion batteries[J].Solid State Ionics,2002,152-153:43-50.
    [69]谢健.某些纳米锑基金属问化合物的合成及电化学吸放锂行为[D].杭州:浙江大学,2005.
    [70]J.O.Besenhard,J.Yang,M.Winter.Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?[J].J.Power Sources,1997,68:87-90.
    [71]J.L.Tirado.Inorgnic materials for the negative electrode of lithium-ion batteries:state-of-the-art and future prospects[J].Mater.Sci.Eng.R,2003,40:103-136.
    [72]I.A.Courtney,J.R.Dahn.Key factors controlling the reversibility of the reaction of lithium with SnO_2 and Sn_2BPO_6[J].J.Electrochem.Soc.,1997,144(9):2943-2948.
    [73]Y.Wang,J.Sakamoto,S.Kostov,A.N.Mansour,M.L.Denboer,S.G.Greenbaum.C.K.Huang,S.Surampudi.Structural aspects of electrochemically lithiated SnO:nuclear magnetic resonance and X-ray absorption studies[J].J.Power Sources,2000,89(2):232-236.
    [74]G.G.Goward,F.Leroux,W.P.Power,G.Ouvrard,W.Dmowski,T.Egami,L.F.nazar.On the nature of Li insertion in tin composite oxide glasses[J].Electrochem.Solid-State Lett.,1999,2(8):267-270.
    [75]Y.Wang,J.Sakamoto,C.K.Huang,S.Surampudi,S.G.Greenbaum.Lithium-7NMR investigation of electrochemical reaction of lithium with SnO[J].Solid State Ionics,1998,110(3,4):167-172.
    [76]R.Retoux,T.Brousse,D.M.Schleich.High-resolution electron microscopy investigation of capacity fade in SnO_2 electrodes for lithium-ion batteries[J].J.Electrochem.Soc.,1999,146(7):2472-2476.
    [77]Y.Idota,T.Kubota,A.Matsufuji,Y.Maekawa,T.Miyasaka.Tin-based amorphous oxide:a high-capacity lithium-ion-storage material[J].Science,1997,276(5317):1395-1397.
    [78]G.A.Roberts,E.J.Cairns,J.A.Reimer.Magnesium silicide as a negative electrode material for lithium-ion batteries[J].J.Power Sources,2002,110(2):424-429.
    [79]T.D.Hatchard,J.R.Dahn.Study of the Electrochemical Performance of Sputtered Sil-xSnx Films[J].J Electrochem Soc.2004,151(10):A1628-A1635.
    [80]J.Wolfenstine.CaSi_2 as an anode for lithium-ion batteries[J].J.Power Sources,2003,124(1):241-245.
    [81]G.X.Wang,L.Sun,D.H.Rradhurst,S.Zhong,S.X.Dou,H.K.Liu.Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries[J].J.Alloy.Compd.,2000,306:249-252.
    [82]P.J.Zuo,G.P.Yin.Si-Mn composite anode for lithium ion batteries[J].J.Alloy.Compd.,2006,414:265-268.
    [83]S-M.Hwang,H-Y.Lee,S-W.Jang,S-M.Lee,S-J.Lee,H-K.Baik,J-Y.Lee.Lithium insertion in SiAg powders produced by mechanical alloying[J].Electrochem.Solid State Lett.,2001,4:A97-A100.
    [84]P.Poizot,S.Laruelle,S.Grugeon,L.Dupont,J-M.Tarascon.Nano-sized transition-metal oxide as negative-electrode materials for lithium-ion batteries [J].Nature,2000,407:496-499.
    [85]P.Balaya,H.Li,L.Kienle,J.Maier.Fully reversible homogeneous and heterogeneous Li storage in RuO_2 with high capacity[J].Adv.Funct.Mater.,2003,13(8):621-625.
    [86]A.R.Armstrong,G.Armstrong,J.Canales,R.Carcia,P.G.Bruce.Lithium-ion intercalation into TiO_2-B nanowires[J].Adv.Mater.,2005,17(7):862-865.
    [87]J.Chen,L.Xu,W.Li,X.Gou.a-Fe2O_3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications[J].Adv.Mater.,2005,17:582-586.
    [88]P.L.Taberna,S.Mitra,P.Poizot,P.Simon,J-M.Tarascon.High rate capabilities Fe_3O_4-based Cu nano-architectured electrodes for lithium-ion battery applications[J].Nat.Mater.,2006,5:567-573.
    [89]H.C.Liu,S.K.Yen,Characterization of electrolytic Co_3O_4 thin films as anodes for lithium ion batteries,J.Power Sources,2007,(166):478-484.
    [90]Y.Zhao,Q.Zhou,L.Liu,J.Xu,M.Yan,Z.Jiang,A novel and faeile route of ink-jet Printing to thin film SnO_2 anode for rechargeable lithium ion batteries,Electrochim.Acta,2006,(51):2639-2645.
    [91]Y.L.Kim,H.Y.Lee,S.W.Jang,S.J.Lee,H.K.BaiK,Y.S.ParK,S.M.Lee,Nanostructured Ni_3Sn_2 thin film rechargeable lithium batteries,Solid State Ion.,2003,(160):235-240.
    [92]J.Yang,Y.Takada,N.Imanishi,O.Yamamoto,Ultrafine Sn and SnSb_(0.14) powders for lithium storage matrices in lithium-ion batteries,J.Electrochem.Soc.,1999,(146):4009-4013.
    [93]吴宇平,戴晓兵,马军旗,程预江,锂离子电池应用与实践,北京:化学工业出版社,2004.
    [94] T.Wang, Z.N.Ma, F.Xu, Z.Y.Jiang, The one-step preparation and electrochemical characteristics of tin dioxide nanocrystalline materials, Electrochem. Commun., 2003, (5): 599-602.
    
    [95] H. Li, G.Y. Zhu, X.J. Huang, L.Q. Chen, Synthesis and electrochemical performance of dendrite-like SnSb alloy Prepared by co-precipitation in alcohol solution at low temperature, J.Mater.Chem., 2000, (10): 693-696.
    [96] O. Mao, J. R. Dahn. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li ion batteries. III. Sn_2Fe:SnFe_3C active/inactive composites. J. Electrochem. Soc. 1999, (146): 423-427.
    [97] J. Graetz, C. C. Ahn, R. Yazami, B. Fultz. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 2003, 6 (9): A194-197.
    [98] J. Yang, B. F. Wang, K. Wang, Y. Liu, J. Y. Xie, Z. S. Wen. Si/C composites for high capacity lithium storage materials. Electrochem. Solid-State Lett. 2003, 6(8): A154-156.
    
    [99] P. Novak, in Int. Meeting Li Batteries IMLB12 Nara, Japan Abstract 9, 2004.
    [100] J.Xie, X.B.Zhao, GS.Cao, M.J.Zhao, S. F.Su. Electroehemical Performance of CoSb_3/ MWNTs nanocomposite PrePared by in situ solvothermal synthesis [J], Electroehim.Acta, 2005, (50): 2725-2731.
    
    [101] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon. Nano-sized transition metal oxides as negative-electrode materials for lithium-ion batteries [J], Nature, 2000, 407(6803): 496-499.
    
    [102] X. Li, F. Cheng, B. Guo, J. Chen. Template-synthesized LiCoO_2, LiMn_2O_4, and LiNi_(0.8)Co_(0.2)O_2 nanotubes as the cathode materials of lithium batteries [J], J. Phys. Chem. B 2005,109: 14017-14024.
    
    [103] C. Wu, Y. Xie, L. Lei, S. Hu, C. Ou Yang. Synthesis of new-phased VOOH hollow "Dandelions" and their application in lithium-ion batteries [J], Adv. Mater. 2006,18:1727-1732.
    
    [104] K. M.Shaju, P. G Bruce. Macroporous Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2: A high-power and high-energy cathode for rechargeable lithium batteries [J], Adv. Mater. 2006,18: 2330-2334.
    [105] Z H Yang, H Q Wu. The electrochemical impedance measurements of carbon nanotubes [J]. Chemical Physics Letters, 2001, 343(3, 4): 235-240.
    [106] E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Beguin. Electrochemical storage of lithium multiwalled carbon nanotubes [J]. Carbon, 1999, 37(1), 61-69.
    [107] A. R. Armstrong, G Armstrong, J. Canales, R. Garcia, P. G Bruce. Lithium intercalation into TiO_2-B nanowires [J]. Adv. Mater. 2005, 17(7): 862-865.
    [108] K. T. Nam, D-W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, Y. M. Chiang, A. M. Belcher. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes [J]. Science, 2006, 312: 885-888.
    [109] M. Green, E. Fielder, B. Scrosati, M. Wachtler, J. S. Moreno. Structured silicon anodes for lithium battery applications [J]. Electrochem. Solid-State Lett. 2003, 6(5), A75-79.
    [110] A. S. Arico, P. Bruce, B. Scrosati, J-M. Tarascon, W. V. Schalkwijk.Nanostructured materials for advanced conversio and storage devices [J]. Nat. Mater. 2005, 4: 366-377.
    [111] M. Green, E. Fielder, B. Scrosati, M. Wachtler, M. Serra. Structured silicon anodes for lithium battery applications [J]. Electrochem. Solid-State Lett., 2003, 6: A75-A79.
    [112] D. W. Zhang, T. H. Yi, C. H. Chen. Cu nanoparticles derived from CuO electrodes in lithium cells [J]. Nanotechnology, 2005,16: 2338-2341.
    
    [113] 朱静等编著.纳米材料和器件[M].北京:清华大学出版社,2003,63-65.
    
    [114] J. Eckert, J. C. Holzer, C. E. Krill III, W. L. Johnson. Mechanically driven alloying and grain size changes in nanocrystalline iron-copper powders [J]. J. Appl. Phys., 1993, 73(6): 2794-2802.
    [115] Z. Cai, C. R. Martin. Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities [J]. J. Am.Chem. Soc. 1989, 111(11), 4138-4139.
    [116] C. J. Brumlik, C. R. Martin, K. Tokuda. Microhole array electrodes based on microporous alumina membranes [J]. Anal.Chem, 1992, 64(10), 1201-1203.
    [117] S. K. Chakarvarti, J. Vetter, Morphology of etched pores and microstructures fabricated from nuclear track filters [J]. Nucl. Instrum. Meth. Phys. Res., 1991, B62(1): 109-115.
    [118] S. K. Chakarvarti, J. Vetter. Microfabrication of metal-semiconductor heterostructures and tubules using nuclear track filters [J]. J. Micromech. Microeng., 199, 3 (2), 57-59.
    [119] N. Li, C. R Martin. A high-rate, high-capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis. Journal of the Electrochemical Society (2001), 148(2), A164-A170.
    [120] Li, Naichao; Mitchell, David T.; Lee, Kyu-Pil; Martin, Charles R... A Nanostructured Honeycomb Carbon Anode. J. Electrochem. Soc. 2003, 150(7): A979-A984.
    [121] N. Li, C. J. Patrissi, G. Che, C. R. Martin. Rate capabilities of nanostructured LiMn_2O_4 electrodes in aqueous electrolyte. J. Electrochem. Soc. 2000, 147(6): 2044-2049.
    [122] C. J. Patrissi, C. R. Martin. Improving the volumetric energy densities of nanostructured V_2O_5 electrodes prepared using the template method. J. Electrochem. Soc. 2001,148(11): A1247-A1253.
    [123] C. Wang, A. J. Appleby, F. E. Little. Electrochemical study on nano-Sn, Li4.4Sn and AlSiO.l powders used as secondary lithium battery anodes [J]. J. Power. Sources, 2001, 93 (1-2): 174-185.
    [124] J. Yang, M. Winter, J. O. Besenhard. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries [J]. Solid State Ionics, 1996, 90(1-4): 281-287.
    [125] G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac, B. Simon. Electrochemical lithium intercalation into multiwall carbon nanotubes: a micro-Raman study [J]. Solid State Ionics, 2000, 136-137: 1295-1299.
    [126] G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almarirac, B. Simon. Electrochemical intercalation of lithium into multiwall carbon nanotubes [J]. Chem. Phys. Lett, 1999, 312 (1): 14-18.
    [127] X. Li, F. Cheng, B. Guo, J. Chen. Template-Synthesized LiCoO_2, LiMn_2O_4, and LiNi_(0.8)Co_(0.2)O_2 Nanotubes as the Cathode Materials of Lithium Ion Batteries, J. Phys. Chem. B. 2005,109:14017-14024.
    [128] G. Gao, T. Cagin, W. A. Goddard III. Position of K Atoms in Doped Single-Walled Carbon Nanotube Crystals [J]. Phys. Rev. Let., 1998, 80(25): 5556-5559.
    [129] M. Sun, G. Zangari, M. Shamsuzzoha, R. M. Metzger. Electrodeposition of highly uniform magnetic nanoparticle arrays in ordered alumite [J]. Appl.Phys.Let., 2001, 78 (19): 2964-2966..
    [130] J. Rong, Z. Yang, K. Qi, X. Jin. Synthesis of 3D ordered porous polystyrene using silica template [J]. Chinese Science Bulletin, 2001, 46 (4): 306-308.
    [131] X.-H. Li, X.-G. Zhang, H.-L. Li. Template synthesis and characterization of TiO_2 nanotubules. Gaodeng Xuexiao Huaxue Xuebao, 2001, 22(1): 130-132.
    [132] X. Y. Zhang, L. D. Zhang, M. J. Zheng, G. H. Li, L. X. Zhao, Template synthesis of high-density carbon nanotube arrays [J]. Journal of Crystal Growth, 2001, 223(1-2): 306.
    [133] H. Cao, C. Tie, Z. Xu, J. Hong, H. Sang. Array of nickel nanowires enveloped in polyaniline nano-tubules and its magnetic behavior [J]. Appl.Phys.Lett., 2001, 78 (11): 1592-1594.
    [134] H. Q. Wu, X. W. Wei, M. S. Shao, J. S. Gu, M. Z. Qu. J. Mater. Chem., 2002, 12, 1919.
    [1]朱祖芳主编.铝合金阳极氧化与表面处理技术[M].北京:化学工业出版社,2004,5:94-116.
    [2]G.E.Thompson,R.C.Furneaux,G.C.Wood.Nucleation and growth of porous anodic films on aluminium[J].Nature,1978,272(5652):433-435.
    [3]Y.Xu,G.E.Thompson,G.C.Wood.Mechanism of anodic film growth on aluminum[J].Trans.Inst.Met.Finish,1985,63(3):98-103.
    [4]O.Jessensky,F.Muller,U.Gosele.Self-organized formation of hexagonal pore arrays in anodic alumina[J].Appl.Phys.Lett.,1998,72(10):1173-1175.
    [1]S.Iijima.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
    [2]E.Dujardin,T.W.Ebbesen,H.Hiura,K.Tanigaki.Capillarity and wetting of carbon nanotubes[J].Science,1994,265(5180):1850-1852.
    [3]G.T.Wu,C.S.Wang,X.B.Zhang,H.S.Yang,Z.F.Qi,P.M.He,W.Z.Lia.Structure and lithium insertion properties of carbon nanotubes[J].J.Electrochem.Soc.,1999,146(5):1696-1701.
    [4]M.Endo,C.Kim,K.Nishimura,T.Fujino,K.Miyashita.Recent development of carbon materials for Li ion batteries[J].Carbon,2000,38(2):183-197.
    [5]Q.Wang,L.Q.Chen,X J.Huang.Anomalous electrochemical behavior of multiwalled carbon nanotubes as host material for lithium insertion/extraction.Electrochem[J].Solid-State Lett.,2002,5(9):A188-A190.
    [6]H.C.Shin,M.L.Liu,B.Sadanadan,A.M.Rao.Electrochemical insertion of lithium into multi-walled carbon nanotubes prepared by catalytic decomposition [J].J.Power Sources,2002,113(1):216-221.
    [7]E.Frackowiak,S.Gautier,H.Gaucher,S.Bonnamy,F.Beguin.Electrochemical storage of lithium multiwalled carbon nanotubes[J].Carbon,1999,37(8):61-69.
    ]8]Y.Saito,S.Uemura.Field emission from carbon nanotubes and its application to electron sources[J].Carbon,2000,38(2):169-182.
    [9]L.Schlapbach,A.Zuttel.Hydrogen-storage materials for mobile applications[J].Nature,2001,414(6861):353-358.
    [10]X.P.Gao,X.Qin,F.Wu,H.Liu,Y.Lan,S.S.Fan,H.T.Yuan,D.Y.Song,P.W.Shen.Synthesis of carbon nanotubes by catalytic decomposition of methane using LaNi5 hydrogen storage alloy as a catalyst[J].Chem.Phys.Lett.2000,327(5,6):271-276.
    [11]Qin X,Gao X P,Liu H,Yuan H T,Yan D Y,Gong W L,Song D Y.Electrochemical hydrogen storage of multiwalled carbon nanotubes[J].Electrochem.Solid-State Lett.2000,3(12):532-535.
    [12]C.Liu,Y.Y.Fan,M.Liu,H.T.Cong,H.M.Cheng,M.S.Dresselhaus.Hydrogen storage in single-walled carbon nanotubes at room temperature[J].Science,1999,286(5442):1127-1129.
    [13]C.Liu,H.M.Cheng.Carbon nanotubes for clean energy applications[J].J.Phys.D:Appl.Phys.2005,38(14):R231-R252.
    [14]林克芝,徐艳辉,任伟,张倩,王晓琳,碳纳米管电化学储能的研究进展[J],电源技术,2002,26(4):314-320.
    [15]H.Yang,D.Zhao,Synthesis of replica mesostructures by the nanocasting strategy[J],J.Mater.Chem.,2005,15:1217-1231.
    [16]L.Zhi,J.Wu,J.Li,U.Kolb,K.Mullen.Carbonization of Disclike Molecules in Porous Alumina Membranes:Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation[J],Angew.Chem.2005,44:2120-2123.
    [17]E.J.Bae,W.B.Choi,K.S.Jeong,J.U.Chu,G.-S.Park,S Song,I k Yoo. Selective Growth of Carbon Nanotubes on Pre-patterned Porous Anodic Aluminum Oxide [J], Adv. Mater. 2002,14(4): 277-279.
    [18] R. Z. MA, B. Q. WEI, C. L. XU. The development of carbon nanotubes/RuO_2·xH_2O electrodes for electrochemical capacitors [J]. Bull Chem Soc Jpn, 2000, 73(8): 1813-1816.
    [19] I. H. KIM, J. H. KIM, B. W. CHO, et al. Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications [J]. J Electrochem Soc, 2006,153(6): A 989-A 996.
    [1]I.A.Courtney,J.R.Dahn.Key factors controlling the reversibility of the reaction of lithium with SnO_2 and Sn_2BPO_6 glass[J].J.Electrochem.Soc.,1997,144:2943-2948.
    [2]M.Winter,J.O.Besenhard.Electrochemical lithiation of tin and tin-based intermetallics and composites[J].Electrochim Acta,1999,45:31-50.
    [3]I.A.Courtney,J.R.Dahn,Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites[J].J.Electrochem.Soc.,1997,144(6):2045-2052.
    [4]T.Brousse,R.Retoux,U.Herterich,D.M.Schleich.Thin-film crystalline SnO_2-lithium electrodes[J].J.Electrochem.Soc.,1998,145(1):1-4.
    [5]S.Panero,G.Savo,and B.Scrosati.Tin oxide-based lithium-ion polymer-electrolyte cells[J].Electrochem.Solid-State Lett.,1999,2(8):365-366.
    [6]D.Aurbach,B.Markovsky,A.Nimberger,E.Levi,Y.Golfer.Electrochemical Li-insertion processes into carbons produced by milling graphitic powders:the impact of the carbons' surface chemistry[J].J.Electrochem.Soc.,2002,149(2):A152-A161.
    [7]D.Aurbach,B.Markovsky,I.Weissman,E.Levi,Y.Ein-Eli.On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries.[J].Electrochim.Acta,1999,45(1-2):67-86.
    [8]Y.C.Chang,J.H.Jong,G.T.K.Fey.Kinetic characterization of the electrochemical intercalation of lithium ions into graphite electrodes[J].J.electrochem.Soc.,2000,147(6):2033-2038.
    [9]M.D.Levi,D.Aurbach.Diffusion coefficients of lithium ions during intercalation into graphitic derived from the simultaneous measurements and modeling of the electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphitic electrodes[J].J.Phys.Chem.B,1997,101:4641-4647.
    [10]周仲柏,陈永言.电极过程动力学基础教程[M].武汉:武汉大学出版社,1989:294-295.
    [11]张颖,高学平,胡恒,周震,阎杰,曲金秋,吴锋,Fe_2O_3填充碳纳米管作为锂离子电池负极材料的电化学性能[J],无机化学学报,2004(20):1014-1017.
    [12]D.Ugarte,A.Chatelain,W.A.de Heer,Nanocapillarity and Chemistry in Carbon Nanotubes[J],Science,1996(274):1897-1899.
    [13]Kumar T P,Ramesh R,Lin Y Y,G.T.K.Fey.Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries[J].Electrochem.Comm.,2004,6(6):520-525.
    [14]S.Franger,C.Bourbon,F.L.Cras.Optimized lithium iron phosphate for high-rate electrochemical applications[J].J.Electrochem.Soc.,2004,151(7):A1024-A1027.
    [15]P.Delahay.New Instrumental Methods in Electrochemistry[M].New York,1954,Pl19.
    [1]周绍民,金属电沉积,上海科学技术出版社,202-203.
    [2]T.M.Whitney;J.S.Jiang,P.C.Searson,C.L.Chien,Fabrication and Magnetic Properties of Arrays of Metallic Nanowires[J].Science,1993(261):1316-1319.
    [3]F.Li,J.B.Wiley.Modified templates for directing the topology of wires:preparation of wires with structured tips[J],J.Mater.Chem.,2004,14:1387-1390.
    [4]X.Dou,Y.Zhu,X.Huang,L.Li,G.Li,Effective Deposition Potential Induced Size-Dependent Orientation Growth of Bi-Sb Alloy NanowireArrays[J],J.Phys.Chem.B,2006,110:21572-21575.
    [5]M.Winter,J.O.Besenhard.Electrochemical lithiation of tin and tin-based intermetallics and composites[J],Electrochimica Acta,1999,(45),31-50.
    [6]刘宇,解晶莹,杨军,王可,王保峰,高可逆比容量锡负极循环性能的改善[J],电源技术,2002(26):423-465.
    [1] A. R.Armstrong, G. Armstrong, J. Canales, R. Garcia, P. G Bruce. Lithium-ion intercalation intoTiO_2-B nanowires [J]. Adv. Mater. 2005,17(7): 862-865.
    [2] M. Wagemaker, G J. Kearley, A. A. V. Well, G, Nytjam F. M. Mulder. Multiple Li positions inside oxygen octahedra in lithiated TiO_2 anatase [J]. J. Am. Chem. Soc, 2003,125(3): 840-848.
    [3] Cromer D T, Herrington K. The structures of anatase and rutile [J]. J. Am. Chem. Soc, 1955, 77: 4708-4709.
    
    [4] B. Zachau-Christiansen, K. West, T. Jacobsen, S. Atlung. Lithium insertion in different titanium dioxide modifications [J]. Solid State Ionics, 1988, 28-30(Pt.2): 1176-1182.
    
    [5] A. Stashans, S. Lunell, M. R. Bergstrowm, A. Hagfeldt, S.-E. Lindquist. Theoretical study of lithium intercalation in rutile and anatase [J]. Phys. Rev. B, 1996, 53(1): 159-170.
    [6] G Nuspl, K. Yoshizawa, T. Yamabe. Lithium intercalation in TiO_2 modification [J] J. Mater. Chem., 1997, 7(12):2529-2536.
    
    [7] Y. Q. Wang, G Q. Hu, X. F. Duan, H. L. Sun, Q. K. Xue. Microstructure and formation mechanism of titanium dioxide nanotubes [J]. Chem. Phys. Lett., 2002, 365(5, 6): 427-431.
    [8] Z.-Y. Yuan, J.-F. Colomer, B.-L. Su. Titanium oxide nanoribbons [J]. Chem. Phys. Lett., 2002, 363(3, 4): 362-366.
    
    [9] X. Zhang, B. Yao, L. Zhao, C. Liang, L. Zhang, Y. Mao. Electrochemical fabrication of- single crystalline anatase TiO_2 nanowire arrays [J]. J. Electrochem. Soc, 2001,148(7): G398-G400.
    [10] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara. Formation of titanium oxide nanotube [J]. Langmuir, 1998,14(12): 3160-3163.
    
    [11] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, L.-M. Peng. Preparation and structure analysis of titanium oxide nanotubes [J]. Appl. Phys. Lett., 2001, 79(22): 3702-3704.
    [12] X. M. Sun, Y. D. Li. Synthesis and characterization of ion-exchangeable titanate nanotubes [J]. Chem. Eur. J., 2003, 9: 2229-2238.
    [13] M. Tournoux, R. Marchand, L. Brohan. Layered K_2Ti_4O_9 and the open metastable TiO_2(B) structure[J]. Prog. Solid State Chem., 1986,17:33-52.
    [14] T. P. Feist, P. K. Davies. The soft chemical synthesis of TiO_2(B) from layered titanates[J]. Solid State Chem., 1992, 101: 275-295.
    
    [15] H. Liu, Q. Cao, L. J. Fu, C. Li, Y. P. Wu, H. Q. Wu, Doping effects of zinc on LiFePO_4 cathode material for lithium ion batteries [J]. Electrochemistry Communications, 2006, 8(10): 1553-1557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700