用户名: 密码: 验证码:
新型吸附材料的制备及对重金属离子和染料吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的迅猛发展,工厂排放大量含重金属离子和染料的废水,给生态系统和人类健康带来日益严重的污染和危害。如果不及时有效地治理这些污染物,将直接威胁人类生存。如何更好地处理污水是当前烝待解决的问题。本论文选题研究制备新型磁性纳米复合材料和金属氧化物材料,探究其吸附重金属离子和吸附(或光催化降解)有机染料的性能,具体成果如下:
     1.采用三步法成功制备了透明质酸(HA)功能化的磁性纳米粒子(Fe3O4@SiO2-HA),并首次应用于对铜离子吸附研究。实验结果表明,Fe3O4@SiO2-HA纳米粒子单分散性较好,具有球形外貌和清晰的核壳结构。合成的Fe3O4@SiO2-HA粒子具有超顺磁性,可以利用外加磁场对其进行分离和收集。实验讨论了Cu(II)离子初始浓度和溶液pH值对吸附效率的影响,同时也研究了Fe3O4@SiO2-HA的吸附等温线和动力学机制。当Cu(II)离子的初始浓度为30mg/L时,合成的Fe3O4@SiO2-HA在除去水中Cu(II)离子的最佳pH值为6.8。最佳实验条件下,Fe3O4@SiO2-HA对Cu(II)离子的最大吸附量为13.5mg/g。吸附等温线研究结果表明,Fe3O4@SiO2-HA的吸附Cu(II)离子过程遵循Freundlich吸附等温方程;Fe3O4@SiO2-HA对Cu(II)离子的吸附行为用拟二级动力学模型拟合结果较好。
     2.以属于多糖类的田菁胶为碳源,采用水热法成功制备了磁性含碳多糖纳米粒子(Fe3O4@CPS),并对样品进行了多项表征和吸附性能研究。合成的Fe3O4@CPS纳米粒子具有球形外貌和明显的核壳结构。实验探讨了吸附剂用量、吸附质初始浓度、溶液pH值、吸附时间等对Fe3O4@CPS吸附重金属离子效率的影响。对Fe3O4@CPS的吸附机理进行了探究分析。重金属离子初始浓度在50-250mg/L范围内,Fe3O4@CPS对Cd(II)、Cu(II)、Pb(II)离子的最大吸附容量分别达到50.1mg/g,27.5mg/g和23.4mg/g。Fe3O4@CPS对重金属离子具有不同程度的吸附容量是因为吸附剂和重金属离子之间存在软硬酸碱(HSAB)作用。Fe3O4@CPS纳米粒子具有超顺磁性,可使该粒子在水溶液中具有较好的可回收性。吸附/解吸循环实验结果表明,Fe3O4@CPS循环使用3次后,对Cd(II)、Cu(II)、Pb(II)离子的解吸率分别高达96.7%,91.2%和87.6%以上。
     3.采用氧化聚合法成功制备了聚巴比妥酸功能化的磁性纳米粒子(PBA-MNPs),并对其进行了各种表征和吸附性能研究。测试结果显示,PBA-MNPs具有球形外貌,平均粒径为327nm,且由粒径小于15nm小颗粒堆积组成。在50mg/L–300mg/L初始浓度范围内,PBA-MNPs对Pb(II)和Cu(II)离子的最大吸附容量分别是130.5mg/g和95.2mg/g。吸附-脱附循环实验结果表明,PBA-MNPs经过循环使用三次后,该材料对Cu(II)和Pb(II)离子的解吸效率分别可达到87.1%和82.7%,说明PBA-MNPs在重金属离子的分离和收集方面具有很好的应用价值。
     4.结合沉淀法和焙烧法成功制备了氧化铝(Al90-600)。探讨了反应温度对氧化铝形貌的影响。结果显示,在90oC下合成的Al90-600具有层级中空结构和320.6m2/g的大比表面积,预示着该材料具有优良的吸附特性。利用合成的Al90-600作吸附剂,探讨了其对水中的刚果红(CR)和甲基橙(MO)有机染料的吸附效率。对于Al90-600而言,吸附CR的最佳溶液pH值是5.0。Al90-600对CR和MO的实验得到的饱和最大吸附容量分别为826.4mg/g和26.0mg/g,与Langmuir公式计算得到的理论最大吸附容量值835.0mg/g和25.5mg/g相类似,表明层级中空结构的Al90-600更有利于吸附CR。这是因为材料吸附能力不仅与材料比表面积有关,还与材料结构和吸附质分子量大小有关。
     5.利用均匀沉淀和焙烧相结合法成功制备了层级中空结构的氧化锌(Z-400)。用合成的Z-400对刚果红(CR)进行了吸附和光催化降解试验。实验探讨了影响吸附和光降解效果的一些因素及其吸附和光催化降解理论的机制。为了评价Z-400吸附/光催化降解CR的效率,相同实验条件下进行了商业ZnO和TiO2P25吸附/光催化降解CR的平行实验。等温线研究表明,Langmuir吸附等温线更好的描述Z-400吸附CR的过程,而商业ZnO和TiO2P25的吸附过程更符合Freundlich吸附等温线。最佳实验条件下,Z-400,商业ZnO和TiO2P25对CR的最大吸附容量分别是97.0mg/g,41.5mg/g和7.2mg/g;光催化降解实验结果显示,光催化反应2时Z-400对CR的光降解率可达到65%以上,而TiO2P25和商业ZnO对CR的光降解率分别是41%和31%。相比于两种商业产品,Z-400对CR有更好的吸附和光催化降解能力。
With the rapid development of modern industry, factories always discharge effluentcontaining heavy metal ions and dyes, which can bring about serious environmentalthreats and serious hazards to ecosystem and human health, respectively, due to theirtoxicity. If not promptly and effectively remove those toxic contaminants will directlythreaten human survival. Therefore, it is urgent to effectively deal with the wastewatercontaining toxic heavy metal ions and dyes. In this thesis, a series of novel magneticnanocomposite materials were synthesized and their adsorption performances towardheavy metal ions and photocatalysis performances toward organic dyes wereinvestigated. The details are as follows:
     1. The hyaluronic acid (HA) functionalized magnetic nanoparticles(Fe3O4@SiO2-HA) were synthesized and firstly used as adsorbent for potentialapplication in water treatment. Fe3O4@SiO2-HA nanoparticles have uniform sizes,legible spherical shapes and obvious core-shell structures. The Fe3O4@SiO2-HAnanoparticles have super-paramagagnetic property, which can make thesenanoparticles easily separated by an external magnetic force after adsorptionaccomplished. Effects of Cu (II) ions initial concentration and aqueous pH value onthe adsorption efficiency have been discussed. The adsorption isotherms and kineticshave also been investigated. The results showed that the optimum pH value for Cu (II)uptake studies was selected as6.8. The maximum adsorption capacity of thesynthesized Fe3O4@SiO2-HA was found to be13.5mg/g. Freundlich isotherm modelgave better fittings the adsorption equilibrium data. Kinetic experiments clearlyindicated that adsorption process of copper ions on the Fe3O4@SiO2-HA was followedpseudo-second-order kinetic models.
     2. Magnetic carbonaceous polysaccharide nanoparticles (Fe3O4@CPS) weresynthesized through hydrothermal process by using sesbania gum (SG) served ascarbon resource, and their structure, morphology, and component were characterizedsubsequently. Fe3O4@CPS nanoparticles have legible spherical shapes and obvious core-shell structures. Effects of adsorbent dosage, initial concentration, pH value andadsorption time on the adsorption capacity for heavy metal ions have been discussed.The adsorption isotherms and kinetics have also been investigated subsequently.When the initial concentration of heavy metal ions varing from50mg/L to250mg/L,the maximum adsorption capacities of Fe3O4@CPS towards Cd (II), Cu (II) and Pb (II)ions were found to be50.1mg/g,27.5mg/g, and23.4mg/g, respectively. Thedifference in adsorption capacities can be well explained because the “hard” metalions (Cd (II) and Cu (II)) had a higher complexation affinity than the “soft” metal ions(Pb (II)). Magnetism study displayed that Fe3O4@CPS nanoparticlas havesuper-paramagnetic property and strong magnetic response at room temperature,which can make these nanoparticles easily separated by applying the externalmagnetic force. The results showed that the Fe3O4@CPS have above91.2%for Cu(II),96.7%for Cd (II) and87.6%for Pb (II) ion desorption efficiency after theregeneration process.
     3. Poly(barbituric acid) functionalized magnetic nanoparticles (PBA-MNPs) weresynthesized through one-step oxidation polymerization method. Their microstructure,morphology, and functional groups were characterized in detail. The nanoparticleshave spherical shape. These spherical functional particles were formed by smallerspherical agglomerates of dimension~15nm. The synthesized PBA-MNPs used asadsorbents for potential application in water treatment. When the initial concentrationof adsorbates varing from50mg/L to300mg/L, the PBA-MNPs nanoparticles havethe adsorption capacities toward Cu (II) and Pb (II) ions were95.2mg/g and130.5mg/g, respectively. Recycling adsorption/desorption experiments revealed that thePBA-MNPs shown above87.1%for Cu (II) and82.7%for Pb (II) ions desorptionefficiency after the three regeneration cycle process. PBA-MNPs showed potentialapplication as recyclable adsorbent for heavy metal ions.
     4. A facile sol-gel method and sequential calcination treatment was utilized tofabricate alumina (Al90-600) with hierarchical hollow structure and high surface area.The as-prepared Al90-600was characterized by a series of measurement. Effect ofreaction temperature on the morphology of alumina was studied. The as-obtainedAl90-600exhibited a large BET surface area of320.6m2/g and expected that willpresent excellent adsorption behavior towards organic dyes. The as-obtained Al90-600was used as adsorbents for Congo red and Methyl orange removal. The results showed that the optimum pH value for CR uptake studies was selected as5.0. Todescribe how adsorbate molecules interact with the adsorbent surface, the adsorptionisotherms and kinetics were applied to analysis equilibrium adsorption data. Themaximum adsorption capacities of Al90-600obtained from the equilibrium adsorptionvalue were found to be CR (835.0mg/g) and MO (26.0mg/g), which are nearly closeto the adsorption capacity of adsorbent calculated from Langmuir adsorption isotherm.The adsorption experimental results showed that the maximum adsorption capacity ofCR by Al90-600was much higher than the maximum adsorption capacity for the MO.This is indicated that the as-synthesized Al90-600with hierarchical hollow structuremay is beneficial for enhancing adsorption intensity relatively large organic molecule.This is indicated that the adsorption capacity of an adsorbent is not only determinedby the specific surface area of materials, but correlated with structure and themolecular size distribution of adsorbate molecule.
     5. A facile homogeneous precipitation method and sequential calcination treatmentwas utilized to fabricate zinc oxide (Z-400) with hierarchical hollow structure. Theprepared Z-400can be utilized as efficient adsorbent/photocatalyst for CR removal.The factors affecting the adsorption/photocatalytic degradation capacity towards CRand the corresponding mechanisms were investigated in detail. In order to evaluate theadsorption/photocatalysis efficiency of Z-400, the removal experiments of CR withTiO2P25and commercial ZnO were also selected as the reference under the identicalreaction conditions. The adsorption data of the Z-400were well fitted with theLangmuir model, whereas for those of the TiO2P25and commercial ZnO, simulationwith the Freundlich model was better than those with Langmuir model. The maximumsorption capacity (qm) of Z-400, commercial ZnO and TiO2P25toward CR were97.0mg/g,41.5mg/g and7.2mg/g, respectively. The photocatalytic result showed that thedegradation percentiles of each sample were65%for Z-400,41%for TiO2P25, and31%for commercial ZnO within2h irradiation time. Based on the experimentalresults, Z-400is combined adsorbent and catalyst materials for removal of CR fromwaterbodies.
引文
[1]蒋婉茹,杨局荣,许嘉琳等,重金属对植物离体组织和细胞生长分化的影响[J].农业环境环保,1991,10,198-202.
    [2] AMIRI O., EMADI H., HOSSEINPOUR-MASHKANI S. S. M., et al., Simple andsurfactant free synthesis and characterization of CdS/ZnS core–shell nanoparticlesand their application in the removal of heavy metals from aqueous solution [J].RSC Adv.,2014,4,10990–10996.
    [3] CUI H. J, CAI J. K., SHI J. W., et al., Fabrication of3D porous Mn doped α-Fe2O3nanostructures for the removal of heavy metals from wastewater [J]. RSC Adv.,2014,4,10176–10179.
    [4] BEHNOUDNIA F., DEHGHANI H., Anion efect on the control of morphologyfor NiC2O4·2H2O nanostructures as precursors for synthesis of Ni(OH)2and NiOnanostructures and their application for removing heavy metal ions of cadmium (II)and lead (II)[J]. Dalton Trans.,2014,43,3471–3478.
    [5] WANG X. Q., LIU W. X., TIAN J., et al., Cr (VI), Pb (II), Cd (II) adsorptionproperties of nanostructured BiOBr microspheres and their application in acontinuous filtering removal device for heavy metal ions [J]. J. Mater. Chem. A,2014,2,2599–2608.
    [6] DEMIRBAS A., PEHLIVAN E., GODE F., et al., Adsorption of Cu (II), Zn (II),Ni (II), Pb (II), and Cd (II) from aqueous solution on Amberlite IR-120syntheticresin [J]. J. Colloid Interf. Sci.,2005,282,20–25.
    [7] LI D. X., NI C. Y., CHEN M. M., et al., Construction of Cd (II) coordinationpolymers used as catalysts for the photodegradation of organic dyes in pollutedwater [J]. CrystEngComm.,2014,16,2158–2167.
    [8] YANG S. B., HU J., CHEN C. L., et al., Mutual effects of Pb (II) and humic acidadsorption on multiwalled carbon nanotubes/polyacrylamide composites fromaqueous solutions [J]. Environ. Sci. Technol.,2011,45,3621–3627.
    [9] LI Y. H., WANG S. G., LUAN Z. K., et al., A dsorption of cadmium (II) fromaqueous solution by surface [J]. Carbon,2003,41,1057–1062.
    [10] ZHOU L. M., WANG Y. P., LIU Z. R., et al., Characteristics of equilibrium,kinetics studies for adsorption of Hg (II), Cu (II), and Ni (II) ions bythiourea-modified magnetic chitosan microspheres [J]. J. Hazard. Mater.,2009.161.995–1002.
    [11] LI Y., J. WANG D., WANG X. J., et al., Adsorption desorption of Cd (II) and Pb(II) on Ca-Montmorillonite [J]. Ind. Eng. Chem. Res.,2012,51,65206528.
    [12] WANG J. N., CHENG C., YANG X., A new porous chelating fiber: Preparation,characterization, and adsorption behavior of Pb (II)[J]. Ind. Eng. Chem. Res.,2013,52,40724082.
    [13] SREEJALEKSHMI K. G., KRISHNAN K. A., ANIRUDHANA T.S., Adsorptionof Pb (II) and Pb (II)-citric acid on sawdust activated carbon: Kinetic andequilibrium isotherm studies [J]. J. Hazard. Mater.,2009,161,1506–1513.
    [14] BOYANOV M. I., KMETKO J., SHIBATA T., Mechanism of Pb adsorption tofatty acid langmuir monolayers studied by X-ray absorption fine structurespectroscopy [J]. J. Phys. Chem. B,2003,107,9780-9788.
    [15] YANG Y. F., XIE Y. L., PANG L. C., Preparation of reduced grapheneoxide/poly(acrylamide) nanocomposite and its adsorption of Pb (II) andmethylene blue [J]. Langmuir,2013,29,1072710736.
    [16] MORRIS T., SZULCZEWSKI G., A spectroscopic ellipsometry, surface plasmonresonance, and X-ray photoelectron spectroscopy study of Hg adsorption on goldsurfaces [J]. Langmuir,2002,18,2260-2264.
    [17] ZHOU Y. M., HU X. Y., ZHANG M., et al., Preparation and characterization ofmodified cellulose for adsorption of Cd (II), Hg (II), and acid fuchsin fromaqueous solutions [J]. Ind. Eng. Chem. Res.,2013,52,876884.
    [18] JIANG M., WANG J. Q., LI L., et al., Poly(N,N-dimethylaminoethylmethacrylate)modification of a regenerated cellulose membrane using ATRPmethod for copper (II) ion removal [J]. RSC Adv.,2013,3,20625–20632.
    [19] GUO Y. P., ZHAO J. Z., ZHANG H., et al., Use of rice husk-based porous carbonfor adsorption of Rhodamine B from aqueous solutions [J]. Dyes Pigments,2005,66,123-128.
    [20] SONG L. X., YANG Z. K., TENG Y., et al., Nickel oxide nanoflowers:Formation, structure, magnetic property and adsorptive performance towardsorganic dyes and heavy metal ions [J]. J. Mater. Chem. A,2013,1,8731–8736.
    [21] ASUHA S., ZHOU X. G., ZHAO S., Adsorption of methyl orange and Cr (VI) onmesoporous TiO2prepared by hydrothermal method [J]. J. Hazard. Mater.,2010,181,204–210.
    [22] LI D. X., NI C. Y., CHEN M. M., et al., Construction of Cd (II) coordinationpolymers used as catalysts for the photodegradation of organic dyes in pollutedwater [J]. CrystEngComm.,2014,16,2158–2167.
    [23] SAHA B., DAS S., SAIKIA J., et al., Preferential and enhanced adsorption ofdifferent dyes on iron oxide nanoparticles: A comparative study [J]. J. Phys.Chem. C,2011,115,8024–8033.
    [24]叶匀分,奚伟军,染料废水的综合处理[J].复旦学报,2003,42,1010-1014.
    [25] WANG X., FAN H. Q., REN P. R., et al., Carbon coated SnO2: Synthesis,characterization, and photocatalytic performance [J]. RSC Adv.,2014,4,10284–10289.
    [26] SUN L. M., QI Y., JIA C. J., et al., Enhanced visible-light photocatalytic activityof g-C3N4/Zn2GeO4heterojunctions with efective interfaces based on bandmatch [J]. Nanoscale,2014,6,2649–2659.
    [27] LI X. F., LI M., YANG J. H., et al., Synergistic effect of efficient adsorptiong-C3N4/ZnO composite for photocatalytic property [J]. J. Phys. Chem. Solids,2014,75,441–446.
    [28] INYANG M. D., GAO B., ZIMMERMAN A., et al., Synthesis, characterization,and dye sorption ability of carbon nanotube–biochar nanocomposites [J]. Chem.Eng. J.,2014,236,39–46.
    [29] CHENG X. L., JIANG J. S., JIN C. Y., et al., Cauliflower-like α-Fe2O3microstructures: Toluene–water interface-assisted synthesis, characterization, andapplications in wastewater treatment and visible-light photocatalysis [J]. Chem.Eng. J.,2014,236,139–148.
    [30] RENGARAJ S., YEON K. H., MOON S. H., Removal of chromium from waterand wastewater by ion exchange resins [J]. J. Hazard. Mater.,2001,87,273–287.
    [31] SEKARAN G., KARTHIKEYAN S., BOOPATHY R., et al., Response surfacemodeling for optimization heterocatalytic Fenton oxidation of persistenceorganic pollution in high total dissolved solid containing wastewater [J]. Environ.Sc.i Pollu.t Res.,201421,1489–1502.
    [32] PARSA J. B., MERATI Z., ABBASI M., Modeling and optimizing ofelectrochemical oxidation of C.I. Reactive Orange7onthe Ti/Sb–SnO2as anodevia response surface methodology [J]. J. Ind. Eng. Chem.,2013,19,1350–1355.
    [33] MOHAMMED F. M., ROBERTS E. P. L., HILL A., et al., Continuous watertreatment by adsorption and electrochemical regeneration [J]. water res.,2011,45,3065-3074.
    [34] DJUKIC A., JOVANOVIC U., TUVIC T., et al., The potential of ball-milledserbian natural clay for removal of heavy metal contaminants from wastewaters:simultaneous sorption of Ni, Cr, Cd and Pb ions [J]. Ceram. Int.,2013,39,7173–7178.
    [35] AZARUDEEN R. S., SUBHA R., JEYAKUMAR D., et al., Batch separationstudies for the removal of heavy metal ions using a chelating terpolymer:Synthesis, characterization and isotherm models [J]. Sep. Purif. Technol.,2013,116,366–377.
    [36] CHEN X., MAO S. S., Titanium dioxide nanomaterials: Synthesis, properties,modification, and applications [J]. Chem. Rev.,2007,107,2891-2959.
    [37] BURNS A., OW H., WIESNER U., Fluorescent core-shell silica nanoparticles:Towards “Lab on a Particle” architectures for nanobiotechnology [J]. Chem. Soc.Rev.,2006,35,1028-1042.
    [38] DANIEL M. C., ASTRUC D., Gold nanoparticles: Assembly, supramolecularchemistry, quantum-size-related properties, and applications toward biology,catalysis, and nanotechnology [J]. Chem. Rev.,2004,104,293-346.
    [39] ROY R., KOMARNENI S., ROY D. M., Multi-phasic ceramic composites madeby sol-gel technique [J]. Mater. Res. Soc. Sym. Proc.,1984,32,347-351.
    [40] GAI L. G., DU G. J., ZUO Z. Y., et al., Controlled synthesis of hydrogentitanate-polyaniline composite nanowires and their resistance-temperaturecharacteristics [J] J. Phys. Chem. C,2009,113,7610–7615.
    [41] LI G. R., QU D. L., TONG Y. X., Electrochemical growth of Ce1-xZrxO2solidsolution flower-like nanostructures and their optical and magnetic properties [J].J. Phys. Chem. C,2009,113,2704–2709.
    [42] AMIRI M., ALIMORADI M., NEKOUEIAN K., et al., Cobalt flower-likenanostructure as modifier for electrocatalytic determination of chloropheniramine[J]. Ind. Eng. Chem. Res.,2012,51,1438414389.
    [43] XU S., MA W. F., YOU L. J., et al., Toward designer magnetite/polystyrenecolloidal composite microspheres with controllable nanostructures and desirablesurface functionalities [J]. Langmuir,2012,28,32713278.
    [44] ZHAO B., COLLINSON M. M., Well-defined hierarchical templates formultimodal porous material fabrication [J]. Chem. Mater.,2010,22,4312–4319.
    [45] LV H., LIN Q., ZHANG K., et al., Facile fabrication of monodisperse polymerhollow spheres [J]. Langmuir,2008,24,13736–13741.
    [46] GAO Y., SHAN D. C., CAO F., Silver/polyaniline composite nanotubes:One-step synthesis and electrocatalytic activity for neurotransmitter dopamine [J].J. Phys. Chem. C,2009,113,15175–15181.
    [46] ZHANG F., BRAUN G. B., SHI Y. F., et al, Fabrication of Ag@SiO2@Y2O3:Ernanostructures for bioimaging: Tuning of the upconversion fluorescence withsilver nanoparticles [J]. J. Am. Chem. Soc.,2010,132,2850–2851.
    [47] XU K., WANG J. X., KANG X. L., et al., Fabrication of antibacterialmonodispersed Ag–SiO2core–shell nanoparticles with high concentration [J].Mater. Lett.,2009,63,31–33.
    [48] HIRAKAWA T., KAMAT P. V., Charge separation and catalytic activity ofAg@TiO2core shell composite clusters under UV irradiation [J]. J. Am. Chem.Soc.,2005,127,3928-3934.
    [49] ASLAN K., WU M., LAKOWICZ J. R., et al., Fluorescent core shell Ag@SiO2nanocomposites for metal-enhanced fluorescence and single nanoparticle sensingplatforms [J]. J. Am. Chem. Soc.,2007,129,1524-1525.
    [50] JOO S. H., PARK J. Y., TSUNG C. K., et al., Thermally stable Pt/mesoporoussilica core–shell nanocatalysts for high-temperature reactions [J]. Nat. Mater.,2009,8,126-131.
    [51] ZHANG X. B., YAN J. M., HAN S., et al., Magnetically recyclable Fe@Pt coreshell nanoparticles and their use as electrocatalysts for ammonia boraneoxidation: The role of crystallinity of the core [J]. J. Am. Chem. Soc.2009,131,2778–2779.
    [52] WANG L., YAMAUCHI Y., Autoprogrammed synthesis of triple-layeredAu@Pd@Pt core shell nanoparticles consisting of a Au@Pd bimetallic core andnanoporous Pt shell [J]. J. Am. Chem. Soc.,2010,132,13636–13638.
    [53] YAN W., FAN H. Q., YANG C., Ultra-fast synthesis and enhanced photocatalyticproperties of α-Fe2O3/ZnO core-shell structure [J]. Mater. Lett.,2011,65,1595–1597.
    [54] ZHOU H. L., ZOU Z., WU S., et al., Rapid synthesis of TiO2hollownanostructures with crystallized walls by using CuO as template and microwaveheating [J]. Mater. Lett.,2011,65,1034–1036.
    [55] YIN Z. G., DING Y. H., ZHENG Q. D., et al., CuO/polypyrrole core–shellnanocomposites as anode materials for lithium-ion batteries [J]. Electrochem.Commun.,2012,20,40–43.
    [56] WANG X. D., LIU H. Y., CHEN D., et al., MultifunctionalFe3O4@P(St/MAA)@Chitosan@Au core/shell nanoparticles for dual imagingand photothermal therapy [J]. ACS Appl. Mater. Inter.,2013,5,49664971.
    [57] CHEN L. L., LI L., ZHANG L. Y., et al., Designed fabrication of uniqueeccentric mesoporous silica nanocluster-based core shell nanostructures forpH-responsive drug delivery [J]. ACS Appl. Mater. Inter.,2013,5,72827290.
    [58] CHALASANI R., VASUDEVAN S., Cyclodextrin-functionalized Fe3O4@TiO2:Reusable, magnetic nanoparticles for photocatalytic degradation ofendocrine-disrupting chemicals in water supplies [J]. ACS Nano.,2013,7,4093-4104.
    [59] HU Y., MENG L. J., NIU L. Y., et al., Facile synthesis of superparamagneticFe3O4@polyphosphazene@Au shells for magnetic resonance imaging andphotothermal therapy [J]. ACS Appl. Mater. Inter.,2013,5,45864591.
    [60] LIU J. W., CHENG J., CHE R. C., et al., Double-shelled yolk shell microsphereswith Fe3O4cores and SnO2double shells as high-performance microwaveabsorbers [J]. J. Phys. Chem. C,2013,117,489495.
    [61] LI W. Z., QIU T., WANG L. L., et al., Preparation and electromagnetic propertiesof core/shell polystyrene@polypyrrole@nickel composite microspheres [J]. ACSAppl. Mater. Inter.,2013,5,883891.
    [62] YANG S. L., SONG C. F., QIU T., et al., Synthesis ofpolystyrene/polysilsesquioxane core/shell composite particles via emulsionpolymerization in the existence of poly (γ-methacryloxypropyl trimethoxysilane)sol [J]. Langmuir,2013,29,92101.
    [63] PAN M. R., SUN Y. F., ZHENG J., et al., Boronic acid-functionalizedcore shell shell magnetic composite microspheres for the selective enrichmentof glycoprotein [J]. ACS Appl. Mater. Inter.,2013,5,83518358.
    [64] ZHONG M., FEI P., FU X. R., et al., Synthesis of PS CoFe2O4compositenanomaterial with improved magnetic properties by a one-step solvothermalmethod [J]. Ind. Eng. Chem. Res.,2013,52,82308235.
    [65] KIM Y. J., LIU Y. D., SEO Y., et al., Pickering-emulsion-polymerizedpolystyrene/Fe2O3composite particles and their magnetoresponsivecharacteristics [J]. Langmuir,2013,29,49594965.
    [66] WANG R. K., LIU H. R., WANG F. W., Facile preparation of raspberry-likesuperhydrophobic polystyrene particles via seeded dispersion polymerization [J].Langmuir,2013,29,1144011448.
    [67] XIE W., HERRMANN C., K MPE K., et al., Synthesis of bifunctional Au/Pt/Aucore/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzedreactions [J]. J. Am. Chem. Soc.,2011,133,19302–19305.
    [68] SEO H., KIM S. W., In situ synthesis of CdTe/CdSe core-shell quantum dots [J].Chem. Mater.,2007,19,2715-2717.
    [69] CHEN L. Y., ZHANG L., FUJITA T., et al., Surface-enhanced raman scatteringof silver@nanoporous copper core-shell composites synthesized by an in situsacrificial template approach [J]. J. Phys. Chem. C,2009,113,14195–14199.
    [70] QIAO Z. P., XIE G., HUANG J. M., et al., One-pot monomer self-assembly routeto PbS/poly(methylmethacrylate) core/shell nanocomposite thin coatings [J]. J.Mater. Chem.,2002,12,611–613.
    [71] PUSCH J., HERK A. M., Emulsion Polymerization of Transparent core-shelllatices with a polydivinylbenzene styrene and vinyl acetate [J]. Macromolecules,2005,38,6909-6914.
    [72] FUJII S., RANDALL D. P., ARMES S. P., Synthesis ofpolystyrene/poly[2-(dimethylamino)ethyl methacrylate-stat-ethylene glycoldimethacrylate] core-shell latex particles by seeded emulsion polymerization andtheir application as stimulus-responsive particulate emulsifiers for oil-in-wateremulsions [J]. Langmuir,2004,20,11329-11335.
    [73] COLVER P. J., COLARD C. A. L., BON S. A. F., Multilayered nanocompositepolymer colloids using emulsion polymerization stabilized by solid particles [J].J. Am. Chem. Soc.,2008,130,16850–16851.
    [74] MU OZ-BONILLA A., ALI S. I., CAMPO A., et al., Block copolymersurfactants in emulsion polymerization: Influence of the miscibility of thehydrophobic block on kinetics, particle morphology, and film formation [J].Macromolecules,2011,44,4282–4290.
    [75] BA ACKY P., PELIKáN P., VALKO M., et al., Electron paramagneticresonance of high-Tc superconducting composites YBa2Cu3-xScxO6±δ[J]. J. Phys.Chem. B,2001,105,1943-1946.
    [76] WEI H., HUANG J. F., CAO L. Y., et al., Oxidation protective AlPO4coating forSiC coated carbon/carbon composites for application at1773K and1873K [J]. J.Alloy. Compd.,2014,589,153–156.
    [77] KIM S. W., KIM M., LEE W. Y., et al., Fabrication of hollow palladium spheresand their successful application to the recy-clable heterogeneous catalyst forSuzuki coupling reactions [J]. J. Am. Chem. Soc.,2002,124,7642-7643.
    [78] LU L., SUN G., ZHANG H., et al., Fabrication of core-shell Au-Pt nanoparticlefilm and its potential application as catalysis and SERS substrate [J]. J. Mater.Chem.,2004,14,1005-1009.
    [79]周磊,杨海红,梁远等,核-壳结构的Fe-FeOxH2x-3催化UV/H2O2降解腐殖酸[J].环境科学学报,2007,27,1968-1971.
    [80] TRAKHTENBERG L. I., GERASIMOV G. N., ALEKSANDROVA L. N., et al.,Photo and radiation cryochemical synthesis of metal–polymer films:structure,sensor and catalytic properties [J]. Radiat. Phys. Chem.,2002,65,479–485.
    [81] LOU L., YU K., WANG Y. T., et al., Color-tunable magnetic and luminescenthybrid nanoparticles: Synthesis, optical and magnetic properties [J]. Appl. Surf.Sci.,2012,258,3744–3749.
    [82] ROGACH A., SUSHA A., CARUSO F., et al., Nano and microengineering:Three-dimensional colloidal photonic crystals prepared fromsubmicrometer-sized polystyrene latex spheres pre-coated with luminescentpolyelectrolyte/nanocrystal shells [J]. Adv. Mater.,2000,12,333-337.
    [83] TAYLOR J. I., HURST C. D., DAVIES M. J., et al., Application of magnetite andsilica–magnetite composites to the isolation of genomic DNA [J]. J. Chromatogr.A,2000,890,159-166.
    [84]俞英,周震涛,核/壳纳米晶二硒化镉/硫化镉的合成及荧光法测定溶菌酶[J].分析化学,2005,33,650-652.
    [85] HIRSCH L. R., STAFFORD R. J., BANKSON J. A., et al., Nanoshell-mediatednear-infrared thermal therapy of tumors under magnetic resonance guidance [J].P. Natl. Acad. Sci. USA,2003,100,13549-13554.
    [86] LOU L., YU K., ZHANG Z. L., et al., Dual-mode protein detection based onFe3O4–Au hybrid nanoparticles [J]. Nano Res.,2012,5,272–282.
    [87] LOU L., YU K., ZHANG Z. L., et al., Functionalized magnetic-fluorescenthybrid nanoparticles for cell labeling [J]. Nanoscale,2011,3,2315–2323.
    [88]孙正滨,杨慧慧,熊忠,磁性纳米粒子制备及其在印染厂污水处理中的应用,会议论文,2010,28,25-28.
    [89]王琼,吴翠玲,改性蒙脱石复合材料在污水处理中的研究与应用[J].环境科学与技术,2004,27,87-90.
    [90] XIONG P., WANG L. J., SUN X. Q., et al., Ternary titania cobaltferrite polyaniline nanocomposite: A magnetically recyclable hybrid foradsorption and photodegradation of dyes under visible light [J]. Ind. Eng. Chem.Res.,2013,52,1010510113.
    [91] ZHANG N., LIU S. Q., FU X. Z., Synthesis of M@TiO2(M=Au, Pd, Pt)core-shell nanocomposites with tunable photoreactivity [J]. J. Phys. Chem. C2011,115,9136–9145.
    [92] JO H. J., NAMA J. E., KIM D. H., et al., Improved performance ofdye-sensitized solar cells with novel conjugated organic dye using aluminumoxide-coated nanoporous titanium oxide films [J]. J. Power Sources,2014,249,385-391.
    [93] LIU J., LIU S., ZHOU H. H., et al., Preparation of self-ordered nanoporousanodic aluminum oxide membranes by combination of hard anodization and mildanodization [J]. Thin Solid Films,2014,552,75–81.
    [94] LIU W. J., ZENG F. X., JIANG H., et al., Composite Fe2O3and ZrO2/Al2O3photocatalyst: Preparation, characterization, and studies on the photocatalyticactivity and chemical stability [J]. Chem. Eng. J.,2012,180,9–18.
    [95] MEHRDAD A., MASSOUMI B., HASHEMZADEH R., Kinetic study ofdegradation of Rhodamine B in the presence of hydrogen peroxide and somemetal oxide [J]. Chem. Eng. J.,2011,168,1073–1078.
    [96] PAL M., BERA S., SARKAR S., et al., Influence of Al doping on microstructural,optical and photocatalytic properties of sol–gel based nanostructured zinc oxidefilms on glass [J]. RSC Adv.,2014,4,11552–11563.
    [97] ZHANG Q., JIANG W. F., WANG H. L., et al., Oxidative degradation of dinitrobutyl phenol (DNBP) utilizing hydrogen peroxide and solar light over aAl2O3-supported Fe (III)-5-sulfosalicylic acid (ssal) catalyst [J]. J. Hazard. Mater.,2010,176,1058–1064.
    [98]邓凡政,陈素明, Al2O3光催化降解染料性能研究[J].环境科学与技术,2007,2,26-30.
    [99] LI M. Y., SI Z. C., WU X. D., et al., Facile synthesis of hierarchical porousγ-Al2O3hollow microspheres for water treatment [J]. J. Colloid Interf. Sci.,2014,417,369–378.
    [100] CHEN D., QU Z. P., SUN Y. H., et al., Adsorption–desorption behavior ofgaseous formaldehyde on different porous Al2O3materials [J]. Colloid. Surf. A,2014,441,433–440.
    [101] YANG X. C., WANG Z., JING M. X., et al., Efficient removal of dyes fromaqueous solution by mesoporous nanocomposite Al2O3/Ni0.5Zn0.5Fe2O4microfibers [J]. Water Air Soil Pollut.,2014,225,1819.
    [102] WANG W. W., ZHOU J. B., ZHANG Z., et al., Different surfactants-assistedhydrothermal synthesis of hierarchical γ-Al2O3and its adsorption performancesfor parachlorophenol [J]. Chem. Eng. J.,2013,233,168–175.
    [103]吴于程,宋振亚,杨桦等人,氧化铝α相变及其相变控制的研究[J].稀有金属,2004,6,1043-1048.
    [104] POPOVA I., JOHN T., YATES J., Adsorption and thermal behavior ofbenzotriazole chemisorbed on γ-Al2O3[J]. Langmuir,1997,13,6169-6175.
    [105] SPENCER E. C., HUANG B., PARKER S. F., et al., The thermodynamicproperties of hydrated γ-Al2O3nanoparticles [J]. J. Chem. Phys.,2013,139,244705.
    [106] MOREAUA P., COLETTE-MAATOUKA S., GAREIL P., et al., Modelling ofthe adsorption of phenolic acids onto α, γ–alumina particles [J]. Colloid. Surf. A,2013,435,97–108.
    [107] JIANG J., XU R. K., LI S. Z., Effect of ionic strength and mechanism of Cu (II)adsorption by goethite and γ-Al2O3[J]. J. Chem. Eng. Data,2010,55,5547–5552.
    [108] YLIVAARA O. M. E., LIU X. W., KILPI L., et al., Aluminum oxide fromtrimethylaluminum and water by atomic layer deposition: The temperaturedependence of residual stress, elastic modulus, hardness and adhesion [J]. ThinSolid Films,2014,552,124–135.
    [109] LIU J. H., GUO Q., YU M., et al., Effect of TiO2nanostructures on specificcapacitance of Al2O3–TiO2composite film on etched aluminum foil formed bythe sol–gel and anodizing [J]. Ceram. Int.,2014,40,3687–3692.
    [110] LI X. R., ALDAYEL A. M., CUI Z. R., Aluminum hydroxide nanoparticlesshow a stronger vaccine adjuvant activity than traditional aluminum hydroxidemicroparticles [J]. J. Control. Release,2014,173,148–157.
    [111] ZHANG M. C., ZHANG W. Q., WANG S. N., Synthesis of well-defined silicaand Pd/silica nanotubes through a surface sol-gel process on a self-assembledchelate block copolymer [J]. J. Phys. Chem. C,2010,114,15640–15644.
    [112] HERNANDEZ B. A., CHANG K. S., FISHER E. R., et al., Sol gel templatesynthesis and characterization of BaTiO3and PbTiO3nanotubes [J]. Chem.Mater.,2002,14,480-482.
    [113] MIAO Z., XU D. S., OUYANG J. H., et al., Electrochemically induced sol gelpreparation of single-crystalline TiO2nanowires [J]. Nano Lett.,2002,2,717-720.
    [114] WU J. M., CHEN Y. R., Ultraviolet-light-assisted formation of ZnO nanowiresin ambient Air: Comparison of photoresponsive and photocatalytic activities inzinc hydroxide [J]. J. Phys. Chem. C,2011,115,2235–2243.
    [115] COSTA D. O., DIXON S. J., RIZKALLA A. S., One-and three-dimensionalgrowth of hydroxyapatite nanowires during sol gel hydrothermal synthesis [J].ACS Appl. Mater. Inter.,2012,4,14901499.
    [116] CHUANGCHOTE S., JITPUTTI J., SAGAWA T., et al., Photocatalytic activityfor hydrogen evolution of electrospun TiO2nanofibers [J]. ACS Appl. Mater.Inter.,2009,1,1140-1143.
    [117] WU J., COFFER E. L., Strongly emissive erbium-doped tin oxide nanofibersderived from sol gel/electrospinning methods [J]. J. Phys. Chem. C,2007,111,16088-16091.
    [118] ZHANG Z. Y., SHAO C. L., LI X. H., et al., Electrospun nanofibers of p-TypeNiO/n-Type ZnO heterojunctions with enhanced photocatalytic activity [J].ACS Appl. Mater. Inter.,2010,2,2915-2923.
    [119] DAS J., KHUSHALANI D., Nonhydrolytic route for synthesis of ZnO and itsuse as a recyclable photocatalyst [J]. J. Phys. Chem. C,2010,114,8114.
    [120] QIN H. C., LI W. Y., XIA Y. J., et al., Photocatalytic activity of heterostructuresbased on ZnO and N-doped ZnO [J]. ACS Appl. Mater. Inter.,2011,3,3152–3156.
    [121] ANSARI S. A., KHAN M. M., ANSARI M. O., et al., Biogenic synthesis,photocatalytic, and photoelectrochemical performance of Ag ZnOnanocomposite [J]. J. Phys. Chem. C,2013,117,2702327030.
    [122] WANG Y. X., LI X. Y., LU G., et al., Highly oriented1-D ZnO nanorod arrayson zinc foil: Direct growth from substrate, optical properties and photocatalyticactivities [J]. J. Phys. Chem. C,2008,112,7332-7336.
    [123] NA J. S., GONG B., SCAREL G., et al., Surface polarity shielding andhierarchical ZnO nano-architectures produced using sequential hydrothermalcrystal synthesis and thin film atomic layer deposition [J]. ACS Nano.,2009,3,3191-3199.
    [124] RAULA M., RASHID M. H., PAIRA T. K., et al., Ascorbate-assisted growth ofhierarchical ZnO nanostructures: Sphere, spindle, and flower and their catalyticproperties [J]. Langmuir,2010,26,8769-8782.
    [125] LIU H. T., ZENG X. F., ZHAO H., Highly transparent and multifunctionalpolymer nanohybrid film with superhigh ZnO content synthesized by a bulkpolymerization method [J]. Ind. Eng. Chem. Res.2012,51,67536759.
    [126] ICHIKAWA T., SHIRATORI S., Fabrication and evaluation of ZnO nanorods byliquid-phase deposition [J]. Inorg. Chem.,2011,50,999-1004.
    [127] XIE S. L., LU X. H., ZHAI T., et al., Controllable synthesis of ZnxCd1xS@ZnOcore shell nanorods with enhanced photocatalytic activity [J]. Langmuir,2012,28,1055810564.
    [128] SUN S. J., JIAO S. J., ZHANG K. J., et al., Morphology and properties of ZnOnanostructures by electrochemical deposition: effect of the substrate treatment[J]. J Mater Sci: Mater Electron.,2013,24,85–88.
    [129] AL-SALMAN H. S., ABDULLAH M. J., RF sputtering enhanced themorphology and photoluminescence of multi-oriented ZnO nanostructureproduced by chemical vapor deposition [J]. J. Alloy. Comd.,2013,547,132–137.
    [130] WANG W. D., ZHANG Z., LIAO Q. L., et al., Two-step epitaxial synthesis andlayered growth mechanism of bisectional ZnO nanowire arrays [J]. J. Cryst.Growth,2013,363,247–252.
    [131] SUN Y. J., WANG L., YU X. G., et al., Facile synthesis of flower-like3D ZnOsuperstructures via solution route [J]. CrystEngComm.,2012,14,3199–3204.
    [132] XIE F., CENTENO A., ZOU B., Tunable synthesis of ordered zinc oxidenanoflower-like arrays [J]. J. Colloid Interf. Sci.,2013,395,85-90.
    [133] EKTHAMMATHAT N., THONGTEMA T., PHURUANGRAT A., et al.,Characterization of ZnO flowers of hexagonal prisms with planar andhexagonal pyramid tips grown on Zn substrates by a hydrothermal process [J].Superlattice Microst.,2013,53,195–203.
    [134] VENKATACHALAM S., HAYASHI H., EBINA T., et al., Preparation andcharacterization of epitaxial growth of ZnO nanotip arrays by hydrothermalmethod [J]. J. Colloid Interf. Sci.,2013,395,64-67.
    [135] ASHRAF M., CAMPAGNE C., PERWUELZ A., et al., Development ofsuperhydrophilic and superhydrophobic polyester fabric by growing Zinc Oxidenanorods [J]. J. Colloid Interf. Sci.,2013,394,545–553.
    [1] LI M. L., XU J., LI R. H., et al., Simple preparation of aminothiourea-modifiedchitosan as corrosion inhibitor and heavy metal ion adsorbent [J]. J. ColloidInterface Sci.,2014,417,131–136.
    [2] KO ODY SKA D., KOWALCZYK M., HUBICKI Z., Evaluation of iron-basedhybrid materials for heavy metal ions removal [J]. J. Mater. Sci.,2014,49,2483–2495.
    [3] MASOUMI A., GHAEMY M., Adsorption of heavy metal ions and azo dyes bycrosslinked nanochelating resins based on poly(methylmethacrylate-co-maleicanhydride)[J]. Polym. Lett.,2014,8,187–196.
    [4] WANG Y., WANG X. J., WANG X., et al., Adsorption of Pb (II) in aqueoussolutions by bamboo charcoal modified with KMnO4via microwave irradiation [J].Colloids Surf. A,2012,414,1-8.
    [5] ZHOU J., ZHANG Z., CHENG B., et al., Glycine-assisted hydrothermal synthesisand adsorption properties of crosslinked porous α-Fe2O3nanomaterials forp-nitrophenol [J]. Chem. Eng. J.,2012,211-212,153-160.
    [6] CHOI M., JANG J., Heavy metal ion adsorption onto polypyrrole-impregnatedporous carbon [J]. J. Colloid Interface Sci.,2008,325,287-289.
    [7] FARNAD N., FARHADI K., VOELCKER N. H., Polydopamine nanoparticles asa new and highly selective biosorbent for the removal of Copper (II) ions fromaqueous solutions [J]. Water Air Soil Pollut.,2012,223,3535-3544.
    [8] ANURAJ N., BHATTACHARJEE S., GEIGER J. H., et al., An all-aqueous routeto polymer brush-modified membranes with remarkable permeabilites and proteincapture rates [J]. J. Membr. Sci.,2012,389,117-125.
    [9] SAWALHA M. F., PERALTA-VIDEA J. R., ROMERO-GONZáLEZ J., et al.,Biosorption of Cd (II), Cr (III), and Cr (VI) by saltbush (Atriplex canescens)biomass: Thermodynamic and isotherm studies [J]. J. Colloid Interface Sci.,2006,300,100-104.
    [10] ZHU Y., HUA J., WANG J., Competitive adsorption of Pb (II), Cu (II) and Zn (II)onto xanthate-modfied magnetic chitosan [J]. J. Hazard. Mater.,2012,221-222,155-161.
    [11] MONIER M., AYAD D. M., ABDEL-LATIF D. A., Adsorption of Cu (II), Cd (II)and Ni (II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxalSchiff’s base [J]. Colloids Surf. B,2012,94,250-258.
    [12] CHEN A. H., LIU S. C., CHEN C. Y., et al., Comparative adsorption of Cu (II),Zn (II), and Pb (II) ions in aqueous solution on the crosslinked chitosan withepichlorohydrin [J]. J. Hazard. Mater.,2008,154,184-191.
    [13] WANG L. F., DUAN J. C., MIAO W. H., et al., Adsorption–desorption propertiesand characterization of crosslinked Konjacglucomannan-graft-polyacrylamide-co-sodium xanthate [J]. J. Hazard. Mater.,2011,186,1681-1686.
    [14] GNICHWITZ J. F., MARCZAK R., WERNER F., et al., Efficient syntheticaccess to cationic dendrons and their application for ZnO nanoparticles surfacefunctionalization: New building blocks for dye-sensitized solar cells [J]. J. Am.Chem. Soc.,2010,132,17910-17920.
    [15] NGUYEN S. T., NGUYEN H. T., RINALDI A., et al., Morphology control andthermal stability of binderless-graphene aerogels from graphite for energystorage applications [J]. Colloids Surf. A,2012,414,352-358.
    [16] WANG Y., MAKSIMUK S., SHEN R., et al., Synthesis of iron oxidenanoparticles using a freshly-made or recycled imidazolium-based ionic liquid[J]. Green Chem.,2007,9,1051-1056.
    [17] DEMNEH S. M. G., NASERNEJAD B., Modarres H., Modeling investigation ofmembrane biofouling phenomena by considering the adsorption of protein,polysaccharide and humic acid [J]. Colloids Surf: B,2011,88,108-114.
    [18] ZHOU W., WANG J., SHEN B., et al., Biosorption of copper (II) and cadmium(II) by a novel exopolysaccharide secreted from deep-sea mesophilic bacterium[J]. Colloids Surf. B,2009,72,295-302.
    [19] DENG H., LI X., PENG Q., et al., Preparation of graphene-encapsulatedmagnetic microspheres for protein/peptide enrichment and MALDI-TOF MSanalysis [J]. Angew. Chem. Int. Ed.,2005,44,2782-2785.
    [20] LIU Q., SHI J., CHENG M., et al., Monodisperse magnetic single-crystal ferritemicrospheres [J]. Chem. Commun.,2012,48,1874-1876.
    [21] XU X., DENG C., GAO M., et al., Synthesis of magnetic microspheres withimmobilized metal ions for enrichment and direct determination ofphosphopeptides by matrix-assisted laser desorption ionization massspectrometry [J]. Adv. Mater.,2006,18,3289-3293.
    [22] XU Z., FENG Y., LIU X., et al., Synthesis and characterization ofFe3O4@SiO2@poly-L-alanine, peptide brush–magnetic microspheres throughNCA chemistry for drug delivery and enrichment of BSA [J]. Colloids Surf. B,2010,81,503-507.
    [23] XU P., WANG H., TONG R., et al., Preparation and morphology of SiO2/PMMAnanohybrids by microemulsion polymerization [J]. Colloid Polym. Sci.,2006,284,755-762.
    [24] XU Z., FENG B., BIAN S., et al., Monodisperse and core-shell structuredSiO2@Lu2O3:Ln3(Ln Eu, Tb, Dy, Sm, Er, Ho, and Tm) spherical particles: Afacile synthesis and luminescent properties [J]. J. Solid State Chem.,2012,196,301-308.
    [25] WANG L., SUN Y., WANG J., et al., Preparation of surface plasmon resonancebiosensor based on magnetic core/shell Fe3O4/SiO2and Fe3O4/Ag/SiO2nanoparticles [J]. Colloids Surf. B,2011,84,484-190.
    [26] ABDOLLAHI S. N., NADERI M., AMOABEDINY G., Synthesis andphysicochemical characterization of tunable silica–gold nanoshells via seedgrowth method [J]. Colloids Surf. A,2012,414,345-351.
    [27] SHAO D., XU K., SONG X., et al., Effective adsorption and separation oflysozyme with PAA-modified Fe3O4@silica core/shell microspheres [J]. J.Colloid Interface Sci.,2009,336,526-532.
    [28] SASIKALA T. S., RAMAN S., MOHANAN P., et al., Effect of silane couplingagent on the dielectric and thermal properties of DGEBA-forsterite composites[J]. J. Polym. Res.,2011,18,811-819.
    [29] VANEA E., SIMON V., XPS study of protein adsorption onto nanocrystallinealuminosilicate microparticles [J]. Appl. Surf. Sci.,2011,257,2346-2352.
    [30] ISHPAL, PANWAR O. S., KUMAR M., et al., X-ray photoelectron spectroscopicstudy of nitrogen incorporated amorphous carbon films embedded withnanoparticles [J]. Appl. Surf. Sci.,2010,256,7371-7276.
    [31] HERRANZ T., DENG X., CABOT A., et al., In situ XPS study of the adsorptionand reactions of NO and O2on gold nanoparticles deposited on TiO2and SiO2[J].J. Catal.,2011,283,119-123.
    [32] CHATTERJEE A., ZHAO L., ZHANG L., et al., Core-level electronic structureof solid-phase glycine, glycyl-glycine, diglycyl-glycine, and polyglycine: X-rayphotoemission analysis and Hartree-Fock calculations of their zwitterions [J]. J.Chem. Phys.,2008,129,105-104.
    [33] YANG C. H., HUANG L. R., CHIH Y. K., et al., Molecular assembled self-dopedpolyaniline copolymer ultra-thin films [J]. Polymer,2007,48,3237-3247.
    [34] JUN J. B., UHM S. Y., RYU J. H., et al., Synthesis and characterization ofmonodisperse magnetic composite particles for magnetorheological fluidmaterials [J]. Colloids Surf. A,2005,260,157-164.
    [35] ZHANG X., NIU H., PAN Y., et al., Modifying the surface of Fe3O4/SiO2magnetic nanoparticles with C-18/NH2mixed group to get an efficient sorbentfor anionic organic pollutants [J]. J. Colloid Interface Sci.,2011,362,107-112.
    [36] E-ZAWAWY,W. K. IBRAHIM M. M., Preparation and characterization of novelpolymer hydrogel from industrial waste and copolymerization of poly(vinylalcohol) and polyacrylamide [J]. J. Appl. Polym. Sci.,2012,124,4362-4370.
    [37] SURESHKUMAR M. K., DAS D., MALLIA M. B., et al., Adsorption ofuranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads[J]. J. Hazard. Mater.2010,184,65-72.
    [38] MOUSAVI H. Z., HOSSEINIFAR A., JAHED V., Studies of the adsorptionthermodynamics and kinetics of Cr (III) and Ni (II) removal by polyacrylamide[J]. J. Serb. Chem. Soc.,2012,77,393-405.
    [39] GUPTA V. K., NAYAK A., Cadmium removal and recovery from aqueoussolutions by novel adsorbents prepared from orange peel and Fe2O3nanoparticles[J]. Chem. Eng. J.,2012,180,81-90.
    [40] RAO R. A. K., IKRAM S., Sorption studies of Cu (II) on gooseberry fruit(emblica officinalis) and its removal from electroplating wastewater [J].Desalination,2011,277,390-398.
    [41] SHIN K. Y., HONG J. Y., JANG J., Heavy metal ion adsorption behavior innitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study [J]. J.Hazard. Mater.,2011,190,36-44.
    [1] MADADRANG C. J., KIM H. Y., GAO G. H., et al., Adsorption behavior ofEDTA-graphene oxide for Pb (II) removal [J]. ACS Appl. Mater. Inter.,2012,4,11861193.
    [2] KONG J., COOLAHAN K., MUGWERU A., Manganese based magneticnanoparticles for heavy metal detection and environmental remediation [J]. Anal.Methods.,2013,5,5128–5133.
    [3] ZHANG S., XU F., WANG Y. F., et al., Silica modified calcium alginate–xanthangum hybrid bead composites for the removal and recovery of Pb (II) from aqueoussolution [J]. Chem. Eng. J.,2013,234,33–42.
    [4] ZHAO F. P., REPO E., YIN D. L., et al., Adsorption of Cd (II) and Pb (II) by anovel EGTA-modified chitosan material: Kinetics and isotherms [J]. J. ColloidInterf. Sci.,2013,409,174–182.
    [5] BERNARDO M., MENDES S., LAPA N., et al., Removal of lead (Pb2+) fromaqueous medium by using chars from co-pyrolysis [J]. J.Colloid Interf. Sci.,2013,409,158–165.
    [6] ZENG G. M., PANG Y., ZENG Z. T., Removal and recovery of Zn2+and Pb2+byimine-functionalized magnetic nanoparticles with tunable selectivity [J]. Langmuir,2012,28,468–473.
    [7] LAGASHETTY A., VIJAYANAND H., BASAVARAJA S., et al., Lead adsorptionstudy on combustion derived γ-Fe2O3surface [J]. Bull. Mater. Sci.,2010,33,1-6.
    [8] ROCHER V., SIAUGUE J. M., CABUIL V., Removal of organic dyes bymagnetic alginate beads [J]. Water Res.,2008,42,1290–1298.
    [9] LUO X. G., ZHANG L. N., High effective adsorption of organic dyes onmagnetic cellulose beads entrapping activated carbon [J]. J. Hazard. Mater.,2009,171,340–347.
    [10] BABEL S., KURNIAWAN T. A., Low-cost adsorbents for heavy metals uptakefrom contaminated water: a review [J]. J. Hazard, Mater.,2003,97,219–243.
    [11] KADIRVELU K., THAMARAISELVI K., NAMASIVAYAM C., Removal ofheavy metals from industrial wastewaters by adsorption onto activated carbonprepared from an agricultural solid waste [J]. Bioresource Technol.,2001,76,63-65.
    [12] YASEMIN B., ZEKI T., Removal of heavy metals from aqueous solution bysawdust adsorption [J]. J. Envirnnmental Sci.,2007,19, I60-166.
    [13] SECO A., MARZAL P., GABALDóN C., Adsorption of heavy metals fromaqueous solutions onto activated carbon in single Cu and Ni systems and inbinary Cu-Ni, Cu-Cd and Cu-Zn systems [J]. J. Chem. Tech. Biotechnol.,1997,68,23-30.
    [14] NASERNEJADA B., ZADEHB T. E., POUR B. B., et al., Camparison forbiosorption modeling of heavy metals (Cr (III), Cu (II), Zn (II)) adsorption fromwastewater by carrot residues [J]. Process Biochem.,2005,40,1319–1322.
    [15] LIU J. F., ZHAO Z. S., JIANG G. B., Coating Fe3O4Magnetic nanoparticles withhumic acid for high efficient removal of heavy metals in water [J]. Environ. Sci.Technol.,2008,42,6949–6954.
    [16] LIU X. W., HU Q. Y., FANG Z., et al., Magnetic chitosan nanocomposites: Auseful recyclable tool for heavy metal ion removal [J]. Langmuir,2009,25,3-8.
    [17] HUANG S. H., CHEN D. H., Rapid removal of heavy metal cations and anionsfrom aqueous solutions by an amino-functionalized magnetic nano-adsorbent [J].J. Hazard. Mater.,2009,163,174–179.
    [18] OLIVEIRA L. C. A., RIOS R. V. R. A., FABRIS J. D., et al., Clay–iron oxidemagnetic composites for the adsorption of contaminants in water [J]. Appl. ClaySci.,2003,22,169–177.
    [19] ZHOU L. M., WANG Y. P., LIU Z. R., et al., Characteristics of equilibrium,kinetics studies for adsorption of Hg (II), Cu (II), and Ni (II) ions bythiourea-modified magnetic chitosan microspheres [J]. J. Hazard. Mater.,2009,161,995–1002.
    [20] CAO C. Y., CUI Z. M., CHEN C. Q., Ceria hollow nanospheres produced by atemplate-free microwave-assisted hydrothermal method for heavy metal ionremoval and catalysis [J]. J. Phys. Chem. C,2010,114,9865–9870.
    [21] BADRUDDOZA A. Z. M., SHAWON Z. B. Z., DANIEL T. W. J., et al.,Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removalfrom industrial wastewater [J]. Carbohyd. Polym.,2013,91,322-332.
    [22] GIRI A., BHOWMICK M., PAL S., et al., Polymer hydrogel from carboxymethylguar gum and carbon nanotube for sustained trans-dermal release of diclofenacsodium [J]. Int. J. Biol. Macromol.,2011,49,885-893.
    [23] GONG H. H., LIU M. Z., ZHANG B., et al., Synthesis of oxidized guar gum bydry method and its application in reactive dye printing [J]. Int. J. Biol.Macromol.,2011,49,1083-1091.
    [24] XU P., WANG H. T., TONG R., et al., Preparation and morphology ofSiO2/PMMA nanohybrids by microemulsion polymerization [J]. Colloid PolymSci.,2006,284,755-762.
    [25] ZHANG R. LI, P., HUANG Y. M., et al., Pd-Fe3O4@C hybrid nanoparticles:Preparation, characterization, and their high catalytic activity toward Suzukicoupling reactions [J]. J. Mater. Chem.,2012,22,22750-22755.
    [26] XU Q. N., MA J. Z., ZHOU J. H., et al., Bio-based core–shell casein-based silicanano-composite latex by double-in situ polymerization: Synthesis,characterization and mechanism [J]. Chem. Eng. J.,2013,228,281-289.
    [27] LIANG H. X., NIU H. L., LI P., et al., Multifunctional Fe3O4@C@Ag hybridnanoparticles: Aqueous solution preparation, characterization and photocatalyticactivity [J]. Mater. Res. Bull.,2013,48,2415-2419.
    [28] ZHANG X., NIU H., PAN Y., et al., Modifying the surface of Fe3O4/SiO2magnetic nanoparticles with C18/NH2mixed group to get an efficient sorbent foranionic organic pollutants [J]. J. Colloid Interface Sci.,2011,362,107-112.
    [29] SUN L., LI Q., WANG W., et al., Synthesis of magnetic and lightweight hollowmicrospheres/polyaniline/Fe3O4composite in one-step method [J]. Appl. Surf.Sci.,2011,257,10218-10223.
    [30] NATA I. F., SALIM G. W., LEE C. K., Facile preparation of magneticcarbonaceous nanoparticles for Pb2+ions removal [J]. J. Hazard. Mater.,2010,183,853-858.
    [31] ZHANG Y. F., LIU X. H., NIE J. R., et al., Improve the catalytic activity ofα-Fe2O3particles in decomposition of ammonium perchlorate by coatingamorphous carbon on their surface [J]. J. Solid State Chem.,2011,184,387-390.
    [32] CHANG B. S., ZHANG X. R., GUO J., et al., General one-pot strategy toprepare multifunctional nanocomposites with hydrophilic colloidal nanoparticlescore/mesoporous silica shell structure [J]. J. Colloid Interf. Sci.,2012,377,64-75.
    [33] ZHAO G. H., WANG J. Z., LI Y. F., et al., Enzymes immobilized onsuperparamagnetic Fe3O4@Clays nanocomposites: preparation, characterization,and a new strategy for the regeneration of supports [J]. J. Phys. Chem. C,2011,115,6350-6359.
    [34] ZHANG X. F., WANG J., LI R. M., et al., Preparation of Fe3O4@C@Layereddouble hydroxide composite for magnetic separation of uranium [J]. Ind. Eng.Chem. Res.,2013,52,10152-10159.
    [35] OH H-D., KIM S-O., LEE J. K., et al., Facile synthesis of carbon layer-entangledFe2O3clusters as anode materials for improved Li-ion batteries [J]. J. PowerSources,2013,244,575-580.
    [36] LIU J. W., CHENG J., CHE R. C., et al., Double-shelled yolk-shell microsphereswith Fe3O4cores and SnO2double shells as high-performance microwaveabsorbers [J]. J. Phys. Chem. C,2013,117,489-495.
    [37] CHENG K., ZHOU Y. M., SUN Z. Y., et al., Synthesis of carbon-coated, porousand water-dispersive Fe3O4nanocapsules and their excellent performance forheavy metal removal applications [J]. Dalton Trans.,2012,41,5854-5861.
    [38] ZHANG J., YU D. M., CHEN W., et al., Preparation ofpoly(styrene–glucidylmethacrylate)/Fe3O4composite microspheres with highmagnetite contents [J]. J. Magn. Magn. Mater.,2009,321,572-577.
    [39] KONG L. R., LU X. F., JIN E., et al., Constructing magnetic polyaniline/metalhybrid nanostructures using polyaniline/Fe3O4composite hollow spheres assupports [J]. J. Solid State Chem.,2009,182,2081-2087.
    [40] MAURICIO M. R., GUILHERME M. R., KUNITA M. H., et al., Designingnanostructured microspheres with well-defined outlines by mixingcarboxyl-functionalized amylose and magnetite via ultrasound [J]. Chem. Eng. J.,2012,189-190,456-463.
    [41] ZHANG S. X., NIU H. Y., HU Z. J., et al., Preparation of carbon coated Fe3O4nanoparticles and their application for solid-phase extraction of polycyclicaromatic hydrocarbons from environmental water samples [J]. J. Chromatogr. A,2010,1217,4757-4764.
    [42] WANG H. G., SUN L., LI Y. P., et al., Layer-by-Layer assembledFe3O4@C@CdTe core/shell microspheres as separable luminescent probe forsensitive sensing of Cu2+ions [J]. Langmuir,2011,27,11609-11615.
    [43] SONG X. H., GUNAWAN P., JIANG R. R., et al., Surface activated carbonnanospheres for fast adsorption of silver ions from aqueous solutions [J]. J.Hazard. Mater.,2011,194,162-168.
    [44] MOUSAVI H. Z., HOSSEINIFAR A., JAHED V., Studies of the adsorptionthermodynamics and kinetics of Cr (III) and Ni (II) removal by polyacrylamide[J]. J. Serb. Chem. Soc.,2012,77,393-405.
    [45] RAO R. A. K., IKRAM S., Sorption studies of Cu (II) on gooseberry fruit(emblica officinalis) and its removal from electroplating wastewater [J].Desalination,2011,277,390-398.
    [46] CONSTANTIN M., ASMARANDEI I., HARABAGIU V., et al., Removal ofanionic dyes from aqueous solutions by an ion-exchanger based on pullulanmicrospheres [J]. Carbohyd. Polym.,2013,91,74-84.
    [47] WANG S. B., PENG Y. L., Natural zeolites as effective adsorbents in water andwastewater treatment [J]. Chem. Eng. J.,2010,156,11-24.
    [48] SONG J., KONG H., JANG J., Adsorption of heavy metal ions from aqueoussolution by polyrhodanine-encapsulated magnetic nanoparticles [J]. J. ColloidInterf. Sci.,2011,359,505-511.
    [49] LIU L., LIU S. X., ZHANG Q. P., et al., Adsorption of Au (III), Pd (II), and Pt(IV) from aqueous solution onto graphene oxide [J]. J. Chem. Eng. Data.,2013,58,209-216.
    [1] DONG A. L. D. E. T, SUN Y., LAN S., et al., Barbituric acid-based magneticN-halamine nanoparticles as recyclable antibacterial agents [J]. ACS Appl. Mater.Inter.,2013,5,81258133.
    [2] Dorofeeva E. O., Elinson M. N., vereshchagina. N., et al., Electrocatalysis inMIRC reaction strategy: facile stereoselective approach to medicinally relevantspirocyclopropylbarbiturates from barbituric acids and activated olefins [J]. RSCAdv.,2012,2,4444–4452.
    [3] Giziroglu E., Aygün M., Sarikurkcu C., Synthesis, characterization and antioxidantactivity of new dibasic tridentate ligands: X-ray crystal structures of DMSOadducts of1,3-dimethyl-5-acetyl-barbituric acid o-hydroxybenzoyl hydrazonecopper (II) complex [J]. Inorg. Chem. Commun.,2013,36,199–205.
    [4] RAJPUT J. K., KAUR G., CoFe2O4nanoparticles: An efficient heterogeneousmagnetically separable catalyst for “click” synthesis of arylidene barbituric acidderivatives at room temperature [J]. Chinese J. Catal.,2013,34,1697-1704.
    [5] FAIDALLAH H. M., KHAN K. A., Synthesis and biological evaluation of newbarbituric and thiobarbituric acid fluoro analogs of benzenesulfonamides asantidiabetic and antibacterial agents [J]. J. Fluorine Chem.,2012,142,96–104.
    [6] Mahmudov K. T., Silva M. F. G., Glucini M., et al., Water-soluble heterometalliccopper (II)-sodium complex comprising arylhydrazone of barbituric acid as aligand [J]. Inorg. Chem. Commun.,2012,22,187–189.
    [7] SONG J., KONG, JANG H. J., Adsorption of heavy metal ions from aqueoussolution by polyrhodanine-encapsulated magnetic nanoparticles [J]. J. ColloidInterf. Sci.,2011,359,505–511.
    [8] WANG Y., HE J., CHEN J. W., et al., Synthesis of monodisperse, hierarchicallymesoporous, silica microspheres embedded with magnetic nanoparticles [J]. ACSAppl. Mater. Inter.,2012,4,27352742.
    [9] XU C. G., UDDIN K. M. A., SHEN X. T., et al., Photoconjugation of molecularlyimprinted polymer with magnetic nanoparticles [J]. ACS Appl. Mater. Inter.,2013,5,52085213.
    [10] LIU X. Q., GUAN Y. P., MA Z. Y., et al., Surface modification andcharacterization of magnetic polymer nanospheres prepared by miniemulsionpolymerization [J]. Langmuir.,2004,20,10278-10282.
    [11] YI D. K., LEE S. S., PAPAEFTHYMIOU G. C., et al., Nanoparticle architecturestemplated by SiO2/Fe2O3nanocomposites [J]. Chem. Mater.,2006,18,614-619.
    [12] GUAN J. G., WANG W., GONG R. Z., et al., One-step synthesis ofcobalt-phthalocyanine/iron nanocomposite particles with high magneticsusceptibility [J]. Langmuir,2002,18,4198-4204.
    [13] SEN T., SEBASTIANELLI A., BRUCE I. J., Mesoporous silicamagnetite-nanocomposite: Fabrication and applications in magneticbioseparations [J]. J. Am. Chem. Soc.,2006,128,7130-7131.
    [14] ZHANG J. L., WEI Y. G., Low-temperature synthesis of superparamagneticnanocomposite particles composed of platinum and maghemite [J]. J. Phys.Chem. C,2008,112,10688–10691.
    [15] DONG A., SUN Y., LAN S., et al., Barbituric acid-based magnetic N-halaminenanoparticles as recyclable antibacterial agents [J]. ACS Appl. Mater. Inter.,2013,5,81258133.
    [16] HUI C., SHEN C. M., TIAN J. F., et al., Core-shell Fe3O4@SiO2nanoparticlessynthesized with well-dispersed hydrophilic Fe3O4seeds [J]. Nanoscale,2011,3,701–705.
    [17] PANG H., LU Q. Y., LI Y. C., et al., Facile synthesis of nickel oxide nanotubesand their antibacterial, electrochemical and magnetic properties [J]. Chem.Commun.,2009,7542–7544.
    [18] LI Y., DING M. J., WANG S., et al., Preparation of imprinted polymers at surfaceof magnetic nanoparticles for the selective extraction of tadalafil from medicines[J]. ACS Appl. Mater. Inter.,2011,3,3308–3315.
    [19] SONG J., KONG H., JANG J., Adsorption of heavy metal ions from aqueoussolution y polyrhodanine-encapsulated magnetic nanoparticles [J]. J. ColloidInterf Sci.,2011,359,505–511.
    [20] SHIN K. Y., HONG J. Y., JANG J., Heavy metal ion adsorption behavior innitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study [J]. J.Hazard. Mater.,2011,190,36–44.
    [21] LI X. X., PAN J. M., DAI J. D., et al., Surface molecular imprinting ontomagnetic yeast composites via atom transfer radical polymerization for selectiverecognition of cefalexin [J]. Chem. Eng. J.,2012,198–199,503–511.
    [22] RANA V. K., SELVARAJ M., PARAMBADATH S., et al., Heterocyclic tri-ureaisocyanurate bridged groups modified periodic mesoporous organosilicasynthesized for Fe (III) adsorption [J]. J. Solid State Chem.,2012,194,392–399.
    [23] CHEN Z. B., SUN Y. Y., N-halamine-based antimicrobial additives for polymers:preparation, characterization, and antimicrobial activity [J]. Ind. Eng. Chem. Res.,2006,45,2634-2640.
    [24] MA Y. R., ZHANG X. L., ZENG T., et al., Polydopamine-coated magneticnanoparticles for enrichment and direct detection of small molecule pollutantscoupled with MALDI-TOF-MS [J]. ACS Appl. Mater. Inter.,2013,5,10241030.
    [25] WANG L., LI Y. H., HAN Z. D., et al., Composite structure and properties ofMn3O4/grapheme oxide and Mn3O4/grapheme [J]. J. Mater. Chem. A,2013,1,8385–8397.
    [26] ZHAO C. J., CHOU S. L., WANG Y. X., et al., A facile route to synthesizetransition metal oxide/reduced graphene oxide composites and their lithiumstorage performance [J]. RSC Adv.,2013,3,16597–16603.
    [27] YANG C. L., GUAN Y. P., XING J. M., et al., Surface functionalization andcharacterization of magnetic polystyrene microbeads [J]. Langmuir,2008,24,9006-9010.
    [28] JIA Y., LUO T., YU X. Y., et al., Synthesis of monodispersed α-FeOOH nanorodswith a high content of surface hydroxyl groups and enhanced ion-exchangeproperties towards As (V)[J]. RSC Adv.,2013,3,15805–15811.
    [29] ZHOU L., HE B. Z., HUANG J. C., One-step synthesis of robust amine-andvinyl-capped magnetic iron oxide nanoparticles for polymer grafting, dyesdsorption, and catalysis [J]. ACS Appl. Mater. Inter.,2013,5,86788685.
    [30] ISHPALA, PANWARA O. S., KUMAR M., et al., X-ray photoelectronspectroscopic study of nitrogen incorporated amorphous carbon films embeddedwith nanoparticles [J]. Appl. Surf. Sci.,2010,256,7371–7376.
    [31] ZHANG Y. T., LI L. L., MA W. F., et al., Two-in-one strategy for efectiveenrichment of phosphopeptides using magnetic mesoporous γ-Fe2O3nanocrystalclusters [J]. ACS Appl. Mater. Inter.,2013,5,614621.
    [32] REN Y., ABBOOD H. A., HE F. B., et al., Magnetic EDTA-modifiedchitosan/SiO2/Fe3O4adsorbent: Preparation,characterization, and application inheavy metal adsorption [J]. Chem. Eng. J.,2013,226,300–311.
    [33] SITKO R., TUREK E., ZAWISZA B., et al., Adsorption of divalent metal ionsfrom aqueous solutions using graphene oxide [J]. Dalton T.,2013,42,5682–5689.
    [34] MAHAPATRA A., MISHRA B. G., HOTA G., Electrospun Fe2O3–Al2O3nanocomposite fibers as efficient adsorbent for removal of heavy metal ions fromaqueous solution [J]. J. Hazard. Mater.,2013,258–259,116–123.
    [35] KARAMI H., Heavy metal removal from water by magnetite nanorods [J]. Chem.Eng. J.,2013,219,209–216.
    [36] KUMAR K. Y., MURALIDHARA H. B., Arthoba Nayaka, et al., Low-costsynthesis ofmetal oxide nanoparticles and their application in adsorption ofcommercial dye and heavy metal ion in aqueous solution [J]. Powder Technol.,2013,246,125–136.
    [37] MAHMOUD H. R., EI-MOLLA S. A., Saif, Improvement of physicochemicalproperties of Fe2O3/MgO nanomaterials by hydrothermal treatment for dyeremoval from industrial wastewater [J]. Powder Technol.,2013,249,225–233.
    [38] LIU L., LIU S. X., ZHANG Q. P., et al., Adsorption of Au (III), Pd (II), and Pt(IV) from aqueous solution onto graphene oxide [J]. J. Chem. Eng. Data,2013,58,209-216.
    [1] JALIL A. A., TRIWAHYONO S., ADAM S. H., et al., Adsorption of methylorange from aqueous solution onto calcined Lapindo volcanic mud [J]. J. Hazard.Mater.,2010,181,755762.
    [2] MOHANTA O., SINGHBABU Y. N., GIRI S. K., et al., Degradation of Congo redpollutants using microwave derived SrFe12O19: An efficient magneticphotocatalyst under visible light [J]. J. Alloys Compd.,2013,564,7883.
    [3] CHEN L. C., TSAI F. R., HUANG C. M., Photocatalytic decolorization of methylorange in aqueous medium of TiO2and Ag-TiO2immobilized on γ-Al2O3[J]. J.Photoch. Photobio. A,2005,170,7–14.
    [4] ARSHADI M., VAHID F. S., SALVACION J. W. L., A practical organometallicdecorated nano-size SiO2-Al2O3mixed-oxides for methyl orange removal fromaqueous solution [J]. Appl. Surf. Sci.,2013,280,726–736.
    [5] CHEN M., DING W. H., WANG J., et al., Removal of azo dyes from water bycombined techniques of adsorption, desorption, and electrolysis based on asupramolecular sorbent [J]. Ind. Eng. Chem. Res.,2013,52,24032411.
    [6] HU J. C., SONG Z., CHEN L. F., Adsorption properties of MgO (111) nanoplatesfor the dye pollutants from wastewater [J]. J. Chem. Eng. Data,2010,55,3742–3748.
    [7] TIAN P., HAN X. Y., NING G. L., Synthesis of porous hierarchical MgO and itssuperb adsorption properties [J]. ACS Appl. Mater. Inter.,2013,5,1241112418.
    [8] YAO K., GONG J., ZHENG J., et al., Catalytic carbonization of chlorinatedpoly(vinyl chloride) microfibers into carbon microfibers with high performance inthe photodegradation of congo red [J]. J. Phys. Chem. C,2013,117,1701617023.
    [9] ZHOU L., GAO C., XU W. J., et al., Magnetic dendritic materials for highlyefficient adsorption of dyes and drugs [J]. ACS Appl. Mater. Inter.,2010,2,1483–1491.
    [10] PENG S., MENG H., OUYANG Y., et al., Nanoporous magneticcellulose chitosan composite microspheres: Preparation, characterization, andapplication for Cu (II) adsorption [J]. Ind. Eng. Chem. Res.,2014,53,21062113.
    [11] PARIDA K. M., SAHU S., REDDY K. H., et al., A Kinetic, Thermodynamic, andmechanistic approach toward adsorption of methylene blue over water-washedmanganese nodule leached residues [J]. Ind. Eng. Chem. Res.,2011,50,843–848.
    [12] CHATTERJEE D., PATNAM V. R., SIKDAR A., Removal of some commontextile dyes from aqueous solution using fly ash, J. Chem. Eng. Data,2010,55,5653–5657.
    [13] SINGHA K. P., GUPTAA S., SINGH A. K., et al., Experimental design andresponse surface modeling for optimization of Rhodamine B removal from waterby magnetic nanocomposite [J]. Chem. Eng. J.,2010,165,151–160.
    [14] ZHANG J., GONDAL M. A., WEI W., Preparation of room temperatureferromagnetic BiFeO3and its application as an highly efficient magneticseparable adsorbent for removal of Rhodamine B from aqueous solution [J]. J.Alloy. Compd.,2012,530,107–110.
    [15] REN T., SI Y., YANG J. M., et al., Polyacrylonitrile/polybenzoxazine-basedFe3O4@carbon nanofibers: Hierarchical porous structure and magneticadsorption property [J]. J. Mater. Chem.,2012,22,15919–15927.
    [16] CHENG B., LE Y., CAI W. Q., Synthesis of hierarchical Ni(OH)2and NiOnanosheets and their adsorption kinetics and isotherms to Congo red in water [J].J. Hazard. Mater.,2011,185,889–897.
    [17] CAI W. Q., YU J. G., JARONIEC M., Template-free synthesis of hierarchicalspindle-like γ-Al2O3materials and their adsorption affinity towards organic andinorganic pollutants in water [J]. J. Mater. Chem.,2010,20,45874594.
    [18] ABBASI S. M., NEMATI A., RASHIDI A., et al., Microstructural features ofnanocomposite of alumina@carbon nanotubes/alumina nanoparticles synthesizedby a solvothermal method [J]. Ceram. Int.,2012,38,39913998.
    [19] WEN X. Y., LI C. T., FAN X. P., et al., Experimental study of gaseous elementalmercury removal with CeO2/γ-Al2O3[J]. Energy Fuels,2011,25,29392944.
    [20] WANG Y. Q., CHENG R. M., WEN Z., et al., Facile preparation of Fe3O4nanoparticles with cetyltrimethylammoniumbromide (CTAB) assistant and astudy of its adsorption capacity [J]. Chem. Eng. J.,2012,181–182,823827.
    [21] WANG S. L., LI P. G., ZHU H. W., et al., Controllable synthesis andphotocatalytic property of uniform CuO/Cu2O composite hollow microspheres[J]. Powder Technol.,2012,230,4853.
    [22] SUN X. M., LI Y. D., Hollow carbonaceous capsules from glucose solution [J]. J.Colloid Interf. Sci.,2005,291,7–12.
    [23] SUN X. M., LI Y. D., Colloidal carbon spheres and their core/shell structureswith noble-metal nanoparticles [J]. Angew. Chem. Int. Ed.,2004,43,597–601.
    [24] SUN X. M., LI Y. D., Ga2O3and GaN Semiconductor Hollow Spheres [J].Angew. Chem. Int. Ed.,2004,43,3827–3831.
    [25] HE X. D., LIU Y., LI H. T., et al., Photoluminescent Fe3O4/carbonnanocomposite with magnetic property [J]. J. Colloid Interf. Sci.,2011,356,107110.
    [26] MENG J. R., SHI C. Y., WEI B. W., et al., Preparation of Fe3O4@C@PANImagnetic microspheres for the extraction and analysis of phenolic compounds inwater samples by gas chromatography-mass spectrometry [J]. J. Chromatogr. A,2011,1218,28412847.
    [27] XU P., WANG H., TONG R., et al., Preparation and morphology of SiO2/PMMAnanohybrids by microemulsion polymerization [J]. Colloid. Polym. Sci.,2006,284,755762.
    [28] LI G. C., LIU Y. Q., LIU C. G., Solvothermal synthesis of gamma aluminas andtheir structural evolution [J]. Microporous Mesoporous Mater.,2013,167,137145.
    [29] RENUKA N. K., SHIJINA A. V., PRAVEEN A. K., Mesoporous γ-aluminananoparticles: Synthesis, characterization and dye removal efficiency [J]. Mater.Lett.,2012,82,4244.
    [30] LIU R. J., LI Y. J., ZHAO H., et al, Synthesis and characterization of Al2O3hollow spheres [J]. Mater. Lett.,2008,62,25932595.
    [31] ALI S. D., HUSSAIN S. T., GILANI S. R., Synthesis, characterization andmagnetic properties of carbon nanotubesdecorated with magnetic MIIFe2O4nanoparticles [J]. Appl. Surf. Sci.,2013,271,118124.
    [32] ZHOU J. B., WANG L., ZHANG Z., et al., Facile synthesis of alumina hollowmicrospheres via trisodium citrate-mediated hydrothermal process and theiradsorption performances for p-nitrophenol from aqueous solutions [J]. J. ColloidInterf. Sci.,2013,394,509514.
    [33] SU X. H., CHEN S. F., ZHOU Z. J., Synthesis and characterization ofmonodisperse porous α-Al2O3nanoparticles [J]. Appl. Surf. Sci.,2012,258,57125715.
    [34] LIU M. Z., YANG H. M., Facile synthesis and characterization ofmacro-mesoporous γ-Al2O3[J]. Colloids Surf. A,2010,371,126130.
    [35] TASHIMA D., YAMAMOTO E., KAI N., et al., Double layer capacitance ofhigh surface area carbon nanospheres derived from resorcinol-formaldehydepolymers [J]. Carbon.,2011,49,48484857.
    [36] PELEKANI C., SNOEYINK V. L., A kinetic and equilibrium study ofcompetitive adsorption between atrazine and Congo red dye on activated carbon:The importance of pore size distribution [J]. Carbon.,2001,39,2537.
    [37] RINALDI R., FUJIWARA F. Y., H LDERICH W., et al., Tuning the acidicproperties of aluminas via sol-gel synthesis: new findings on the active site ofalumina-catalyzed epoxidation with hydrogen peroxide [J]. J. Catal.,2006,244,92101.
    [38] ZHANG Y. X., JIA Y., JIN Z., et al., Self-assembled, monodispersed, flower-likeγ-AlOOH hierarchical superstructures for efficient and fast removal of heavymetal ions from water [J]. Cryst. Eng. Comm.,2012,14,30053007.
    [39] LI G. C., GUAN L. I., LIU Y. Q., et al., Template-free solvothermal synthesis of3D hierarchical nanostructured boehmite assembled by nanosheets [J]. J. Phys.Chem. Solids.,2012,73,10551060.
    [40] CAI W., YU J., GU S., et al., Facile hydrothermal synthesis of hierarchicalboehmite: Sulfate-mediated transformation from nanoflakes to hollowmicrospheres [J]. Cryst. Growth Des.,2010,10,39773982.
    [41] KIM T., LIAN J. B., J MA. M., et al., Morphology controllable synthesis ofγ-alumina nanostructures via an ionic liquid-assisted hydrothermal route [J].Cryst. Growth Des.,2010,10,29282933.
    [42] CHENG B., LE Y., CAI W., et al., Synthesis of hierarchical Ni(OH)2and NiOnanosheets and their adsorption kinetics and isotherms to Congo red in water [J].J. Hazard. Mater.,2011,185,889897.
    [43] MITTAL A., MITTAL J., MALVIYA A., et al., Adsorptive removal of hazardousanionic dye ‘‘Congo red” from wastewater using waste materials and recovery bydesorption [J]. J.Colloid Interf. Sci.,2009,340,1626.
    [44] VIMONSES V., LEI S., JIN B., et al., Kinetic study and equilibrium isothermanalysis of Congo red adsorption by clay materials [J]. Chem. Eng. J.,2009,148,354364.
    [45] ZHANG L., LI N., FAN P., et al., Rapid and selective separation of iridium ionsfrom aqueous solutions using nano-Al2O3[J]. Hydrometallurgy,2012,127128,8-15.
    [46] SZCZEPANIAK W., KOSCIELNA H., Specific adsorption of halogen anions onhydrous γ-Al2O3[J]. Anal. Chim. Acta,2002,470,263276.
    [47] GERCEL., ZCAN A., ZCAN A. S., et al., Preparation of activated carbonfrom a renewable bio-plant of euphorbia rigida by H2SO4activation and itsadsorption behavior in aqueous solutions [J]. Appl. Surf. Sci.,2007,253,48434852.
    [48] HUANG Y. H., HSUEH C. L., HUANG C. P.,et al., Adsorption thermodynamicand kinetic studies of Pb (II) removal from water onto a versatileAl2O3-supported iron oxide [J]. Sep. Purif. Technol.,2007,55,2329.
    [1] THIRUMAVALAVAN M., YANG F. M., LEE J. F., Investigation of preparationconditions and photocatalytic efficiency of nano ZnO using differentpolysaccharides [J]. Environ. Sci. Pollut. R.,2013,20,5654-5664.
    [2] REDDY P. M. K., SUBRAHMANYAM C., Green approach for wastewatertreatment degradation and mineralization of aqueous organic pollutants bydischarge plasma [J]. Ind. Eng. Chem. Res.,2012,51,11097-11103.
    [3] MOHANTA O., SINGHBABU Y. N., GIRI S. K., et al., Degradation of congo redpollutants using microwave derived SrFe12O19: An efficient magneticphotocatalyst under visible light [J]. J. Alloy. Compd.,2013,564,78-83.
    [4] MITTAL A., MALVIYA A., KAUR D., Studies on the adsorption kinetics andisotherms for the removal and recovery of Methyl Orange from wastewaters usingwaste materials [J]. J. Hazard. Mater.,2007,148,229–240.
    [5] LI Y. J., LI X. D., LI J. W., Photocatalytic degradation of methyl orange byTiO2-coated activated carbon and kinetic study [J]. Water Res.,2006,40,1119–1126.
    [6] MOAfi H. F., ZANJANCHI M. A., SHOJAIE A. F., Tungsten-doped ZnOnanocomposite: Synthesis, characterization, and highly active photocatalysttoward dye photodegradation [J]. Mater. Chem. Phys.,2013,139,856-864.
    [7] PENG Y., QIN S. C., WANG W. S., et al., Fabrication of porous Cd-doped ZnOnanorods with enhanced photocatalytic activity and stability [J]. CrystEngComm.,2013,15,6518-6525.
    [8] CHEN C. P., GUNAWAN P., XU R., et al., Self-assembled Fe3O4-layered doublehydroxide colloidal nanohybrids with excellent performance for treatment oforganic dyes in water [J]. J. Mater. Chem.,2011,21,1218–1225.
    [9] LIAO D. L., BADOUR C. A., LIAO B. Q., Preparation of nanosized TiO2/ZnOcomposite catalyst and its photocatalytic activity for degradation of methyl orange[J]. J. Photoch. Photobio. A,2008,194,11–19.
    [10] MOVAHEDI M., MAHJOUB A. R., JANITABAR-DARZI S., Photodegradationof congo red in aqueous solution on ZnO as an alternative catalyst to TiO2[J]. J.Iran. Chem. Soc.,2009,6,570-577.
    [11] LU B. F., CAI W. P., ZHANG Y. G., ZnO hierarchical micro/nanoarchitectures:solvothermal synthesis and structurally enhanced photocatalytic performance [J].Adv. Funct. Mater.,2008,18,1047–1056.
    [12] LU H. B., WANG S. M., ZHAO L., Hierarchical ZnO microarchitecturesassembled by ultrathin nanosheets: Hydrothermal synthesis and enhancedphotocatalytic activity [J]. J. Mater. Chem.,2011,21,4228–4234.
    [13] WAN L. J., WANG X. Y., YAN S. C., et al., ZnO plates synthesized from theammonium zinc nitrate hydroxide precursor [J]. CrystEngComm.,2012,14,154-159.
    [14] R SARAVANAN., KARTHIKEYAN N., GUPTA V. K., et al., ZnO/Agnanocomposite: An efficient catalyst for degradation studies of textile effluentsunder visible light [J]. Mater. Sci. Eng. C,2013,33,2235-2244.
    [15] Sánchez F. A. L., Takimi A. S., Rodembusch F. S., et al., Photocatalytic activityof nanoneedles, nanospheres, and polyhedral shaped ZnO powders in organicdye degradation processes [J]. J. Alloy. Compd.,2013,572,68-73.
    [16] LI S. J., MA Z., ZHANG J., et al., A comparative study of photocatalyticdegradation of phenol of TiO2and ZnO in the presence of manganese dioxides[J]. Catal. Today,2008,139,109–112.
    [17] DANESHVAR N., SALARI D., KHATAEE A. R., Photocatalytic degradation ofazo dye acid red14in water on ZnO as an alternative catalyst to TiO2[J]. J.Photoch. Photobio. A,2004,162,317–322.
    [18] LI X. F., LV K. L., DENG K. J., Synthesis and characterization of ZnO and TiO2hollow spheres with enhanced photoreactivity [J]. Mater. Sci. Eng. B,2009,158,40–47.
    [19] Sun X. M., Li Y. D., Ga2O3and GaN semiconductor hollow spheres [J]. Angew.Chem. Int. Ed.,2004,43,3827–3831.
    [20] GIRI A. K., SINHAMAHAPATRA A., PRAKASH S., et al., Porous ZnOmicrotubes with excellent cholesterol sensing and catalytic properties [J]. J.Mater. Chem. A,2013,1,814-822.
    [21] HU Q., TONG G. X., WU W. H., et al., Selective preparation and enhancedmicrowave electromagnetic characteristics of polymorphous ZnO architecturesmade from a facile one-step ethanediamine-assisted hydrothermal approach [J].CrystEngComm.,2013,15,1314-1323.
    [22] XU Z. H., GAO Y., LIU T., et al., General and facile method to fabricate uniformY2O3:Ln3+(Ln3+=Eu3+, Tb3+) hollow microspheres using polystyrene spheres astemplates [J]. J. Mater. Chem.,2012,22,21695-21703.
    [23] ANIRUDHAN T. S., REJEENA S. R., BINUSREE J., Adsorptive separation ofmyoglobin from aqueous solutions using iron oxide magnetic nanoparticlesmodified with functionalized nanocrystalline cellulose [J]. J. Chem. Eng. Data,2013,58,1329-1339.
    [24] SUDHA M., SENTHILKUMAR S., HARIHARAN R., et al., Synthesis,characterization and study of photocatalytic activity of surface modified ZnOnanoparticles by PEG capping [J]. J. Sol-Gel Sci. Techn.,2013,65,301-310.
    [25] GIRI A. K., SINHAMAHAPATRA A., PRAKASH S., et al., Porous ZnOmicrotubes with excellent cholesterol sensing and catalytic properties [J]. J.Mater. Chem. A,2013,1,814-822.
    [26] YU H. F., CHOU H. Y., Preparation and characterization of dispersivecarbon-coupling ZnO photocatalysts [J]. Powder Technol.,2013,233,201-207.
    [27] YING Y. L., SONG T., HUANG H. W., et al., Nanoporous ZnO nanostructuresfor photocatalytic degradation of organic pollutants [J]. Appl. Phys. A,2013,110,351-359.
    [28] LI G. C., GUAN L. L., LIU Y. Q., et al., Template-free solvothermal synthesis of3D hierarchical nanostructured boehmite assembled by nanosheets [J]. J. Phys.Chem. Solids,2012,73,1055-1060.
    [29] ZHANG Y. X., JIA Y., JIN Z., et al., Self-assembled, monodispersed,flower-like-AlOOH hierarchical superstructures for efficient and fast removal ofheavy metal ions from water [J]. CrystEngComm.,2012,14,3005-3007.
    [30] ZHANG P., MA X., GUO Y., et al., Size-controlled synthesis of hierarchical NiOhollow microspheres and the adsorption for Congo red in water [J]. Chem. Eng.J.,2012,189-190,188-195.
    [31] LU H. B., WANG S. M., ZHAO L., et al., Hierarchical ZnO microarchitecturesassembled by ultrathin nanosheets: Hydrothermal synthesis and enhancedphotocatalytic activity [J]. J. Mater. Chem.,2011,21,4228-4234.
    [32] J SIN. C., LAM S. M., LEE K. T., et al., Self-assembly fabrication of ZnOhierarchical micro/nanospheres for enhanced photocatalytic degradation ofendocrine-disrupting chemicals [J]. Mat. Sci. Semicon. Proc.,2013,16,1542-1550.
    [33] ANSARI S. A., KHAN M. M., KALATHIL S., et al., Oxygen vacancy inducedband gap narrowing of ZnO nanostructures by an electrochemically activebiofilm [J]. Nanoscale,2013,5,9238-9246.
    [34] LI G. R., HU T., PAN G. L., et al., Morphology function relationship of ZnO:Polar planes, oxygen vacancies, and activity [J]. J. Phys. Chem. C,2008,112,11859-11864.
    [35] ZHANG Y. N., FAN H. Q., LI M. M., et al., Ag/BiPO4heterostructures:Synthesis, characterization and their enhanced photocatalytic properties [J].Dalton Trans.,2013,42,13172-13178.
    [36] SHUKLA P. R., WANG S. B., SUN H. Q., et al., Activated carbon supportedcobalt catalysts for advanced oxidation of organic contaminants in aqueoussolution [J]. Appl. Catal. B,2010,100,529-534.
    [37] Logar M., ocjana. K, Dakskobler A., Photocatalytic activity of nanostructuredγ-Al2O3/TiO2composite powder formed via a polyelectrolyte-multilayer-assistedsol–gel reaction [J]. Mater. Res. Bull.,2012,47,12-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700