用户名: 密码: 验证码:
肺炎链球菌中0-连接的糖基转移酶GtfA及其激活子GtfB的结构和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质O-G1cNAc糖基化修饰是一种重要的翻译后修饰形式,其在真核生物的生命过程中从基因转录、蛋白的定位、细胞内外信号调控到细胞的生长与分化、细胞间相互识别、细胞黏附、免疫保护等诸多过程中都发挥着至关重要的作用。近期的一些研究表明,O-G1cNAcylation与很多重大的慢性疾病也存在非常紧密的联系,包括糖尿病、心血管疾病、神经退行性疾病以及癌症等等。在原核生物中,特别是一些重要的人类致病菌中,发现细菌糖蛋白的O-G1cNAc修饰与其生理学和病理学过程存在着密切的联系。到目前为止,人们在结构上只鉴定出一种负责催化该类型修饰的糖基转移酶O-G1cNAc transferases (OGTs),它们具有共同的结构模式,通常N-端是由多个典型的(tetratricopeptide repeats, TPRs)34肽重复序列组成反平行的全a-螺旋结构域,而C-端具有扭曲的GT-B折叠类型的糖基转移酶核心结构域。
     近些年来,在革兰氏阳性致病菌中发现一类重要的高度糖基化的黏附蛋白serine-rich repeat glycoproteins (SRRPs),它们对致病菌的黏附、免疫逃逸、增殖、生物被膜的形成以及毒理发挥过程起着关键作用。在对SRRPs糖基化修饰过程的研究中,发现了一类与众不同的OGT复合体,它负责对受体SRRP蛋白进行第一步的O-G1cNAc修饰。在肺炎链球菌中,这类OGT复合体由GtfA和GtfB两个蛋白组成,它们以UDP-G1cNAc为糖基供体,实现将G1cNAc糖基转移至肺炎链球菌中的SRRP蛋白PsrP蛋白上。
     在研究中,我们在对GtfA、GtfB单独及两者之间的复合物进行了晶体学研究过程中,分别获得了衍射分辨率为2A的GtfA与UDP和G1cNAc共结晶的晶体,7A的GtfB晶体和4.5A的GtfA-GtfB复合物与产物UDP和G1cNAc共结晶的晶体。目前,已经解析了GtfA添加产物UDP和G1cNAc的复合物品体结构,发现GtfA核心结构具有经典的GT-B折叠类型,N-端由10个反平行的β-折叠片组成一个新型折叠类型的β-meader "add-on" DUF1975结构域。这种新型结构组合模式与以往单纯采用经典的GT-B折叠类型的糖基转移酶,目前己知的TPR和GT-B组合模式的hOGT/XcOGT,乃至于具有‘'add-on"结构域的GT-B折叠类型的糖基转移酶结构都存在着显著差异。我们基于结构和生化实验证实了DUF1975结构域是一种新型的蛋白相互作用模块,它对受体蛋白的识别结合及糖基化修饰功能的完成是必不可少的。对GtfA的活性位点分析发现它采用Retaining糖基转移酶所特有的结构特点,并进而鉴定了参与糖基转移酶催化活性的关键残基。通过体外糖基转移酶活性测定进行催化活性测定证明了只有完整的GtfA-GtfB复合物才具有真正的OGT活性,而关键位点的点突变会造成活性的完全丧失。进而,通过质谱分析鉴定了完全糖基化修饰后的受体SRR1,我们发现GtfA-GtfB是一类对多位点丝氨酸具有特异修饰能力的OGT。最终,基于GtfA的结构和分子模拟结果,我们提出了O-G1cNAc糖基化修饰过程中GtfA与受体可能的相互作用方式和催化机制,并基于模型进行了一系列的体内和体外糖基转移酶活性的验证,证明了模型的可信性和合理性。
     综上所述,我们对GtfA-GtfB复合体在结构和酶学功能方面的研究,揭示了原核中一类参与蛋白质糖基化修饰的新型Retaining OGT;其对丝氨酸具有特异性,而且能实现连续的多位点丝氨酸的O-G1cNAc修饰;并在酶学分类上将这类OGT分类到EC2.4.1.255类别中;另外,通过体外生化和微生物体内验证分子模型的可信性,提出可能的受体结合模式和酶的反应机制。我们对这类OGT结构和功能方面的研究有望为治疗和预防革兰氏阳性致病菌感染的新型药物或疫苗开发和设计提供理论基础。
Protein glycosylation catalyzed by the O-G1cNAc transferase (OGT) plays a critical role in various biological processes in not only eukaryotes but also prokaryotes. In human, aberrant O-GlcNAcylations are correlated with many challenging diseases, including diabetes, cardiovascular disease, neurodegenerative diseases and cancer. Whereas, the O-GlcNAcylation of glycoprotein in bacteria is closely related with the physiology and pathogenesis, especially for the pathogenic bacterial strains.
     Notably, serine-rich repeat glycoproteins (SRRPs) that exclusively exist in Gram-positive pathogens are a large family of surface adhesins, which are important for bacterial adhesion, immune evasion, colonization, biofilm formation and virulence. It was identified an enzyme complex, O-GlcNAc transferase (termed OGT) GtfA and its partner GtfB from Streptococcus pneumoniae, is required for the initial step of glycosylation of the serine-rich repeat protein (PsrP) by transferring the GlcNAc residue from UDP-GlcNAc to PsrP.
     In this manuscript, we determined the crystal structure of GtfA in complex with GlcNAc and UDP at2.0A resolution. The GtfA structure comprises a core structure of GT-B fold and a β-meander "add-on" DUF1975domain, which reveals a novel structure of a twisted10-stranded antiparallel β-sheet for the first time. Despite of the distinct structure from the all-a tetratricopeptide repeat (TPR) units of only two structure-known OGTs (hOGT and XcOGT), DUF1975also plays a role in acceptor binding or recognition. The in vitro and in vivo O-GlcNAcylation assays proved that DUF1975domain of GtfA involves the recognition of the acceptor PsrP and its co-activator GtfB; thus is critical for the intact OGT activity. Further glycoproteomic analyses revealed that the intact GtfA-GtfB complex was specific to modify the serine residues of PrsP, and all serine could be O-GlcNAcylated. Furthermore, in order to elucidate the mechanism of PrsP O-GlcNAcylation, we also crystallized Apo GtfB as well as GtfA-GtfB complex in UDP and GlcNAc binding form which diffracted to7.0and4.5respectivly. At the meantime, a docking model of GtfA with the N-terminal18-residue peptide of the first serine-rich repeat region (SRR1) of PsrP was performed, suggesting a rational retaining catalytic mechanism that is distinguished from two structure-known inverting OGTs.
     Take together, our structural and biochemical study provides insights into a novel retaining O-GlcNAc transferase complex GtfA-GtfB. We are firstly unraveled the catalytic subunit GtfA structurally, and identified a novel β-meander "add-on" DUF1975domain, which is a mediator essential to protein interaction or recognition. In addition, we are firstly elucidated GtfA-GtfB is a serine-specific OGT, despite adopting a core structure of GtfA similar to that in the GT4family, GtfA belongs to EC2.4.1.255according to the catalytic activity. Our results provide a structural basis for the rational design of therapeutic drugs and new vaccine against pneumococcal related diseases.
引文
Adams PD, Afonine PV, Bunkoczi G, et al (2010) PHENIX:a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213-221
    Alderwick LJ, Lloyd GS, Ghadbane H, et al (2011) The C-terminal domain of the Arabinosyltransferase Mycoiacterium tuberculosis EmbC is a lectin-like carbohydrate binding module. PLoS Pathog 7:e1001299
    Bensing BA, Lopez JA, Sullam PM (2004) The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibalpha. Infect Immun 72:6528-6537
    Benz I, Schmidt MA (2002) Never say never again:protein glycosylation in pathogenic bacteria. Molecular Microbiology 45:267-276
    Breton C, Fournel-Gigleux S, Palcic MM (2012) Recent structures, evolution and mechanisms of glycosyltransferases. Current Opinion in Structural Biology 22:540-549
    Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R-37R
    Brodersen DE, de La Fortelle E, Vonrhein C, et al (2000) Applications of single-wavelength anomalous dispersion at high and atomic resolution. Acta Crystallogr D Biol Crystallogr 56: 431-441
    Bu S, Li Y, Zhou M, Azadin P, et al (2008) Interaction between two putative glycosyltransferases is required for glycosylation of a serine-rich streptococcal adhesin. J Bacteriol 190:1256-1266
    Buschiazzo A, Ugalde JE, Guerin ME, Shepard W, Ugalde RA, Alzari PM (2004) Crystal structure of glycogen synthase:homologous enzymes catalyze glycogen synthesis and degradation. The EMBO Journal 23:3196-3205
    Chen Q, Chen Y, Bian C, et al (2013) TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493:561-564
    Cheung WD, Sakabe K, Housley MP, et al (2008) O-linked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins. The Journal of Biological Chemistry 283:33935-33941
    Cipolla L, Araujo AC, Bini D, et al (2010) Discovery and design of carbohydrate-based therapeutics. Expert Opinion on Drug Discovery 5:721-737
    Clarke AJ, Hurtado-Guerrero R, Pathak S, et al (2008) Structural insights into mechanism and specificity of O-GlcNAc transferase. The EMBO Journal 27:2780-2788
    Collaborative Computational Project N (1994) The CCP4 suite:programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760-763
    Cottee MA, Muschalik N, Wong YL, et al (2013) Crystal structures of the CPAP/STIL complex reveal its role in centriole assembly and human microcephaly. eLife 2:e01071
    Coutinho PM, Deleury E, Davies GJ, et al (2003) An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology 328:307-317
    Cowtan K (2006) The Buccaneer software for automated model building.1. Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:1002-1011
    Davis I, Leaver-Fay A, Chen V, et al (2007) MolProbity:all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375-383
    DeLano W (2002) The PyMOL molecular graphics system. San Carlos CA:De Lano Scientific
    Dias WB, Cheung WD, Wang Z, Hart GW (2009) Regulation of calcium/calmodulin-dependent kinase IV by O-GlcNAc modification. The Journal of Biological Chemistry 284:21327-21337
    Drickamer K, Taylor ME (1998) Evolving views of protein glycosylation. Trends in Biochemical Sciences 23:321-324
    Emsley P, Cowtan K (2004) Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126-2132
    Fritz TA, Raman J, Tabak LA (2006) Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. The Journal of Biological Chemistry 281:8613-8619
    Fujiki R, Hashiba W, Sekine H, et al (2011) GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480:557-560
    Gibson RP, Tarling CA, Roberts S, et al (2004) The donor subsite of trehalose-6-phosphate synthase:binary complexes with UDP-glucose and UDP-2-deoxy-2-fluoro-glucose at 2 A resolution. The Journal of Biological Chemistry 279:1950-1955
    Gomez H, Polyak I, Thiel W, et al (2012) Retaining glycosyltransferase mechanism studied by QM/MM methods:lipopolysaccharyl-alpha-1,4-galactosyltransferase C transfers alpha-galactose via an oxocarbenium ion-like transition state. Journal of the American Chemical Society 134:4743-4752
    Greenwald J, Nader M, Celia H, et al (2009) FpvA bound to non-cognate pyoverdines:molecular basis of siderophore recognition by an iron transporter. Mol Microbiol 72:1246-1259
    Guerin ME, Kordulakova J, Schaeffer F, et al (2007) Molecular recognition and interfacial catalysis by the essential phosphatidylinositol mannosyltransferase PimA from mycobacteria. The Journal of Biological Chemistry 282:20705-20714
    Handley PS, Correia FF, Russell K, et al (2005) Association of a novel high molecular weight, serine-rich protein (SrpA) with fibril-mediated adhesion of the oral biofilm bacterium Streptococcus cristatus. Oral Microbiology and Immunology 20:131-140
    Hao Q, Gu YX, Zheng CD, Fan HF (2000) OASIS:a computer program for breaking phase ambiguity in one-wavelength anomalous scattering or single isomorphous substitution (replacement) data. J Appl Crystallogr 33:980-981
    Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017-1022
    Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation:roles in signaling, transcription, and chronic disease. Annual Review of Biochemistry 80:825-858
    Holm L, Sander C (1993) Protein structure comparison by alignment of distance matrices. J Mol Biol 233:123-138
    Hu Y, Chen L, Ha S, Gross B, Falcone B, et al (2003) Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc Natl Acad Sci U S A100:845-849
    Ihara H, Ikeda Y, Toma S, et al (2007) Crystal structure of mammalian alphal,6-fucosyltransferase, FUT8. Glycobiology 17:455-466
    Imai S, Ito Y, Ishida T, Hirai T, et al (2011) Distribution and clonal relationship of cell surface virulence genes among Streptococcus pneumoniae isolates in Japan. Clinical Microbiology and Infection:the official publication of the European Society of Clinical Microbiology and Infectious Diseases 17:1409-1414
    Iwashkiw JA, Vozza NF, Kinsella RL, et al (2013) Pour some sugar on it:the expanding world of bacterial protein O-linked glycosylation. Molecular Microbiology 89:14-28
    Iyer SP, Akimoto Y, Hart GW (2003) Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. The Journal of Biological Chemistry 278:5399-5409
    Iyer SP, Hart GW (2003) Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. The Journal of Biological Chemistry 278:24608-24616
    Jinek M, Rehwinkel J, Lazarus BD, et al (2004) The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nature Structural & Molecular Biology 11:1001-1007
    Kakuta Y, Okino N, Kajiwara H, et al (2008) Crystal structure of Vibrionaceae Photobacterium sp. JT-ISH-224 alpha2,6-sialyltransferase in a ternary complex with donor product CMP and acceptor substrate lactose:catalytic mechanism and substrate recognition. Glycobiology 18: 66-73
    Kawai F, Grass S, Kim Y, et al (2011) Structural insights into the glycosyltransferase activity of the Actinobacillus pleuropneumoniae HMW1C-like protein. The Journal of Biological Chemistry 286:38546-38557
    King NP, Beatson SA, Totsika M, et al (2011) UafB is a serine-rich repeat adhesin of Staphylococcus saprophyticus that mediates binding to fibronectin, fibrinogen and human uroepithelial cells. Microbiology 157:1161-1175
    Kreppel LK, Hart GW (1999) Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. The Journal of Biological Chemistry 274:32015-32022
    Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases:structures, functions, and mechanisms. Annual Review of Biochemistry 77:521-555
    Laskowski R, Macarthur M, Moss D, Thornton J (1993) Procheck-a Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 26:283-291
    Lazarus BD, Love DC, Hanover JA (2006) Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates. Glycobiology 16:415-421
    Lazarus MB, Jiang J, Gloster TM, et al (2012) Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nature Chemical Biology 8:966-968
    Lazarus MB, Nam Y, Jiang J, et al (2011) Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469:564-567
    Lizcano A, Sanchez CJ, Orihuela CJ (2012) A role for glycosylated serine-rich repeat proteins in gram-positive bacterial pathogenesis. Molecular Oral Microbiology 27:257-269
    Lu W, Leimkuhler C, Gatto GJ, Jr., et al (2005) AknT is an activating protein for the glycosyltransferase AknS in L-aminodeoxysugar transfer to the aglycone of aclacinomycin A. Chem Biol 12:527-534
    Makabe K, McElheny D, Tereshko V, et al (2006) Atomic structures of peptide self-assembly mimics. Proc Natl Acad Sci U S A 103:17753-17758
    Martinez-Fleites C, Macauley MS, He Y, et al (2008) Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nature Structural & Molecular Biology 15:764-765
    Martinez-Fleites C, Proctor M, Roberts S, et al (2006) Insights into the synthesis of lipopolysaccharide and antibiotics through the structures of two retaining glycosyltransferases from family GT4. Chem Biol 13:1143-1152
    Marz P, Stetefeld J, Bendfeldt K, Nitsch C, et al (2006) Ataxin-10 interacts with O-linked beta-N-acetylglucosamine transferase in the brain. The Journal of Biological Chemistry 281:20263-20270
    Matsuura A, Ito M, Sakaidani Y, Kondo T, et al (2008) O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. The Journal of Biological Chemistry 283: 35486-35495
    Munoz-Almagro C, Selva L, Sanchez CJ, et al (2010) PsrP, a protective pneumococcal antigen, is highly prevalent in children with pneumonia and is strongly associated with clonal type. Clin Vaccine Immunol 17:1672-1678
    Murshudov. GN, Vagin. AA, Dodson. EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240-255
    Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria:sweeter than ever. Nature Rreviews Microbiology 8:765-778
    Obert C, Sublett J, Kaushal D, et al (2006) Identification of a Candidate Streptococcus pneumoniae core genome and regions of diversity correlated with invasive pneumococcal disease. Infect Immun 74:4766-4777
    Orihuela CJ (2009) Role played by psrP-secY2A2 (accessory region 34) in the invasive disease potential of Streptococcus pneumoniae. J Infect Dis 200:1180-1181; author reply 1181-1182
    Otwinowski Z, Minor W (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode Macromolecular Crystallography 276:307-326
    Parsonage D, Newton GL, Holder RC, et al (2010) Characterization of the N-acetyl-alpha-D-glucosaminyl 1-malate synthase and deacetylase functions for bacillithiol biosynthesis in Bacillus anthracis. Biochemistry 49:8398-8414
    Pyburn TM, Bensing BA, Xiong YQ, et al (2011) A structural model for binding of the serine-rich repeat adhesin GspB to host carbohydrate receptors. PLoS Pathog 7:e1002112
    Qasba PK, Ramakrishnan B (2007) Letter to the Glyco-Forum:catalytic domains of glycosyltransferases with 'add-on' domains. Glycobiology 17:7G-9G
    Ramakrishnan B, Qasba PK (2001) Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the betal,4-galactosyltransferase-I. Journal of Molecular Biology 310:205-218
    Rao ST, Rossmann MG (1973) Comparison of super-secondary structures in proteins. Journal of Molecular Biology 76:241-256
    Reid SD, Hong W, Dew KE, et al (2009) Streptococcus pneumoniae forms surface-attached communities in the middle ear of experimentally infected chinchillas. J Infect Dis 199:786-794
    Riu IH, Shin IS, Do SI (2008) Spl modulates ncOGT activity to alter target recognition and enhanced thermotolerance in E. coli. Biochemical and Biophysical Research Communications 372:203-209
    Rose L, Shivshankar P, Hinojosa E, et al (2008) Antibodies against PsrP, a novel Streptococcus pneumoniae adhesin, block adhesion and protect mice against pneumococcal challenge. J Infect Dis 198:375-383
    Roseman S (1970) The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chemistry and Physics of Lipids 5:270-297
    Ruane KM, Davies GJ, Martinez-Fleites C (2008) Crystal structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. Proteins 73:784-787
    Sakaidani Y, Ichiyanagi N, Saito C, et al (2012) O-linked-N-acetylglucosamine modification of mammalian Notch receptors by an atypical O-GlcNAc transferase Eogtl. Biochemical and Biophysical Research Communications 419:14-19
    Sakaidani Y, Nomura T, Matsuura A, et al (2011) O-linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell-matrix interactions. Nature Communications 2:583
    Sanchez CJ, Shivshankar P, Stol K, et al (2010a) The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog 6
    Sanchez CJ, Shivshankar P, Stol K, et al (2010b) The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog 6:e 1001044
    Schimpl M, Zheng X, Borodkin VS, et al (2012) O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis. Nature Chemical Biology 8:969-97'4
    Schulte T, Lofling J, Mikaelsson C, et al (2014) The basic keratin 10-binding domain of the virulence-associated pneumococcal serine-rich protein PsrP adopts a novel MSCRAMM fold. Open Biology 4:130090
    Seepersaud R, Bensing BA, Yen YT, Sullam PM (2012) The accessory Sec protein Asp2 modulates GlcNAc deposition onto the serine-rich repeat glycoprotein GspB. J Bacteriol 194: 5564-5575
    Shaheen R, Aglan M, Keppler-Noreuil K, et al (2013) Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive Adams-Oliver syndrome. American Journal of Duman Genetics 92:598-604
    Sheen TR, Jimenez A, Wang NY, et al (2011) Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract. J Bacteriol 193:6834-6842
    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112-122
    Shen A, Kamp HD, Grundling A, Higgins DE (2006) A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes & Development 20:3283-3295
    Shivshankar P, Boyd AR, Le Saux CJ, et al (2011) Cellular senescence increases expression of bacterial ligands in the lungs and is positively correlated with increased susceptibility to pneumococcal pneumonia. Aging Cell 10:798-806
    Shivshankar P, Sanchez C, Rose LF, Orihuela CJ (2009) The Streptococcuspneumoniae adhesin PsrP binds to Keratin 10 on lung cells. Molecular Microbiology 73:663-679
    Spiro RG (2002) Protein glycosylation:nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R-56R
    Stepper J, Shastri S, Loo TS, et al (2011) Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Letters 585:645-650
    Szymanski CM, Wren BW (2005) Protein glycosylation in bacterial mucosal pathogens. Nature Rreviews Microbiology 3:225-237
    Takamatsu D, Bensing BA, Sullam PM (2004) Four proteins encoded in the gspB-secY2A2 operon of Streptococcus gordonii mediate the intracellular glycosylation of the platelet-binding protein GspB. J Bacteriol 186:7100-7111
    Terra VS, Mills DC, Yates LE, et al (2012) Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. Journal of Medical Microbiology 61:919-926
    Terwilliger TC (2003) Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr D Biol Crystallogr 59:38-44
    Terwilliger TC, Berendzen J (1999) Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 55:849-861
    Torres CR, Hart GW (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. The Journal of Biological Chemistry 259:3308-3317
    Unligil UM, Rini JM (2000) Glycosyltransferase structure and mechanism. Current Opinion in Structural Biology 10:510-517
    Unligil UM, Zhou S, Yuwaraj S, et al (2000) X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I:catalytic mechanism and a new protein superfamily. The EMBO Journal 19:5269-5280
    Vaidynathan K, Durning S, Wells L (2014) Functional O-GlcNAc modifications:Implications in molecular regulation and pathophysiology. Critical Reviews in Biochemistry and Molecular Biology
    Vetting MW, Frantom PA, Blanchard JS (2008) Structural and enzymatic analysis of MshA from Corynebacterium glutamicum:substrate-assisted catalysis. The Journal of Biological Chemistry 283:15834-15844
    Vrielink A, Ruger W, Driessen HP, Freemont PS (1994) Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. The EMBO Journal 13:3413-3422
    Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins:signal transduction and O-GlcNAc. Science 291:2376-2378
    Wrabl JO, Grishin NV (2001) Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. Journal of Molecular Biology 314:365-374
    Wu H, Bu S, Newell P, Chen Q, Fives-Taylor P (2007) Two gene determinants are differentially involved in the biogenesis of Fapl precursors in Streptococcus parasanguis. J Bacteriol 189: 1390-1398
    Wu R, Wu H (2011) A molecular chaperone mediates a two-protein enzyme complex and glycosylation of serine-rich streptococcal adhesins. The Journal of Biological Chemistry 286: 34923-34931
    Wu R, Zhou M, Wu H (2010) Purification and characterization of an active N-acetylglucosaminyltransferase enzyme complex from Streptococci. Appl Environ Microbiol 76:7966-7971
    Yang X, Zhang F, Kudlow JE (2002) Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A:coupling protein O-GlcNAcylation to transcriptional repression. Cell 110:69-80
    Yang YR, Suh PG (2014) O-GlcNAcylation in cellular functions and human diseases. Advances in Biological Regulation 54C:68-73
    Zeidan Q, Hart GW (2010) The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. Journal of Cell Science 123:13-22
    Zhou M, Wu H (2009) Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. Microbiology 155:317-327
    Afonina G, Leduc I, Nepluev I, et al (2006) Immunization with the Haemophilus ducreyi hemoglobin receptor HgbA protects against infection in the swine model of chancroid. Infection and Immunity 74:2224-2232
    Alteri CJ, Hagan EC, Sivick KE, et al (2009) Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog 5:e1000586
    Arends SJ, Kustusch RJ, Weiss DS (2009) ATP-binding site lesions in FtsE impair cell division. J Bacteriol 191:3772-3784
    Balkova K, Gbelska Y (2007) [ABC transporter proteins in multidrug resistance of microorganisms]. Epidemiologie, mikrobiologie, imunologie:casopis Spolecnosti pro epidemiologii a mikrobiologii Ceske lekarske spolecnosti JE Purkyne 56:129-139
    Berntsson RP, Smits SH, Schmitt L, et al (2010) A structural classification of substrate-binding proteins. FEBS Letters 584:2606-2617
    Brown JS, Gilliland SM, Holden DW (2001a) A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol 40:572-585
    Brown JS, Gilliland SM, Ruiz-Albert J, Holden DW (2002) Characterization of pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infection and Immunity 70:4389-4398
    Brown JS, Ogunniyi AD, Woodrow MC, et al (2001b) Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infection and Iimmunity 69:6702-6706
    Cheng W, Li Q, Jiang YL, et al (2013) Structures of Streptococcus pneumoniae PiaA and its complex with ferrichrome reveal insights into the substrate binding and release of high affinity iron transporters. PloS One 8:e71451
    Clancy A, Loar JW, Speziali CD, et al (2006) Evidence for siderophore-dependent iron acquisition in group B streptococcus. Molecular Microbiology 59:707-721
    Corbin BD, Wang Y, Beuria TK, Margolin W (2007) Interaction between cell division proteins FtsE and FtsZ. J Bacteriol 189:3026-3035
    Cornelissen CN, Kelley M, Hobbs MM, et al (1998) The transferrin receptor expressed by gonococcal strain FA 1090 is required for the experimental infection of human male volunteers. Molecular Microbiology 27:611-616
    Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiology and Molecular Biology Reviews:MMBR 72:317-364, table of contents
    Flo TH, Smith KD, Sato S, et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917-921
    Fukushima T, Sia AK, Allred BE, et al (2012) Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer. Proc Natl Acad Sci U S A 109:16829-16834
    Garti-Levi S, Hazan R, Kain J, et al (2008) The FtsEX ABC transporter directs cellular differentiation in Bacillus subtilis. Molecular Microbiology 69:1018-1028
    Gehre F, Leib SL, Grandgirard D, et al (2008) Essential role of choline for pneumococcal virulence in an experimental model of meningitis. Journal of Internal Medicine 264:143-154
    George AM, Jones PM (2014) Bacterial ABC Transporters:Structure and Function. Bacterial Membranes:Structural and Molecular Biology:227
    Gill DR, Salmond GP (1987) The Escherichia coli cell division proteins FtsY, FtsE and FtsX are inner membrane-associated. Molecular & General Genetics:MGG 210:504-508
    Goetz DH, Holmes MA, Borregaard N, et al (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10: 1033-1043
    Gonzales XF, Castillo-Rojas G, Castillo-Rodal Al, et al (2013) Catecholamine norepinephrine diminishes lung epithelial cell adhesion of Streptococcus pneumoniae by binding iron. Microbiology 159:2333-2341
    Grigg JC, Vermeiren CL, Heinrichs DE, et al (2007) Heme coordination by Staphylococcus aureus IsdE. The Journal of Biological Chemistry 282:28815-28822
    Hava DL, Camilli A (2002) Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45:1389-1406
    Hava DL, LeMieux J, Camilli A (2003) From nose to lung:the regulation behind Streptococcus pneumoniae virulence factors. Mol Microbiol 50:1103-1110
    Higgins CF (1992) ABC transporters:from microorganisms to man. Annual Review of Cell Biology 8:67-113
    Higgins CF (2001) ABC transporters:physiology, structure and mechanism--an overview. Research in Microbiology 152:205-210
    Ho WW, Li H, Eakanunkul S, Tong Y, et al (2007) Holo-and apo-bound structures of bacterial periplasmic heme-binding proteins. The Journal of Biological Chemistry 282:35796-35802
    Holtmann G, Bremer E (2004) Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes:involvement of Opu transporters. J Bacteriol 186:1683-1693
    Hvorup RN, Goetz BA, Niederer M, et al (2007) Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317:1387-1390
    Imai S, Ito Y, Ishida T, Hirai T, et al (2011) Distribution and clonal relationship of cell surface virulence genes among Streptococcus pneumoniae isolates in Japan. Clinical microbiology and infection:the official publication of the European Society of Clinical Microbiology and Infectious Diseases 17:1409-1414
    Jomaa M, Terry S, Hale C, et al (2006) Immunization with the iron uptake ABC transporter proteins PiaA and PiuA prevents respiratory infection with Streptococcus pneumoniae. Vaccine 24: 5133-5139
    Jomaa M, Yuste J, Paton JC, et al (2005) Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae. Infection and Immunity 73:6852-6859
    Kappes RM, Kempf B, Kneip S, et al (1999) Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Molecular Microbiology 32:203-216
    Kehl-Fie TE, Skaar EP (2010) Nutritional immunity beyond iron:a role for manganese and zinc. Curr Opin Chem Biol 14:218-224
    LeMessurier KS, Ogunniyi AD, Paton JC (2006) Differential expression of key pneumococcal virulence genes in vivo. Microbiology 152:305-311
    LetofFe S, Heuck G, Delepelaire P, et al (2009) Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. Proc Natl Acad Sci U S A 106:11719-11724
    Lima A, Zunino P, D'Alessandro B, Piccini C (2007) An iron-regulated outer-membrane protein of Proteus mirabilis is a haem receptor that plays an important role in urinary tract infection and in in vivo growth. J Med Microbiol 56:1600-1607
    Liu X, Du Q, Wang Z, et al (2012) Crystal structure of periplasmic catecholate-siderophore binding protein VctP from Vibrio cholerae at 1.7 A resolution. FEBS Letters 586:1240-1244
    Meisner J, Montero Llopis P, Sham LT, et al (2013) FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall elongation in Bacillus subtilis. Molecular Microbiology 89: 1069-1083
    Muller A, Wilkinson AJ, Wilson KS, Duhme-Klair AK (2006) An [{Fe(mecam)}2]6-bridge in the crystal structure of a ferric enterobactin binding protein. Angew Chem Int Ed Engl 45:5132-5136
    Ogunniyi AD, Mahdi LK, Trappetti C, et al (2012) Identification of genes that contribute to the pathogenesis of invasive pneumococcal disease by in vivo transcriptomic analysis. Infection and Immunity 80:3268-3278
    Parrow NL, Fleming RE, Minnick MF (2013) Sequestration and scavenging of iron in infection. Infection and Immunity 81:3503-3514
    Pramanik A, Braun V (2006) Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. J Bacteriol 188:3878-3886
    Raines DJ, Moroz OV, Wilson KS, Duhme-Klair AK (2013) Interactions of a periplasmic binding protein with a tetradentate siderophore mimic. Angew Chem Int Ed Engl 52:4595-4598
    Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54: 881-941
    Reniere ML, Torres VJ, Skaar EP (2007) Intracellular metalloporphyrin metabolism in Staphylococcus aureus. Biometals 20:333-345
    Romero-Espejel ME, Gonzalez-Lopez MA, Olivares-Trejo Jde J (2013) Streptococcus pneumoniae requires iron for its viability and expresses two membrane proteins that bind haemoglobin and haem. Metallomics:integrated biometal science 5:384-389
    Russo TA, McFadden CD, Carlino-MacDonald UB, et al (2003) The Siderophore receptor IroN of extraintestinal pathogenic Escherichia coli is a potential vaccine candidate. Infection and Immunity 71:7164-7169
    Schmidt KL, Peterson ND, Kustusch RJ, et al (2004) A predicted ABC transporter, FtsEX, is needed for cell division in Escherichia coli. J Bacteriol 186:785-793
    Serino L, Moriel DG, Rappuoli R, et al (2010) Towards a vaccine against Escherichia coli-associated urinary tract infections. Future Microbiol 5:351-354
    Sham LT, Barendt SM, Kopecky KE, et al (2011) Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. ProcNatlAcadSci U S A 108:E1061-1069
    Sham LT, Jensen KR, Bruce KE, Winkler ME (2013) Involvement of FtsE ATPase and FtsX extracellular loops 1 and 2 in FtsEX-PcsB complex function in cell division of Streptococcus pneumoniae D39. mBio 4
    Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6:e1000949
    Stranger-Jones YK, Bae T, Schneewind O (2006) Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci U S A 103:16942-16947
    Tai SS (2006) Streptococcus pneumoniae protein vaccine candidates:properties, activities and animal studies. Crit Rev Microbiol 32:139-153
    Tai SS, Lee CJ, Winter RE (1993) Hemin utilization is related to virulence of Streptococcus pneumoniae. Infection and Immunity 61:5401-5405
    Tai SS, Wang TR, Lee CJ (1997) Characterization of hemin binding activity of Streptococcus pneumoniae. Infection and Immunity 65:1083-1087
    Tai SS, Yu C, Lee JK (2003) A solute binding protein of Streptococcus pneumoniae iron transport. FEMS Microbiology Letters 220:303-308
    Tettelin H, Nelson KE, Paulsen IT, et al (2001) Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:498-506
    Thompson EA, Feavers IM, Maiden MC (2003) Antigenic diversity of meningococcal enterobactin receptor FetA, a vaccine component. Microbiology 149:1849-1858
    Tomasz A (1967) Choline in the cell wall of a bacterium:novel type of polymer-linked choline in Pneumococcus. Science 157:694-697
    Tomasz A (1968) Biological consequences of the replacement of choline by ethanolamine in the cell wall of Pneumococcus:chanin formation, loss of transformability, and loss of autolysis. Proc Natl Acad Sci U S A 59:86-93
    Wandersman C, Delepelaire P (2004) Bacterial iron sources:from siderophores to hemophores. Annual Review of Microbiology 58:611-647
    Whalan RH, Funnell SG, Bowler LD, et al (2005) PiuA and PiaA, iron uptake lipoproteins of Streptococcus pneumoniae, elicit serotype independent antibody responses following human pneumococcal septicaemia. FEMS Immunology and Medical Microbiology 43:73-80
    Whalan RH, Funnell SG, Bowler LD, et al (2006) Distribution and genetic diversity of the ABC transporter lipoproteins PiuA and PiaA within Streptococcus pneumoniae and related streptococci. J Bacteriol 188:1031-1038
    Wilks A (2002) Heme oxygenase:evolution, structure, and mechanism. Antioxid Redox Signal 4: 603-614
    Wood JM, Bremer E, Csonka LN, et al (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comparative biochemistry and physiology Part A, Molecular & Integrative Physiology 130:437-460
    Yang DC, Peters NT, Parzych KR, et al (2011) An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc Natl Acad Sci U S A 108: E1052-1060
    Zawadzka AM, Kim Y, Maltseva N, et al (2009) Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc Natl Acad Sci U S A 106:21854-21859

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700