用户名: 密码: 验证码:
基于遥感与GIS技术的土地利用/覆盖变换分析及土壤侵蚀风险评价的研究—从生态环境角度
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土地利用/土地覆盖(LUCC)变化在区域社会经济发展和全球环境变化中发挥着至关重要的作用。在脆弱的生态系统占主导地位的条件下,土地覆盖变化常常由于过多的人为干扰对环境造成重大的影响。因此,LULC变化分析对于了解其自然特性、程度和位置、质量、以及生产率、适宜性和各种土地利用/土地覆盖指标的局限性是必不可少的。本研究采用遥感(RS)和地理信息系统(GIS)分别评估两个不同的地区——中国丹江口和孟加拉博格拉过去14年(1991-2005)和16年(1988-2004)LULC的空间格局及其变化。另一方面,土壤侵蚀是影响人类赖以生存的土壤、土地和水资源质量的最严重的环境问题。土壤侵蚀危害图是研究侵蚀易发地区的一个重要工具,因为他们能解释并显示危害及可能受到不同程度影响的地区的位置分布。因此,它对规划者和决策者启动补救措施以及对优先区域选择是非常有用的。在本研究中,综合运用土壤侵蚀危害和风险图,遥感、地理信息系统、多标准决策分析(MCDA)和统计方法,解释了丹江口地区目前和未来侵蚀灾害有效管理预测的方法和侵蚀灾害管理全面战略。另外,本研究还试图讨论空间多标准评价(SMCE)的运用和适用于本研究区域生态环境的定量预测方法。
     我们在选择的两个研究区域采用Landsat TM and IRS-P6 LISSⅢ遥感图像来分析土地利用/土地覆盖的整体变化。为了对不同土地利用/土地覆盖的卫星影像进行分类,采用了模糊神经网络监督分类的技术。然后又采用基于地理信息系统覆盖的分类比较技术获取土地利用/土地覆盖变化。研究中我们主要关注的是土地利用/土地覆盖的动态变化,包括时空变化的统计、土地利用/土地覆盖的趋势/输移,以及他们与选定的物理环境变量如土壤、坡度和海拔之间的关系。
     为了评价土壤侵蚀危害,本研究以遥感和地理信息系统为主要工具基于Z-score和空间主成分分析(SPCA)构建了两个数学模型。利用上述模型,综合土壤侵蚀的危险指数(SEHI)进行土壤侵蚀危害的栅格分析。通过使用这两个模型,我们选定了9个显著影响土壤侵蚀的因素。影响土壤水侵蚀的因素有土壤可蚀性因子,坡度,土层厚度,降雨量,海拔,植被,休耕地,人口密度和现存的土壤侵蚀强度。遥感,层次分析法(AHP)和地理信息系统技术以及空间模型被用来选出有空间性的影响因素。通过层次分析法(AHP)来规范所有因素和确定因素权重。由于已使用Z-score和SPCA对选定因素进行规范化,接着运用综合土地和水文信息系统(ILWIS)软件和准备好9个独立层次(Z型分数和PCA)。然后,每个层次通过加权线性组合同他们的因素权重结合,得到每个像素的综合土壤侵蚀的危险指数。为了对不相关联的土壤侵蚀危险指数图进行分类使土壤侵蚀危害表现相当的分区性,利用相同距离集中原则划分为4个等级:非常高,高,中等,低。此外,这项研究还试图找出基于土壤流失危害和现有的土壤侵蚀程度的土壤侵蚀风险评估方法,这种方法使用风险概率来识别地区的实际风险和潜在风险。
     此外,本文讨论了在生态环境评估领域中空间多重标准评估(SMCE)的应用,并设计了一个适用于确定中国丹江口生态环境状况的定量方法。使用SMCE方法结合专家知识,计算综合的生态环境状况指数(EECI),然后将EECI分为五个生态环境状态级别:差、较差、一般、好、较好。在此过程中,选用一套与生态环境的可持续标准同等重要的空间标准(15个标准)。应用RS和GIS综合技术和模型为SMCE方法生成必要的空间因子。用排序法和预期值法将所有因素标准化,另一方面,应用层次分析法(AHP)计算因素权重。支持SMCE的较新软件工具促进了整个过程的运行。
     土地利用/土地覆盖变化分析表明,两个选定区域的土地利用/土地覆盖在研究期间发生了显著的变化,两个区域不同的景观、平原和山地地形的研究结果表明,尽管地表具有不同的地形和土地利用/土地覆盖类型,但土地利用/土地覆盖一直在变化。基于土地利用/土地覆盖的动态变化,结果还表明,土地利用/土地覆盖变化与物理特性、土壤、坡度和海拔关系密切。土地利用/土地覆盖变化和环境物理特性之间的关系,以及土地利用/土地覆盖变化的趋势表明研究期间发生的变化主要受人为干扰,这可能也是该地区土壤和环境退化的原因。因此,我们应该更多地关注这些地区,保护退化的土壤,尤其加强对生态环境可持续性的发展。
     土壤侵蚀灾害性分析结果显示,总体来说丹江口县的土壤侵蚀总体比较缓和,在本研究中通过模拟实验(运用Z-score和空间组成成分分析)得以确定热点地区(很高的危险性)的侵蚀,需要紧急干预。风险评估进一步表明,该地区潜在的危险比实际存在的风险更高,实际和潜在的风险相对较高的是中等海拔的地区,对这些地区的保护应优先考虑。通过采取适当的管理措施可降低土壤侵蚀的危险性。因此,通过这项研究,提出全面的侵蚀灾害管理战略能够有效处理该地区目前和未来的侵蚀灾害。尽管如此,当利用RS和GIS模拟自然资源,环境和生态系统时,有必要验证建立模型每一个步骤的。当研究领域比较大时,对步骤的验证比较困难。因此,需要对灾害图(由采用Z-score的联合方法获得)和生物物理参数(植被,坡度,海拔和降雨)进行带有相关系数的回归分析,这一步骤决定了结果的正确性和有效性。预计结果与总体生态观(假设)以及使用模型表示的侵蚀危害图的有效性密切相关。
     此外,对生态环境状况的分析表明,该地区总的生态环境状态处于中等(平均)水平并且存在明显的垂直带分布。区域生态环境较差和差的状况表明该地区这些部分的生态环境质量不容乐观。本研究还研究了人类活动和地区质量。同时,考虑到生态环境状况的地域特点、生态恢复的优先和实际需要,植被条件、土壤侵蚀、地形、气候和土壤条件有重要影响,按此将研究地区生态环境分为四个主要区域,这四个区域可能作为制定生态恢复、重建和保护决策的基础。因此,本研究中使用SMCE结合专家知识为解决地区生态环境状况评价中的复杂决策问题提供了一个有效的方法。
Land use/land cover (LULC) change plays a pivotal role in regional socio-economic development and global environment changes. In environment, where fragile ecosystems are dominant, the land cover change often reflects the most significant impact on the environment due to excessive human activities. So, LULC change analysis is essential to know the natural characteristics, extent and location, its quality, productivity, suitability and limitations of various land uses/covers. Therefore, to assess the spatial pattern of LULC and their changes using remote sensing (RS) and geographical information system (GIS) were describe in this study in two distinct areas, the Danjiangkou county of China and Bogra district of Bangladesh, over the last 14 years (1991-2005) and 16 years (1988-2004), respectively. On the other hand, soil erosion is the most serious environmental problem affecting the quality of soil, land, and water resources upon which humans depend for their sustenance. Soil erosion hazard maps can be an essential tool in erosion prone areas as they explain and display the distribution of hazards and areas likely to be affected to different magnitudes. Therefore, it is very useful to planners and policy makers initiating remedial measures and for prioritizing areas. Thus, soil erosion hazard and risk map applying integrated use of RS, GIS, multi-criteria decision analysis (MCDA) and statistical approaches was also explained in this study in Danjiangkou county, from which comprehensive erosion hazard management strategies were anticipated for the efficient management of present and future erosion disaster in the area. Moreover, this study was also an attempt to discuss an application of spatial multiple criteria evaluation (SMCE) and projected a quantitative method applicable to the identification of eco-environmental condition of the study area.
     Landsat TM and IRS-P6 LISS III images were used to analyze the overall changes of different LULC types in the two selected areas. To classify the satellite images for LULC, a fuzzy ARTMAP neural network supervised classification technique was performed. A post classification comparison technique with GIS overlay was followed to derive the LULC changes. In this study we focused the LULC dynamics, including statistics of spatio-temporal changes, trajectories/transformations of LULC and their relations to the selected physical environmental variables such as soil, slopes and altitude.
     For soil erosion hazard assessment, remote sensing (RS) and geographical information system (GIS) technologies were adopted and two numerical models were developed using Z-score and spatial principal component analysis (SPCA) along with remote sensing and GIS. Using these models, the integrated soil erosion hazard index (SEHI) was computed to carry out a raster based analysis of soil erosion hazard. For the models, nine factors which have notable impact on soil erosion were selected. The relevant factors for soil erosion by water were soil erodibility, slope, soil depth, rainfall, elevation, vegetation, fallow land, population density and presence of existing soil erosion. To generate the selected factors spatially, remote sensing, analytical hierarchy process (AHP) and GIS techniques along with spatial models were applied. To standardize all of the factors and establish the factor weights, the AHP method was adopted. For Z-score and SPCA analysis with selected standardized factors, the Integrated Land and Water Information System (ILWIS) software was used and nine individual layers (Z-scores and PCA) were prepared. Afterwards, the layers were integrated with their factor weights by means of a weighted linear combination (WLC) to derive SEHI value for each pixel. To classify the discrete SEHI map to represent a meaningful regionalization of soil erosion hazard, the equal distance cluster principle was used and graded into four levels of hazard; very high, high, moderate and low. Moreover, this study was also an attempt to find out the soil erosion risk based on soil erosion hazard and existing soil erosion, which identified the areas under actual risk and potential risk with probability of risk.'
     Besides, an application of spatial multiple criteria evaluation (SMCE) in eco-environmental condition assessment was discussed and projected a quantitative method applicable to the identification of eco-environmental condition of Danjiangkou county, China. Using SMCE approach with expert's knowledge, in the method an integrated eco-environmental condition index (EECI) was computed and then EECI was classified into five levels of eco-environment condition; worse, poor, average, good and better. During the process, a set of spatial criteria was selected (15 criterions) together with the degree of importance of the criteria in sustainability of the eco-environment. To generate the necessary factors spatially for the SMCE approach, remote sensing and GIS integrated techniques and models were applied. To standardize all of the factors, the rank order (OR) along with expected value method was used and on the other hand, for factors weights, analytical hierarchy process (AHP) was applied. The entire process was facilitated by a comparatively new software tool that supports SMCE.
     LULC change analysis revealed that the LULC of the two selected areas were changed dramatically during the study periods and results form two different landscapes, flat and hill terrain indicated that the LULC is changing even though different topography and LULC types are found over the land surface. Considering the LULC dynamics, the results also showed that LULC changes were related particularly to the pattern of the physical attributes; soil, slope and elevation. The relations between LULC change and physical properties of the environment, and the trajectories of the LULC depicted that the changes which took place during the study periods were mainly human induced, which might be the cause of soil and environmental degradation in the areas. Therefore, more attention should be paid in these regions to protect the degradation of soil, particularly for the eco-environmental sustainability.
     Soil erosion hazard analysis depicted that in general, a moderate hazardous condition of soil erosion was found in Danjiangkou county and the modelling exercise (Z-score and SPCA) in this study made it possible to identify hot-spot areas of erosion (very high and high hazard) that require urgent intervention. Risk assessment further showed that the areas under potential risk were more extensive than that of the areas under actual risk, and both actual and potential risks were comparatively high at the mid level elevation of the area. In these areas the work for conservation and protection should be carried out according to a priority basis. The soil erosion hazard can be reduced by taking appropriate management strategies for the conservation and protection of soil erosion. Therefore, based on this study, comprehensive erosion hazard management strategies were proposed for the efficient management of present and future erosion disaster in the area. However, when natural resources, environmental and ecological systems are modelled and mapped with the aid of GIS and remotely sensed data, there is a need for validation step for the developed model. Steps for such validation are particularly difficult when the size of the study area is comparatively large. Hence, regression analysis with correlation coefficient was performed between the hazard map (obtained by integrated method with Z-score) and some selected biophysical parameters (vegetation, slope, elevation and rainfall) to determine the effectiveness and validation of the result. The predicted results are related to the general ecological perception (hypothesis) and denote the validity of the erosion hazard map using the model described.
     Furthermore, the analysis of eco-environmental condition showed that the overall eco-environmental condition of the area was at moderate (average) level and presented apparent vertical-belt distribution. Area under worse and poor conditions of eco-environment indicated the eco-environmental quality was very serious in these parts of the county. The study also revealed that the human activities, vegetation condition, soil erosion, topography, climate and soils conditions had serious influence that caused the eco-environment quality of the area. Moreover, considering the regional characteristics of eco-environmental condition and priority and practical needs for eco-recovery, the study area was regionalized into four priority areas which may serve as a base for decision making for the recovery, rebuilding and protection of the eco-environment. Therefore, the application of SMCE combined with expert's knowledge, this study has provided an effective methodology to solve the complex decisional problem for the assessment of eco-environmental condition of the area.
引文
1. Adriaenssens V, De Baets, B. Fuzzy rule-based models for decision support in ecosystem management. Science of The Total Environment, 2004, 319:1-12
    
    2. Alexander D. Natural Disaster. 1993, UCL Press, London
    
    3. Alphan H. Land use change and urbanization in Adana, Turkey. Land Degradation and Development, 2003, 14(6):575-586
    
    4. Amarsaikhan D, Douglas T. Data fusion and multisource image classification.International Journal of Remote Sensing, 2004,25: 3529-3539.
    
    5. Arnold JG, Fohrer N. SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes, 2005,19(3): 563-572.
    
    6. Arnold JG. SWAT: Soil and Water Assessment Tool/User's Manual, 1996, USDA-ARS.
    
    7. Atkinson PM, Tatnall ARL. Neural networks in remote sensing. International Journal of Remote Sensing, 1997,18(4), 699-709.
    
    8. Baban SM, Yusuf KW. Modelling soil erosion in tropical environments using remote sensing and geographical information systems. Hydrological Sciences, 2001,46(2): 191-198.
    
    9. Bartsch KP, Van MH, Boettinger J, Bobrowolski JP. Using empirical erosion models and GIS to determine erosion risk at Camp Williams, Utah. Journal of Soil and Water Conservation, 2002, 57(1): 29-36.
    
    10. Baskent EZ, Kadiogullari AI. Spatial and temporal dynamics of land use pattern in Turkey: A case study in Inegol. Landscape and Urban Planning, 2007, 81, 316-327.
    
    11. Bathurst JC, Wicks JM, O'Connell JA. The SHE/SHESED basin scale water flow and sediment transport modelling system. In: V.P. Singh (Editor), Computer Models of Watershed Hydrology. Water Resource Publication, Highlands Ranch, Colorodo,USA, 1995:63-94.
    
    12. BBS, Statistical Year Book of Bangladesh., 2005, Dhaka: Bangladesh Bureau of Statistics
    
    13. Beasley, DB, Huggins LF, Monke EJ. ANSWERS: a model for watershed planning.Transactions of ASAE, 1989, 23(4): 938-944.
    
    14. Benediktsson JA, Swain PH, Ersoy OK. Neural network application versus statistical methods in classification of multisource remote sensing data. I.E.E.E.Transactions on Geoscience and Remote Sensing, 1990, 28, 540-552.
    
    15. Bergsma E, Charman P, Gibbons F, Hurni H, Moldenhawer WC, Panichapong S. Terminology for soil erosion and conservation: concepts, definitions and multilingual list of terms for soil ersion and conservation in English, Spanish,French and German. Wageningen ; Enschede: International Society of Soil Science;International Soil Reference and Information Centre (ISRIC), 1996.
    
    16. Bhuyan SJ, Marzen LJ, Koelliker JA, Harrington JA, Barnes PL. Asssessment of runoff and sediment yield using remote sensing, GIS and AGNPS. Journal of Soil and Water Conservation, 2001, 57(6): 351-363.
    
    17. Bin Q, He-Jian H, Song-Lin S, Romkens MJM, Bi-Cheng L. Land suitability assessment and land use change in Fujian Province, China. Pedosphere, 2007, 17(4),493-504.
    
    18. Bishopa MP, Shroder JF, Colby JD. Remote sensing and geomorphometry for studying relief production in high mountains. Geomorphology, 2003, 55: 345-361.
    19. Blaikie P, Cannon T, Davis I, Wisner B. At Risk: Natural Hazards, People's Vulnerability and Disaster, 1994, London, Routledge.
    
    20. Bocco G, Valenzuela CR. Integrating satellite remote sensing and geographic information systems technologies in gully erosion research. Remote Sensing Review,1993, 7: 233-240.
    
    21. Boyle SJ, Tsanis IK, Kanaroglou PS. Developing geographic information systems for land use impact assessment in flooding condition. Journal of Water Resources Planing and Management, ASCE, 1998, 124(2): 89-98
    
    22. Brown M. Harris CJ. Neurofuzzy Adaptive Modelling and Control, 1994, Hemel Hempstead: Prentice Hall.
    
    23. Burrough PA, McDonnell R. Principles of geographical system, Oxford: Oxford Univ. press, 1998:333pp
    
    24. Carpenter GA. Neural Network Models for Pattern Recognition and Associative Memory. Neural Networks, 1989, 2:243-257.
    
    25. Carpenter GA, Grossberg S, Reynolds JH. ARTMAP: Supervised real time learning and classification of nonstationary data by a self-organizing neural network. Neural Networks, 1991,4:565-588.
    
    26. Carpenter GA, Grossberg S, Markuzon N, Reynolds JH, Rosen DB. Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks, 1992, 3:698-712.
    
    27. Carver SJ. Integrating Multi-Criteria Evaluation with Geographical Information Systems, International Journal of Geographical Information Systems, 1991, 5(3):321-339.
    
    28. Chankong V. Haimes YY. Multi-Objective Decision-Making, Theory and Methodology. 1983, North-Holland, New York.
    
    29. Clark Lab. IDRISI Andes, 2006, Clark University, 950 Main Street, Worcester MA 01610-1477, USA
    
    30. Cohena MJ, Shepherdb KD, Walshb MG. Empirical reformulation of the universal soil loss equation for erosion risk assessment in a tropical watershed. Geodarma,2005, 124:235-252
    
    31. Congalton RG. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 1991, 37:35-46.
    
    32. Congalton RG, Mead RA. A Quantitative Method to Test for Consistency and Correctness in Photointer pretation, Photogrammetric Engineering & Remote Sensing, 1983, 49 (1): 69-74.
    
    33. Conoscenti C, Maggio CD, Rotigliano E. Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily,Natural Hazards, 2008, 46:287-305.
    
    34. Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E. Digital change detection methods in ecosystem monitoring: a review. International Journal of Remote Sensing, 2004, 25(9): 1565-1596.
    
    35. de Jong SM. Applications of Reflective Remote Sensing for Land Degradation Studies in a Mediterranean environment. PhD Dissertation Thesis, 1994,Nederlandse Geografische Studies 177, Utrecht, the Netherlands, 179 pp.
    
    36. De la Rosa R, Mayol F, Diaz-Pereira E, Fernandez M, de la Rosa D. A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection with special reference to the Mediterranean region. Environmental Modelling & Software, 2004, 19: 929-942.
    37. de Roo APJ. Modelling runoff and sediment transport in catchments using GIS.Hydrological Processes, 1998,12(6): 905-922.
    
    38. de Roo APJ, Hazelhoff L, Burrough PA. Soil erosion modelling using "ANSWERS" and geographical information systems. Earth Surface Processes and Landforms,1989,14: 517-532
    
    39. Delbaere B. Environmental risk assessment for European agriculture: interim report. 2003, European Center for Nature Conservation, Tilburg
    
    40. Dwivedi RS, Kumar AB, Tewari KN. The utility of multi-sensor data for mapping eroded lands. International Journal of Remote Sensing, 1997,18(11): 2303-2318.
    
    41. Eastman JR. IDRISI for Windows, Version 2.0, Tutorial Exercises. 1997, Clark University.
    
    42. Eastman JR, Jiang H. Fuzzy Measures in Multi-Criteria Evaluation, Proceedings,Second International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Studies, 1996, May 21-23, Fort Collins, Colorado,527-534.
    
    43. Ekwue EI. The effects of soil organic matter content, rainfall duration and aggregate size on soil detachment. Soil Technol., 1991, 4: 197-207
    
    44. El-Swaify SA. State-of-the-art for assessing soil and water conservation needs and technologies. In Adopting conservation on the farm, edited by T. L. Napier, S. M.Camboni and S. A. El-Swaify, 1994, 13-27. Ankey: Soil and Water Conservation Society of America.
    
    45. Fan JR, Zhang JH, Zhong XH, Liu SZ, Tao HP. Monitoring of soil erosion and assessment for contribution of sediments to rivers in a typical watershed of the upper Yangtze river basin, Land Degradation and Development, 2004,15: 411-421.
    
    46. Feiring BR. Linear Programming: An Introduction, Quantitative Applications in the Social Sciences, 1986, Vol. 60, Sage Publications, London.
    
    47. Fistikoglu O, Harmancioglu NB. Integration of GIS with USLE in assessment of soil erosion. Water Resource Management, 2002,16: 447-467.
    
    48. Flanagan DC, Nearing MA. USDA-Water erosion prediction project: Hillslope and watershed model documentation. NSERL Report No. lO.West Lafayette Ind. 1995,USDA-ARS National Soil Erosion Research Laboratory.
    
    49. Flugel WA, Marker M, Moretti S, Rodolfi G, Sidrochuk A. Integrating geographical information systems, remote sensing, ground truthing and modelling approaches for regional erosion classification of semi-arid catchments in South Africa.Hydrological Processes, 2003,17: 929-942.
    
    50. Foody GM. Land cover classification using an artificial neural network with ancillary information. International Journal of Geographical Information Systems,1995, 9: 527- 542.
    
    51. Foody GM. Fully fuzzy supervised classification of land cover from remotely sensed imagery with an artificial neural network. Neural Computing & Applications,1997, 5: 238-247.
    
    52. Foody GM, Arora MK. An evaluation of some factors affecting the accuracy of classification by an artificial neural network. International Journal of Remote Sensing, 1997, 18: 799-810.
    
    53. Foody GM, Cox DP. Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions. International Journal of Remote Sensing, 1994, 15: 619-632.
    
    54. Foster GR. Modeling soil erosion and sediment yield, 1988, Lal, R. (Ed.), Soil erosion research methods, Soil and Water Conservation Society ed.
    55. Foster GR. Process-based modelling of soil erosion by water on agricultural land. In:J. Boardman, D.L. Foster and J.A. Dearing, Editors, Soil Erosion on Agricultural Land, Wiley, Chichester, 1990: 429-445.
    
    56. Fu BJ. et al. Assessment of soil erosion at large watershed scale using RUSLE and GIS: a case study in the Loess Plateau of China. Land Degradation and Development, 2005, 16(1): 73-85.
    
    57. Fung T, LeDrew E. The application of principal component analysis to change detection. Photogrammetric Engineering and Remote Sensing, 1987, 53: 1649-1658.
    
    58. Ghadiri H. Soil conservation. 1987, Ahvaz university publication, Iran
    
    59. Gobin A, Govers G. Pan-European Soil Erosion Risk Assessment, 2003, Third Annual Report. European commission funded fifth framework project - contract QLK5-CT-1999- 01323. Available at: http://www.pesera.JRC.it
    
    60. Gournellos Th, Evelpidou N, Vassilopoulos A. Developing an Erosion Risk Map Using Soft Computing Methods (Case Study at Sifnos Island), Natural Hazards,2004,31:63-83.
    
    61. Grossberg S. Adaptive pattern classification and universal recording I: parallel development and coding neural feature detectors. Biological Cybernetics, 1976, 23:121-134.
    
    62. Grunwald S, Norton LD. An AGNPS-based runoff and sediment yield model for two small watersheds in Germany. Transactions of ASAE, 1999, 42(6): 1723-1731
    
    63. Haan CT, Johnson HP, Brakensiek DL. Hydrologic modeling of small watersheds,1982, St. Joseph: American Society of Agricultural Engineers (ASAE).
    
    64. Haboudane D, Bonn F, Royer A, Sommer S, Mehl W. Land degradation and erosionrisk mapping by fusion of spectrally based information and digital geomorphometric attributes. International Journal of Remote Sensing, 2002,18: 3795-3820.
    
    65. Hardin PJ, Jackson MW, Otterstrom SM. Mapping, measuring, and modeling urban growth. In R. R. Jensen, J. D. Gatrell, & D. McLean (Eds.), Geo-spatial technologies in urban environments: Policy, practice and pixels (2nd ed.). 2007,141-176, Heidelberg: Springer-Verlag.
    
    66. Harmon RS, Doe WW. Landscape Erosion and Evolution Modelling. 2001, Kluwer Academic /Plenum Publishers, New York, USA, 540 pp.
    
    67. Hartter J, Lucas C, Gaughan AE, Aranda LL. Detecting tropical dry forest succession in a shifting cultivation mosaic of the Yucata'n Peninsula, Mexico.Applied Geography, 2008, 28: 134-149
    
    68. Hathout S. The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba. Canadian Journal of Environmental Management, 2002, 66: 229-238.
    
    69. He D. Modeling of dominating factors to soil and water conservation. Fujian Forestry College Transaction, 1999, 19 (1): 26-29.
    
    70. He L, Chan CW, Huang GH. PDSS: A probabilistic reasoning-based decision support system for selecting remediation technologies for petroleum-contaminated sites. Expert Systems with Applications, 200,.30 (4): 783-795
    
    71. He Q, Walling DE. Testing distributed soil erosion and sediment delivery models using 137Cs measurements. Hydrological Processes, 2003, 17: 901-916.
    
    72. Hermann PD, Khazenie N. Classification of multispectral remote sensing data using back propagation neural network. IEEE Transactions on Geosciences and Remote Sensing, 1992, 30: 81-88.
    
    73. Herwijnen MV. Spatial decision support for environmental management. Faculty of Economical Sciences and Econometrics, 1999, Free University of Amsterdam,Amsterdam.
    74. Hill J, Schiitt. Mapping complex patterns of erosion and stability in dry Mediterranean ecosystems. Remote Sensing of Environment, 2000, 74: 557-569.
    
    75. Holdgate MW. The sustainable use of tourism: a key conservation issue. Ambio,1993,22:481-482.
    
    76. Houghton PD, Charman PEV. Glossary of terms, used in soil conservation. Soil Conservation Service of New South Wales 1986.
    
    77. Howarth PJ, Wickware GM. Procedures for change detection using Landsat digital data. International Journal of Remote Sensing, 1981, 2(3): 277-291.
    
    78. Hudson N. Soil conservation (Fully revised and updated Third edition. ed.). 1996,London: Batsford.
    
    79. Hudson NW. Soil Conservation. Iowa State Univ. Press, Ames, IA, 1995, 319 pp
    
    80. Hundson NW. Soil Conservation. 1981, Batsford, London.
    
    81. Ignizio JP. Introduction to Linear Goal Programming, Quantitative Applications in the Social Sciences, 1985, 56, Sage Publications, London.
    
    82. ILWIS 3.3. The Integrated Land and Water Information System. 2005, ITC,Enschede, http://www.itc.n1/ilwis/S
    
    83. Imenson AC. Field reports of erosion hazard survey. Soils Divison, international Institute for Aerospace surveys and Earth sciences. 1985, Enschede: ITC.
    
    84. Janssen R, Van Herwijnen M. Multi-objective decision support for environmental management+DEFINITE Decisions on an FINITE set of alternatives: demonstration disks and instruction. Dordrecht (Netherlands): Kluwer Academic Publishers, 1994,232pp
    
    85. Jensen JR. Introductory digital image processing: a remote sensing perspective,1996, second ed. Prentice Hall, NJ.
    
    86. Jetten V, Govers G, Hessel R. Erosion models: quality and spatial predictions.Hydrological Processes, 2003,17: 887-900.
    
    87. Johnson RD, Kasischke ES. Change vector analysis: a technique for the multi-temporal monitoring of land cover and condition. International Journal of Remote Sensing, 1998, 19:411-426.
    
    88. Jozefaciuk C, Jozefaciuk A. Gullies net density as a factor of water system deformation in Vistula River basin, Runoff and Sediment Yield Modelling, K.Banasik and A. Zbikowski, eds, 1993, Warsaw Agricultural University Press,Warsaw, 169-174.
    
    89. Kaplan S, Garrick BJ. On the quantitative definition of risk. Risk Analysis, 1981,1(1):11-27
    
    90. Karanja F. Use of Knowledge Based Systems for the Detection and Monitoring of Unplanned Developments, 2002, Ph.D. Thesis, Wissenschaftliche Arbeiten Der Fachrichtung Vermessungswesen Der Universitat Hannover.
    
    91. Karssenberg D. Building dynamic spatial environmental models. 2002, Phd Dissertation. NGS 305. Nederlandse Geografische Studies, Utrecht, the Netherlands,222 pp.
    
    92. Kaswamila ALW. Assessment of the effectiveness of certain soil conservation practices by soil surface microtopographic features: a case study of Mlesa, Mwangoi and Majulai in the west Usambara Mountains, Tanzania. 1995, Unpublished MSc,ITC, Enschede.
    
    93. Kaufman YJ. The Atmospheric Effect on the Separability of Field Class Measured from Satellite, Remote Sensing of Environment, 1985, 18: 21-34.
    
    94. Kheir RB, Cerdan O, Abdallah C. Regional soil erosion risk mapping in Lebanon.Geomorphology, 2006, 82:347-359
    95. King C, Baghdadi N, Lecomte O, Cerdan O. The application of remote sensing data to monitoring and modelling of soil erosion. Catena, 2005, 62: 79-93.
    
    96. Kirkby MJ, Wilson AG. Mathematics for geographers and planners (Second ed.)1980, Oxford: Clarendon Press.
    
    97. Knisel WG. CREAMS: A Field-Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems, 1995, US Dept of Agriculture.Agricultural Research Service.
    
    98. Krivtsov V. Investigations of indirect relationships in ecology and environmental sciences: a review and the implications for comparative theoretical ecosystem analysis. Ecol. Model., 2004, 174: 37-54.
    
    99. Lal R. Soil erosion and conservation in West Africa. In: Pimentel, D. (ed) World Soil Erosion and Conservation. 1993, Cambridge University Press, Cambridge,pp.7-25.
    
    100. Lal R. Soil degradation by erosion. Land Degrad. Dev., 2001, 12: 519-539.
    
    101. Lee J, Weger RC, Sengupta SK Welch RM. A neural network approach to cloud classification. I.E.E.E. Transactions on Geoscience and Remote Sensing, 1990, 28:846-855.
    
    102. Leon LF, Soulis ED, Kouwen N, Farquhar GJ. Nonpoint source pollution: a distributed water quality modelling approach. Water Resources, 2001, 4: 997-1007.
    
    103. Leprieur C, Kerry YH, Mastorchio S, Meunier JC. Monitoring vegetation cover across semiarid regions: comparison of remote observations from various scales.International Journal of Remote Sensing, 2000, 21(2): 281-300.
    
    104. Li A, Wang A, Liang S, Zhou W. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS-A case study in the upper reaches of Minjiang River. China. Ecological Modeling, 2006,192 (1-2): 175-187
    
    105. Li XL, Min M, Tan CF. The functional assessment of agriculture ecosystems in Hubei Province, China. Ecological Modeling, 2005, 187: 352-360
    
    106. Li X, Yeh AGO. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. International Journal of Remote Sensing, 1998, 19: 1501-1518.
    
    107. Li Z, O'Neill AL, Lacey S. Modelling approaches to the prediction of soil erosion in catchments. Environmental Software, 1996,11(1-3): 123-133.
    
    108. Li ZW, Zeng GM, Zhang H. The Integrated Eco-environment Assessment of the Red Soil Hilly Region Based on GIS-A Case Study in Changsha City. China.Ecological Modelling, 2007, 202 (3-4): 540-546
    
    109. Lillesand TM, Kiefer RW. Remote sensing and image interpretation, 2002, New York: Wiley.
    
    110. Lins KS, Kleckner RL. Land cover mapping: An overview and history of the concepts. In J. M. Scott, T. H. Tear, & F. Davis (Eds.), Gap analysis: A landscape approach to biodiversity planning (pp. 57-65). 1996, Bethesda, MD: American Society for Photogrammetry and Remote Sensing.
    
    111. Liu J, Tian H, Liu M, Zhuang D, Melillo JM, Zhang Z. China's changing landscape during the 1990s: Large-scale land transformations estimated with satellite data.Geophysics Research Letter, 2005, 32, L02405, doi:10.1029/2004GL021649.
    
    112. Lopes MLM, Minussi CR, Lotufo ADP. Electric load forecasting using a fuzzy ART & ARTMAP neural network. Applied Soft Computing, 2005, 5, pp235-244.
    
    113. Lu D, Mausel P, Brondiozio E, Moran E. Change detection techniques. International Journal of Remote Sensing, 2004, 25(12): 2365-2407.
    114. Luzi L, Pergalani F, Terlien MTJ. Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems.Engineering Geology, 2000, 58: 313-336
    
    115. MacMillan RA, Jones RK, McNabb DH. Defining a hierarchy of spatial entities for environmental analysis and modeling using digital elevation models (DEMs).Computers. Environment and Urban Systems, 2004,28: 175-200
    
    116. Maingi JK, Marsh SE. Assessment of Environmental Impacts of River Basin Development on the Riverine Forests of Eastern Kenya Using Multi - Temporal Satellite Data. International Journal of Remote Sensing, 2001,22 (14): 2701-2729.
    
    117. Makropoulos CK, Butler D. Spatial ordered weighted averaging: incorporating spatially variable attitude towards risk in spatial multi-criteria decision-making.Environmental Modelling & Software, 2006, 21: 69-84
    
    118. Malczewski J. GIS and Multi-criteria Decision Analysis, 1999, John Wiley and Sons, New York.
    
    119. Malczewski J. On the use of weighted linear combination method in GIS: Common and best practice approaches. Trans. GIS, 2000, 4(1): 5-22.
    
    120. Malczewski J. GIS-based multicriteria decision analysis: A survey of the literature.Int. J. Geogr. Informat. Sci., 2006, 20(7): 249-268.
    
    121. Mannan B, Roy J, Ray AK. Fuzzy ARTMAP supervised classification of multi-spectral remotely-sensed images. International Journal of Remote Sensing, 1998, 19:767-774
    
    122. Martinez-Casasnovas JA, Ramos MC, Ribes-Dasi M. Soil erosion caused by extreme rainfall events: mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma, 2002, 105(1-2): 125-140.
    
    123. Mas JF. Monitoring land-cover changes: a comparison of change detection techniques. Inernational Journal of Remote Sensing, 1999,20(1): 139-152.
    
    124. Masoudi M, Patwardhan AM. Risk assessment of water erosion for the Qareh Aghaj subbasin, southern Iran. Stoch. Environ. Res. Risk Assess. 2006, 21: 15-24.
    
    125. Massam B. Multi-criteria decision making techniques in planning. Progress in Planning, 1988, 30(1): 1-84.
    
    126. Mathieu R, King C, Bissonnais Y. Contribution of multi-temporal SPOT data to the mapping of a soil erosion index: the case of the loamy plateaux of northern France.Soil Technology, 1997,10(2): 99-110.
    
    127. McCool DK, Brown LC, Foster GR. Revised slope steepness factor for the Universal Soil Loss Equation. Trans. ASAE, 1987, 30: 1387-1396.
    
    128. Mendicino G. Sensitivity analysis on GIS procedures for the estimate of soil erosion risk, Natural Hazards, 1999, 20: 231-253.
    
    129. Merrit WS, Letcher RA, Jakeman AJ. A review of erosion and sediment transport models. Environmental Modelling & Software, 2003,18: 761-799.
    
    130. Mertens B, Lambin EF. Land-cover-change trajectories in southern Cameroon.Annals of the Association of American Geographers, 2000, 90(3): 467-494.
    
    131. Metternicht GI. Detecting and monitoring land degradation features and processes in Cochabamba Valleys, Bolivia: a synergistic approach. Unpublished PhD, 1996,University of Ghent, Enschede.
    
    132. Metternicht GI, Gonzalez S. FUERO: foundations of a fuzzy exploratory model for soil erosion hazard prediction. Environmental Modelling & Software, 2005, 20:715-728.
    
    133. Mileti DE. Disasters by design. A reassessment of natural hazards in the United States, 1999, Joseph Henry Press, Washington, DC
    134. Millward AA, Mersey JE. Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 1999, 38(2): 109-129.
    
    135. Mitasova H. GIS Tools for Erosion/Deposition Modelling and Multidimensional Visualization. Part III, 1996, Process-based Erosion Simulation, Geographic Modelling and Systems Laboratory, University of Illinois, Illinois.
    
    136. Mitasova H. Terrain Modelling and Soil Erosion Simulation. Final Report, 2000,Geographic Modelling and Systems Laboratory, University of Illinois, Illinois.
    
    137. Morgan RPC. Soil erosion and conservation (Second edition ed.), 1995, Harlow:Longman.
    
    138. Morgan RPC, Rickson RJ. Agriculture: erosion assessment and modeling, 1988,proceedings of a workshop held in Brussels, Belgium, on 2 and 3 December 1986:Luxembourg: Commission of the European Communities.
    
    139. Morgan RPC, Morgan DDV, Finney HJ. A predictive model for the assessment of soil erosion risk. Agricult. Engineering Res., 1984: 245-253.
    
    140. Morgan RPC, Quinton JN, Rickson JRJ. Soil erosion prediction model for the Europian Community, 1992, GB-ISCO-WASWC.
    
    141. Moussa R, Voltz M, Andrieux P. Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events. Hydrol. Processes, 2002, 16: 393-412.
    
    142. Mysiak J, Giupponi C, Rosato P. Towards the development of a decision support system for water resource management. Environmental Modeling and Software,2005, 20: 203-214
    
    143. Nelson RF. Detecting forest canopy changes due to insect activity using Landsat MSS. Photogrammetric Engineering & Remote Sensing, 1983,49: 1303-1314.
    
    144. NSSO. National Soil Survey Office, Danjiangkou, Hubei, China, 2005.
    
    145. Oilier C, Colin P. Regolith, Soils and Landforms, 1996, John Wiley & Sons.
    
    146. Onyando JO, Kisoyan P, Chemelil MC. Estimation of Potential Soil Erosion for River Perkerra Catchment in Kenya. Water Resour. Manag., 2005,19:133-143.
    
    147. Parinet B, Lhote A, Legube B. Principal component analysis: an appropriate tool for water quality evaluation and management-application to tropical lake system. Ecol Model, 2004, 178:295-311
    
    148. Paringit E, Nadaoka K. Sediment yield modelling for small agricultural catchments:Landcover parameterization based on remote sensing data analysis. Hydrological Processes, 2003, 17: 1845-1866.
    
    149. Paudyal GN. An integrated GIS-numerical modelling system for advanced flood management. In Proc. Int. Conf. on Water Resources & Environment Research:Towards the 21st Century, 1996, Water Resources Research Center, Kyoto Univ.,Kyoto, Japan, 555- 562
    
    150. Pereira VFG, Congalton RG, Zarin DJ. Spatial and temporal analysis of a tidal floodplain landscape-Amapa, Brazil-using geographic information systems and remote sensing. Photogrammetric Engineering and Remote Sensing, 2002, 68(5):463-472.
    
    151. Peters NE, Freer J, Beven K. Modelling hydrologic responses in a small forested catchment (Panola Mountain, Georgia, USA): a comparison of the original and a new dynamic TOPMODEL. Hydrological Processes, 2003, 17( 2): 345-362.
    
    152. Petit C, Scudder T, Lambin E. Quantifying processes of land-cover change by remote sensing: resettlement and rapid land-cover changes in south-eastern Zambia.International Journal of Remote Sensing, 2001, 22(17): 3435-3456.
    153. Pfeffer K. Integrating Spatio-temporal Environmental Models for Planning Sky Runs. PhD Dissertation. NGS 311, 2003, Nederlandse Geografische Studies,Utrecht, the Netherlands, 238 pp.
    
    154. Pilesjo P. GIS and Remote Sensing for Soil Erosion Studies in Semi-arid Environments, PhD thesis, 1992, Institutioner, Avhandlingar CXIV. Meddelanden fran Lunds Universitets Geografiska, Lunds, Sweeden, 203 pp.
    
    155. Porter-Bolland L, Ellis EA, Gholz HL. Land use dynamics and landscape history in La Montana, Campeche, Mexico. Landscape and Urban Planning, 2007, 82: 198—207
    
    156. Pullar D, Springer D. Towards integrating GIS and catchment models.Environmental Modelling & Software, 2000, 15: 451-459.
    
    157. Qinke Y, Rui L, Zhang X, Hu L. Regional evaluation of soil erosion by water: a case study on the Loess Plateau of China. 2002, In: T.R. McVicar, L. Rui, R.Fitzpatrick and L. Changming (Editors), Regional Water and Soil Assessment for Mannaging Sustainable Agriculture in China and Australia. ACIAR, Melbourne,Australia, pp. 304-310
    
    158. Rahman MdR, Saha SK. Remote sensing, spatial multi criteria evaluation (SMCE) and analytical hierarchy process (AHP) in optimal cropping pattern planning for a flood prone area, Journal of Spatial Science, 2008, 53(2): 161-177.
    
    159. Rahman MdR, Islam AHMH, Rahman MdA. NDVI Derived Sugarcane Area Identification and Crop Condition Assessment. Planplus, 2004, 1(2): 1-12
    
    160. Rahman MdR, Saha SK. Flood hazard zonation-a GIS aided multicriteria evaluation approach (MCE) with remotely sensed data. International Journal of Geoinformatics,2007, 3(3): 25-37
    
    161. Rahman, Md. R. and Saha, S.K.,. Spatial dynamics of cropland and cropping pattern change analysis using Landsat TM and IRS P6 LISS III satellite images with GIS.Geo-Spatial Information Science, 2009, 12(2).
    
    162. Rahman MdR, Shi ZH, Chongfa C. Land use/land cover change analysis using geo-information technology: two Case studies in Bangladesh and China. Int. J.Geoinformatics, 2009, 5(2).
    
    163. Rao KS, Pant R. Land use dynamics and landscape change pattern in a typical micro watershed in the mid elevation zone of central Himalaya, India. Agriculture Ecosystem and Environment, 2001, 86: 113-123.
    
    164. Rao M, Sastry SVC, Yadar PD, Kharod K, Pathan SK, Dhinwa PS, Majumdar KL,Sampat KD, Patkar VN, Phatak VK. A Weighted Index Model for Urban Suitability Assessment—A GIS Approach. Bombay Metropolitan Regional Development Authority, 1991, Bombay, India.
    
    165. Renard KG, Foster GR, Weesies GA, Porter JP. RUSLE, revised universal soil loss equation, Journal of Soil and Water Conservation, 1991,46(1): 30-33.
    
    166. Renard KG, Freimund JR. Using monthly precipitation data to estimate the R factor in the revised USLE. J. Hydrol., 1994,157: 284-306.
    
    167. Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC. Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook 703, 1997, Washington: USDA
    
    168. Renschler CS, Flanagan DC. Implementing a process-based decision support tool for natural resource management: the GeoWEPP example, Transactions of ASAE,2003, pp. 189-209.
    
    169. Reusing M, Schneider T, Ammer U. Modelling soil loss rates in the Ethiopian Highlands by integration of high resolution MOMS-02/D2-stereo-data in a GIS.International Journal of Remote Sensing, 2000, 21(9): 1885-1896.
    170. Ridd MK, Liu JJ. A comparison of four algorithms for change detection in an urban environment. Remote Sensing of Environment, 1998, 63: 95-100.
    
    171. Rietveld P. Multiple Objective Decision Methods and Regional Planning. 1980,New York: North-Holland Pub. Co.
    
    172. Rinner C, Malczewski J. Web-enabled spatial decision analysis using ordered weighted averaging. Journal of Geographical Systems, 2002,4 (4): 385-403
    
    173. Rojas RS. GIS-based Upland Erosion Modelling, Geovisualization and Grid Size Effects on Erosion Simulations with CASC2D-SED. Ph.D. Dissertation, 2002,Colorado State University, Colorado, 124 pp pp.
    
    174. Rommelfanger HJ. A Fuzzy Logic Approach to Multi-criteria Decision Making Accessed on April 20~(th), 2003, ww.wiwi.unifrankfurt.de/professoren/rommelfanger/index/dokumente/IFSA99p2.doc
    
    175. Rooseboom A, Annandale GW. Techniques applied in determining sediment loads in South African rivers, International Association of Scientific Hydrology Publication, 1981,133: 219-224.
    
    176. Rosenfield GH, Fitzpatirck-Lins K. A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering & Remote Sensing,1986, 52(2): 223-227
    
    177. Rosenthal RE. Concepts, Theory and Techniques: Principals of Multi-objective Optimization. Decision Sciences, 1985, 16(2): 133-152.
    
    178. Ross T. Fuzzy Logic with Engineering Applications. 1995, McGraw-Hill, New York.
    
    179. Roy PS, Tomar S. Landscape cover dynamics pattern in Meghalaya. International Journal of Remote Sensing, 2001, 22(18): 3813-3825.
    
    180. Saaty TL. A Scaling Method for Priorities in Hierarchical Structure", Journal of Mathematical Psychology, 1977, 15: 234-284.
    
    181. Saaty TL. Decision Making with Dependence and Feedback: the Analytic Network Process, 2001, RWS Publisher, Pittsburgh.
    
    182. Saaty TL, Vargas LG. Models, Methods, Concepts & Applications of Analytical Hierarchy Process. International Series in Operations Research and Management sciences. Boston/Dodrecht/London, 2001, Kluwer Academic Publishers.
    
    183. Saaty TL. The Analytic Hierarchy Process, 1980, McGraw-Hill, New York.
    
    184. Schoorl JM. Addressing the Multiscale LAPSUS of Landscape. PhD Dissertation,2002, Wageningen University, Wageningen.
    
    185. Shalaby A, Tateishi R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 2007, 27: 28-41.
    
    186. Sharifi MA, Herwijnen MV. Spatial Decision Support System: Theory and Practice,2003, ITC Lecture Seri.
    
    187. Sharifi MA, van den Toorn W, Rico A, Emmanuel M. Application of GIS and multicriteria evaluation in locating sustainable boundary between the Tunari National Park and Cochabamba City (Bolivia), Journal of Multi-Criteria Decision Analysis, 2002, 11:151-164.
    
    188. Sharifi MA, van Herwijnen M, van den Toorn W. Spatial Decision Support Systems: Theory and Practice, 2006, ISPRS, WG II/IV.
    
    189. Shi P, Gong P, Li X, Chen J, Qi Y, Pan Y. Methods and practices of LUCC research,2000, Science press (China).
    
    190. Shi ZH, Cai CF, Ding SW, Wang TW, Chow TL. Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge area of China. Catena, 2004, 55: 33-48.
    191. Singh A. Digital change detection techniques using remotely sensed data.International Journal of Remote Sensing, 1989,10(6): 989-1003.
    
    192. Singh D, Herlin I, Berroir JP, Silva EF, Simoes-Meirelles P. An approach to correlate NDVI with soil colour for erosion process using NOAA/AVHRR data.Advances in Space Research, 2004, 33(3): 328-332.
    
    193. Sivapalan M, Jothityangkoon C, Menabde M. Linearity and non linearity of basin response as a function of scale: discussion of alternative definitions. Water Resources Research, 2002, 38(2).
    
    194. Souchere V, Cerdan O, Dubreuil N, Le Bissonnais Y, King C. Modelling the impact of agro-environmental scenarios on overland flow in a cultivated catchment (Normandy, France). Catena, 2005, 61: 229-240.
    
    195. SRDI. Soil Resource Development Institute, 2005, Dhaka.
    
    196. Stocking M. A working model for the estimation of soil loss suitable for underdeveloped areas, 1981, Norwich: School of Development Studies, University of East Anglia.
    
    197. Stocking MA, Elwell HA. Soil erosion hazard in Rhodesia, Rhodesian Agricultural Journal, 1973,70:93-101.
    
    198. Stow DA, Chen DM. Sensitivity of multi-temporal NOAA AVHRR data of an urbanizing region to land use/cover changes and misregistration. Remote Sensing of Environment, 2002, 80: 297-307
    
    199. Symeonakis E., Drake N. Monitoring desertification and land degradation over sub-Saharan Africa. International Journal of Remote Sensing, 2004, 25(3): 573-592.
    
    200. Tateishi R, Shimazaki Y, Gunin PD. Spectral and temporal linear mixing model for vegetation classification. International Journal of Remote Sensing, 2004, 25(20):4203-4218.
    
    201. Thomas RH, Huggert RJ. Modelling in Geography: A Mathematical Approach,1980, Harper & Row, London.
    
    202. Tian YC, Zhou YM, Wu BF, Zhou WF. Risk assessment of water soil erosion in upper basin of Miyun Reservoir, Beijing, China, Environmental Geology, 2008,DOI 10.1007/s00254-008-1376-z.
    
    203. Tkach R, Simonovic S. A new approach to multicriteria decision making in water resources. Journal of Geographical Information and Decision Analysis, 1997, 1(1):25-43. http://publish.uwo.ca/~jmalczew/gida.htm, (4-2-2000).
    
    204. Toll DL, Royal J, Davis JB. Urban areas update procedures using Landsat data,1980, In Proceedings of American Society of Photogrammetry. Falls Church, VA:American Society of Photogrammetry.
    
    205. Townshend JRG, Justice CO. Spatial variability of images and the monitoring of changes in the normalized difference vegetation index. International Journal of Remote Sensing, 1995, 16: 2187-2195.
    
    206. Tran LT, Knight CG, O'neill RV, Smith ER, Riitters KH, Wickham J. Fuzzy decision analysis for integrated environmental vulnerability assessment of the mid-atlantic region. Environ Manage., 2002, 29: 845-859
    
    207. Turker M, Derenyi E. GIS Assisted Change Detection Using Remote Sensing.Geocarto International, 2000, 15 (1).
    
    208. Vaidyanathan NS, Sharma G, Sinha R, Dikshit O. Mapping of erosion intensity in the Garhwal Himalaya. International Journal of Remote Sensing, 2002, 23(20):4125-4129.
    
    209. van Oost K, Govers G, Desmet P. Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landscape Ecology, 2000, 15(6): 577-589.
    210. Van Reeuwijk LP. Introduction to Physico-Chemical Aspects of Soil Formation,1997, ITC, Enschede.
    
    211. Varnes DJ. Landslide hazard zonation: a reveiw of principles and practice. 1984,Unesco. Paris.
    
    212. Verburg PH, Chen YQ. Multiscale characterization of land-use patterns in China.Ecosystem, 2000, 3: 369- 385.
    
    213. Vezina K, Bonn F, Van CP. Agricultural land-use patterns and soil erosion vulnerability of watershed units in Vietnam's northern highlands. Landscape Ecol.,2006,21: 1311-1325.
    
    214. Viney NR, Sivapalan M. A conceptual model of sediment transport: application to the Avon river basin in Western Australia. Hydrological Processes, 1999, 13: 727-743.
    
    215. Voogd H. Multicriteria Evaluation for Urban and Regional Planning, 1983, Pion,London.
    
    216. Vrieling A, Sterk G, Beaulieu A. Erosion risk mapping: a methodological case study in the Colombian Eastern Plains. Journal of Soil and Water Conservation, 2002,57(3): 158-162.
    
    217. Wang F. Fuzzy supervises classification of remote sensing images. IEEE Transactions on Geosciences and Remote Sensing, 1990, 28: 194-201.
    
    218. WB. World Bank Development Indicators Database, April, 2006.
    
    219. Williams JR, Berndt HD. Sediment yield prediction based on watershed hydrology.Trans ASAE, 1977,20: 1100-1104
    
    220. Williams JR, Jones CA, Dyke PT. The EPIC model. United States department of agriculture (USDA), 1990, Technical Bulletin No. 1768
    
    221. Williams JR, Renard KG. A new method for assessing erosion's effects on soil productivity, Journal of Soil and Water Conservation, 1983, 38: 381-383.
    
    222. Wilson JP, Gallant JC. Terrain Analysis: Principles and Applications. 2000, Wiley,New York, USA.
    
    223. Wischmeier WH. New developments in estimating water erosion. 29e Meeting Soil Cons. Soc. Amer. Syracuse, 1974, New York. pp. 179-186.
    
    
    224. Wischmeier WH, Smith DD. Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook, No. 587. Science and Education Administration, 1978, US Department of Agriculture, Washington, DC, USA
    
    225. Wischmeier WH, Mannering JV. Division S-6 : soil and water management and conservation : relation of soil properties to its erodibility Reprinted from: Soil Science Society of America, 1969: 131-138.
    
    226. Wischmeier WH, Smith DD. Predicting rainfall erosion losses from cropland east of the Rocky Mountains. Handbook no. 282, 1965, USDA. Washington, DC.
    
    227. Wolfslehner B, Vacik H, Lexer M. Application of the analytic network process in multi-criteria analysis of sustainable forest management. Forest Ecol. Manag., 2005,207: 157-170.
    
    228. Wu Q, Wang M. A framework for risk assessment on soil erosion by water using an integrated and systematic approach, Journal of Hydrology, 2007, 337: 11-21.
    
    229. Wu Q, Li HQ, Wang RS, Paulussen J, He Y, Wang M, Wang BH, Wang Z.Monitoring and predicting land use change in Beijing using remote sensing and GIS.Landscape and Urban Planning, 2006, 78: 322-333.
    
    230. Xia A, Clarke KC. Approaches to scaling of geo-spatial data, 1997, In: D.A.Quattrochi and M.F. Goodchild (Editors), Scale in Remote Sensing and GIS. CRC Lewis, Boca Raton, Florida, USA, pp. 309-360.
    231. Xie Z, Xiao B. Sub-area and assessment model of soil erosion-Jiangsu Province as an example, Nanjing Normal University Transaction, 2002,25 (1): 12-18.
    
    232. Yager R. On Ordered Weighted Averaging Aggregation Operators in Multi-criteria Decision Making, IEEE Transactions on Systems, Man, and Cybernetics, 1988, 8(1): 183-190.
    
    233. Yang QK, Li R, Cao MM. Advances of quantitative assessment on regional soil erosion, Advance Earth Science, 2006, 21: 848-855.
    
    234. Yang X, Lo CP. Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. International Journal of Remote Sensing, 2002, 23(9): 1775-1798.
    
    235. Ying X, Ming ZG, Qiu CG, Lin T, Lin WK, You HD. Combining AHP with GIS in synthetic evaluation of eco-environment quality-A case study of Hunan Province,China. Ecological Modelling, 2007,209: 97-109
    
    236. Young A, Cheatle RJ, Muraya P. The potential of agoforestry for soil conservation:Part III, 1987, soil changes under agroforestry (SCUAF): a predictive model.(ICRAF working paper; 44), 90.
    
    237. Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multi-temporal Landsat remote sensing. Remote Sensing of Environment, 2005, 98(2-3):317-328.
    
    238. Yuan LB, Keli Z, Yun X. An empirical soil loss equation, 2002, Proceedings of the 12~(th) International soil conservation organization conference, Beijing, China, 26-31 May 2002.
    
    239. Yuan WS, Shi LJ, Jian YC. Eco-environmental vulnerability evaluation in the Yellow river basin, China. Pedosphere, 2008,18(2): 171-182
    
    240. Zeng GM, Jiang R, Huang GH. Optimization of wastewater treatment alternatives selection by hierarchy grey relational analysis. Journal of Environmental Management, 2007, 82: 250-259
    
    241. Zhang X. Remote Sensing and GIS for Modelling Soil Erosion at the Global Scale.PhD Dissertation, 1999, Kings College London, London, UK.
    
    242. Zhang X, Drake N, Wainwright J. Scaling land surface parameters for global-scale soil erosion estimation. Water Resources Research, 2002, 38(9): 1170-1180.
    
    243. Zhou Q, Li B, Zhou C. Studying spatio-temporal pattern of landuse change in arid environment of China, 2004, In Advances in Spatial Analysis and Decision Making,Li Z, Zhou Q, Kainz W. (eds.), Swets & Zeitlinger, Lisse: 189-200.
    
    244. Zinck JA. Physiography and Soils. Lecture-notes for soil students. Soil Science Division. Soil survey courses Subject matter: K6 ITC, 1988/1989, Enschede, The Netherlands.
    
    245. Zucca A, Sharifi AM, Fabbri AG. Application of spatial multi-criteria analysis to site selection for a local park: A case study in the Bergamo Province, Italy. Journal of Environmental Management, 2008, 88(4), 752-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700