用户名: 密码: 验证码:
膀胱移行细胞癌Wnt信号通路抑制因子1基因启动子甲基化状态的基础与临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Wnt信号通路广泛地涉及到机体的发育过程与肿瘤的发生。目前有关Wnt信号通路的研究主要集中于Wnt下游信号的异常表现,如β-catenin,APC,GSK-3β,CTNNB1及axin基因突变等。而对于Wnt信号通路的上游信号(Wnt蛋白及其抑制物等)的异常改变与肿瘤发生的关系的研究相对较少。Wnt蛋白的表达在膀胱尿路上皮恶变过程中明显增加:浅表性膀胱肿瘤高于正常膀胱粘膜,而且明显高于侵袭性膀胱癌,这提示Wnt信号通路与膀胱癌发生有关。而Wnt信号通路下游分子,如APC和β-catenin的遗传学改变在膀胱癌中比较少见。因此,我们推测膀胱癌Wnt信号通路上游水平的异常改变可能是激活该通路的主要原因。WIF-1 (Wnt inhibitory factor-1)是Wnt信号通路抑制物之一,它可通过直接与Wnt信号蛋白结合而抑制Wnt信号通路。膀胱癌WIF-1表达下调,但其机制及其生物学效应尚不清楚。
     一.目的:
     1.探讨膀胱癌Wnt信号途径上游关键调控分子WIF-1启动子甲基化是否为抑制WIF-1表达的主要原因;研究WIF-1重新表达后对膀胱癌细胞的影响。
     2.探讨WIF-1的重表达与喜树碱细胞毒性之间的关系,观察膀胱癌WIF-1基因重表达后HCPT抗癌效应的变化,探讨5-aza-dc与HCPT可能协同作用的机制。
     3.探讨WIF-1启动子甲基化状态与膀胱癌的临床病理关系,进一步明确WIF-1启动子甲基化与膀胱癌的关系,分析WIF-1甲基化可否作为判断膀胱癌患者的预后以及早期诊断的分子标志物。
     二.方法:
     1.通过RT-PCR检测Wnt1,Wnt5a,Wnt10b和Wnt13的mRNA在膀胱癌细胞株BIU87和T24的表达情况;通过免疫组织化学技术检测Wnt1在正常膀胱上皮和膀胱癌的表达情况;
     2.通过RT-PCR、免疫细胞化学以及Western-blot等方法检测膀胱癌细胞株BIU87和T24的WIF-1的表达情况。
     3.甲基化抑制剂5-aza-dc处理膀胱癌细胞株BIU87和T24,通过甲基化特异性PCR(MSP)方法检测膀胱癌细胞WIF-1基因在5-aza-dc处理前后的甲基化状态的变化;
     4.5-aza-dc处理膀胱癌细胞BIU87和T24后,通过MTT法,流式细胞仪分析(AnnexinⅤ/PI双染法)和TUNEL法检测膀胱癌细胞的生长抑制及凋亡情况;
     5.不同浓度的5-aza-dc和羟基喜树碱联合处理膀胱癌细胞株BIU87、T24以及体外原代培养膀胱癌细胞,通过MTT法检测它们的细胞毒性。等效线图解法分析它们的联合效应;
     6.流式细胞仪分析(AnnexinⅤ/PI双染法)和TUNEL法检测5-aza-dc和羟基喜树碱对膀胱癌细胞的诱导凋亡效应;RT-PCR法检测两药联合作用时对WIF-1表达的影响; 7.MSP法检测膀胱癌组织,正常膀胱组织以及腺性膀胱炎组织标本的WIF-1甲基状态;免疫组织化学技术检测上述组织WIF-1蛋白表达情况。SPSS12.0进行统计分析。
     三.结果:
     1. BIU87和T24的Wnt表达情况不尽相同:它们均不表达Wnt1;均表达Wnt13;BIU87不表达Wnt5a,但T24表达; Wnt1在不同分化程度的膀胱癌以及正常膀胱上皮中均不表达;
     2.正常培养条件下的膀胱癌细胞株BIU87和T24均不表达WIF-1。在5-aza-dc(5μM)作用72小时后,BIU87和T24均表达WIF-1。
     3. MTT法显示5-aza-dc对膀胱癌细胞有明显的生长抑制作用,与空白对照组比较,差异有显著性意义(p<0.05),两株膀胱癌细胞T24和BIU87之间无显著性差异。5-aza-dc作用72小时后的两种膀胱癌细胞株的凋亡率,与空白对照组比较有显著性差异。
     4.WIF-1 mRNA的表达不受HCPT的影响,而且HCPT单独作用于膀胱癌细胞并不能恢复WIF-1的表达。
     5.5-aza-dc和HCPT对膀胱癌细胞有剂量依赖性细胞毒性(p<0.01),两药产生了明显的协同作用;而且2种膀胱癌细胞株与原代培养的3株膀胱癌细胞表现出类似的效果。WIF-1重表达后可以增加HCPT诱导膀胱癌细胞的凋亡。
     6.WIF-1启动子甲基化阳性率肿瘤分级的增加逐渐升高(G1、G2、G3级分别为20.0%、56.3%和86.7%),组间比较有显著性差异(p<0.05);浅表性和浸润性肿瘤的WIF-1启动子甲基化阳性率也有显著性差异(P<0.05)。通过Kaplan Meier分析显示WIF-1启动子甲基化与未甲基化两组之间的5年总生存率分别为60.6%和91.7%(p<0.05)。
     7.正常膀胱组织的WIF-1蛋白表达率为92.3%;腺性膀胱炎的WIF-1蛋白表达率为85%,两者之间无明显差异(p>0.05)。膀胱癌组织WIF-1蛋白总体表达率为30.1%,明显低于正常膀胱和腺性膀胱炎的表达率(P<0.01)。WIF-1在浅表性和浸润性肿瘤组织中的表达有显著性差异(p<0.05),而且随肿瘤分级的增加WIF-1阳性表达率逐渐降低,高分化与低分化肿瘤之间差异非常明显(P<0.01)。
     四.结论:
     1.膀胱癌WIF-1基因启动子甲基化是抑制WIF-1表达的主要机制;
     2.WIF-1基因对膀胱癌生物学行为有重要影响,它是膀胱癌的重要抑癌基因。WIF-1启动子去甲基化后恢复表达是5-aza-dc与HCPT协同作用的重要机制;
     3.WIF-1启动子甲基化与膀胱癌病理分级分期以及生存率密切相关。WIF-1不仅是膀胱肿瘤发生的早期分子事件,而且与膀胱癌的发展有关。WIF-1基因启动子甲基化状态可作为诊断膀胱癌并且判断其预后的一个重要分子标志物。
Wnt passway widely involves the development of organisms and tumorigenesis. Aberrant activation of Wnt passway has been found in various cancers including tumors of colon, lung, head and neck, melanoma and leukemia. Present researches commonly were focused on the changes of downstream signals of Wnt passway, such as mutation ofβ-catenin,APC,GSK-3β,CTNNB1, axin and so on . Relatively Fewer studies had been done to illuminate the relation between tumor behaviors and upstream signals including Wnt proteins and their inhibitors. Recent studies showed that colon cancer is related with the abnormal changes of upstream signals of this passway. Wnt protein expression increases in bladder urothelium during tumorigenesis, which means it functions on the development of bladder cancer. Previous studies indicated that the genetic mutations of downstream signal molecules, such as APC andβ-catenin, were less common in bladder cancer. Hence, we hypothesized that abnormity of upstream signals may activate the Wnt passway in bladder cancer. Wnt inhibitory factor-1 can block the signal transduction by direct binding to Wnt protein. Immunohistochemistry revealed the down-regulation of WIF-1 in bladder cancer. However the underlying mechanism of down-regulation of WIF-1 and its relative biological influences on bladder cancer remain unclear.
     1. Objectives:
     (1) To detect the expression of Wnt genes in bladder cancer.
     (2) To test whether promoter methylation of WIF-1 inhibits the gene expression and to study the biological effect of WIF-1’s re-expression on bladder cancer cells.
     (3) To explore the relation between WIF-1 re-expression and the cytotoxicity of hydroxycamptothecin, and to explore the potential machinery of synergism of 5-aza-2′-deoxycytidine and HCPT by analyzing their combination effect on bladder cancer cells.
     (4) To explore the relation between WIF-1 promoter methylation and clinical pathology of bladder cancer for the purpose of demonstrating if WIF-1 can be used as a molecular marker for the diagnosis and prognosis prediction of bladder cancer.
     2. Methods:
     (1) RT-PCR was used to determine the expression of Wnt1, Wnt5a, Wnt10b and Wnt13 mRNA in bladder cancer cell lines BIU87 and T24; Immunohistochemistry was performed on normal bladder mucosa and bladder cancer tissues to determine the Wnt1 protein expression.
     (2) RT-PCR, immunocytochemistry and Western-blot analysis were applied to assess the expression pattern of WIF-1 on bladder cancer cell line BIU87 and T24.
     (3) Demethylating agent 5-aza-2′-dexoycytidine was used to treat bladder cancer cell line BIU87 and T24 in vitro. Methylation-specific polymerase chain reaction (MSP) assay was performed to detect the change of methylation status of WIF-1 gene in bladder cancer cells after the 5-aza-2′-dexoycytidine treatment.
     (4) Methyl thiazolyl tetrazolium assay (MTT) was used to evaluate the cytotoxicity, and flow cytometry (AnnexinⅤ/PI staining) and terminal deoxynucleotidyl transferase mediated nick end labeling (TUNEL) were employed to detect apoptosis of bladder cancer cells after 5-aza-2′-deoxycytidine treatment in vitro.
     (5) The cytotoxicity of HCPT in combination with 5-aza-dc on bladder cancer cell lines and primary cultured bladder cancer cells was assessed by MTT assay. Isobologram analysis was used to determine if combination effect was synergistic, or additive or antagonistic.
     (6) FCM and TUNEL were performed to detect the apoptosis of bladder cancer cell lines and primary cultured bladder cancer cells after treatment of HCPT in combination with 5-aza-dc. Then RT-PCR was performed to assess the expression of WIF-1.
     (7) MSP was applied to evaluate the methylation status of WIF-1 gene of different bladder tissues, including bladder cancer, normal bladder mucosa and glandular cystitis. WIF-1 protein expressions in the tissues were examined by immunohistochemistry. Statistical analysis was performed using SPSS12.0 software.
     3. Results:
     (1) Wnt expression pattern of BIU87 and T24 cell was not identical: no Wnt1 expression in both cells, but Wnt13 expressed in both cells; Wnt5a was only seen in BIU87. Wnt1 did not express in bladder cancer tissues and normal bladder mucosa.
     (2) WIF-1 did not expressed in bladder cancer cell line BIU87 and T24, but re-expressed after 5-aza-dc treatment in both cell lines.
     (3) 5-aza-dc showed significant effects of growth inhibition and apoptosis-induction on bladder cancer cells compared with control group (p<0.05).
     (4) HCPT did not interfere with the expression of WIF-1 mRNA when combined with 5-aza-dc in vitro, and HCPT also did not recover the expression of WIF-1.
     (5) Dose-dependent cytotoxicity of 5-aza-dc and/or HCPT was observed on bladder cancer cells. 5-aza-dc enhanced synergistically the cytotoxicity of HCPT on bladder cancer cell which was related to WIF-1 re-expression.
     (6) WIF-1 methylation rates increased with the increase of bladder cancer grade (20.0% in G1, 56.3% in G2,and 86.7% G3) and stage (superficial and invasive) (p<0.05). Total 5-year survival of patients with WIF-1 gene promoter methylation was significantly lower that of patients without WIF-1 gene promoter methylation (60.6% versus 91.7%, p<0.05).
     (7) Positive WIF-1 protein expression did not keep pace with the methylation status of WIF-1, which was lower than the expected percentage. Total expression rate of WIF-1protein expression was observed in 30.1% of patients while 92.3% in normal mucosa and 85% in glandular cystitis. The difference between neoplasia and non-neoplasia was statistically significant (p<0.01).
     4. Conclusions:
     (1) DNA methylation was a potential mechanism for silencing the expression of WIF-1 gene in bladder cancer.
     (2) WIF-1 was an important anti-oncogene for bladder cancer which showed significant inhibitory effect on bladder cancer. WIF-1 re-expression may potentially involve the synergism of 5-aza-dc and HCPT on bladder cancer cells.
     (3) The methylation status of WIF-1 gene was significantly associated with bladder cancer grade and stage, and long-term survival of patients. Therefore WIF-1 gene promoter methylation can be used as a good molecular marker for the diagnosis and prognosis prediction for bladder cancer.
引文
1. Mitra AP, Datar RH, Cote RJ. Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J Clin Oncol 2006; 24(35):5552-64.
    2. Polakis P. Wnt signaling and cancer. Genes Dev 2000; 14(15):1837-51.
    3. Taketo MM. Shutting down Wnt signal-activated cancer. Nat Genet 2004; 36(4):320-2.
    4. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 2003; 1653(1):1-24.
    5. Behrens J, Lustig B. The Wnt connection to tumorigenesis. Int J Dev Biol 2004; 48(5-6):477-87.
    6. Nusse R. Wnt signaling in disease and in development. Cell Res 2005; 15(1):28-32.
    7. He B, Reguart N, You L, et al. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene 2005; 24(18):3054-8.
    8. Karim R, Tse G, Putti T, et al. The significance of the Wnt pathway in the pathology of human cancers. Pathology 2004; 36(2):120-8.
    9. Leyns L, Bouwmeester T, Kim SH, et al. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 1997; 88(6):747-56.
    10. Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 2002; 31(2):141-9.
    11. Wehrli M, Dougan ST, Caldwell K, et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 2000; 407(6803):527-30.
    12. Hsieh JC, Kodjabachian L, Rebbert ML, et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 1999; 398(6726):431-6.
    13. Reguart N, He B, Xu Z, et al. Cloning and characterization of the promoter of human Wnt inhibitory factor-1. Biochem Biophys Res Commun 2004; 323(1):229-34.
    14. Mao B, Wu W, Li Y, et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 2001; 411(6835):321-5.
    15. Mazieres J, He B, You L, et al. Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res 2004; 64(14):4717-20.
    16. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 2006; 5(1):37-50.
    17. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1):6-21.
    18. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006; 6(2):107-16.
    19. Belinsky SA, Liechty KC, Gentry FD, et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res 2006; 66(6):3338-44.
    20. Sekido Y, Fong KM, Minna JD. Molecular genetics of lung cancer. Annu Rev Med 2003; 54:73-87.
    21. Zochbauer-Muller S, Fong KM, Virmani AK, et al. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 2001; 61(1):249-55.
    22. Zochbauer-Muller S, Lam S, Toyooka S, et al. Aberrant methylation of multiple genes in the upper aerodigestive tract epithelium of heavy smokers. Int J Cancer 2003; 107(4):612-6.
    23. Shames DS, Minna JD, Gazdar AF. DNA methylation in health, disease, and cancer. Curr Mol Med 2007; 7(1):85-102.
    24.Bui TD, O'Brien T, Crew J, et al. High expression of Wnt7b in human superficial bladder cancer vs invasive bladder cancer. Br J Cancer 1998; 77(2):319-24.
    25.Shiina H, Igawa M, Shigeno K, et al. Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 Genes in bladder cancer. J Urol 2002; 168(5):2220-6.
    1. Nusse R. Wnt signaling in disease and in development. Cell Res 2005; 15(1):28-32.
    2. Behrens J, Lustig B. The Wnt connection to tumorigenesis. Int J Dev Biol 2004; 48(5-6):477-87.
    3. Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 2002; 31(2):141-9.
    4. Caldwell GM, Jones C, Gensberg K, et al. The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res 2004; 64(3):883-8.
    5. Suzuki H, Watkins DN, Jair KW, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 2004; 36(4):417-22.
    6. He B, You L, Uematsu K, et al. A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 2004; 6(1):7-14.
    7. Lako M, Strachan T, Bullen P, et al. Isolation, characterisation and embryonic expression of WNT11, a gene which maps to 11q13.5 and has possible roles in the development of skeleton, kidney and lung. Gene 1998; 219(1-2):101-10.
    8. Bui TD, O'Brien T, Crew J, et al. High expression of Wnt7b in human superficial bladder cancer vs invasive bladder cancer. Br J Cancer 1998; 77(2):319-24.
    9. Shiina H, Igawa M, Shigeno K, et al. Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 Genes in bladder cancer. J Urol 2002; 168(5):2220-6.
    10. Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci 2003; 116(Pt 13):2627-34.
    11. Hsieh JC, Kodjabachian L, Rebbert ML, et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 1999; 398(6726):431-6.
    12. Wissmann C, Wild PJ, Kaiser S, et al. WIF1, a component of the Wnt pathway, isdown-regulated in prostate, breast, lung, and bladder cancer. J Pathol 2003; 201(2):204-12.
    13. Mazieres J, He B, You L, et al. Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res 2004; 64(14):4717-20.
    14. Enokida H, Shiina H, Igawa M, et al. CpG hypermethylation of MDR1 gene contributes to the pathogenesis and progression of human prostate cancer. Cancer Res 2004; 64(17):5956-62.
    15. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982; 31(1):99-109.
    16. Devanesan P, Todorovic R, Zhao J, et al. Catechol estrogen conjugates and DNA adducts in the kidney of male Syrian golden hamsters treated with
    4-hydroxyestradiol: potential biomarkers for estrogen-initiated cancer. Carcinogenesis 2001; 22(3):489-97.
    17. Bocchinfuso WP, Korach KS. Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia 1997; 2(4):323-34.
    18. He B, Reguart N, You L, et al. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene 2005; 24(18):3054-8.
    19. Chen G, Shukeir N, Potti A, et al. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 2004; 101(6):1345-56.
    20. Huguet EL, McMahon JA, McMahon AP, et al. Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res 1994; 54(10):2615-21.
    21. Kirikoshi H, Sekihara H, Katoh M. Molecular cloning and characterization ofhuman WNT7B. Int J Oncol 2001; 19(4):779-83.
    22. Lane TF, Leder P. Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 1997; 15(18):2133-44.
    23. Bui TD, Rankin J, Smith K, et al. A novel human Wnt gene, WNT10B, maps to
    12q13 and is expressed in human breast carcinomas. Oncogene 1997; 14(10):1249-53.
    24. Kuhl M, Sheldahl LC, Malbon CC, Moon RT. Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem 2000; 275(17):12701-11.
    25. Kuhl M, Sheldahl LC, Park M, et al. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000; 16(7):279-83.
    26. Olson DJ, Gibo DM. Antisense wnt-5a mimics wnt-1-mediated C57MG mammary epithelial cell transformation. Exp Cell Res 1998; 241(1):134-41.
    27. Jonsson M, Dejmek J, Bendahl PO, Andersson T. Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res 2002; 62(2):409-16.
    28. Wong GT, Gavin BJ, McMahon AP. Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol 1994; 14(9):6278-86.
    29. Yoshida MA, Shimizu M, Ikeuchi T, et al. In vitro growth suppression and morphological change in a human renal cell carcinoma cell line by the introduction of normal chromosome 3 via microcell fusion. Mol Carcinog 1994; 9(3):114-21.
    30. Olson DJ, Gibo DM, Saggers G, et al. Reversion of uroepithelial cell tumorigenesis by the ectopic expression of human wnt-5a. Cell Growth Differ 1997; 8(4):417-23.
    31. Julicher K, Marquitan G, Werner N, et al. Novel tumor suppressor locus in human chromosome region 3p14.2. J Natl Cancer Inst 1999; 91(18):1563-8.
    32. Kremenevskaja N, von Wasielewski R, Rao AS, et al. Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene 2005; 24(13):2144-54.
    33. Topol L, Jiang X, Choi H, et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 2003; 162(5):899-908.
    34. Saitoh T, Mine T, Katoh M. Frequent up-regulation of WNT5A mRNA in primary gastric cancer. Int J Mol Med 2002; 9(5):515-9.
    35. Lejeune S, Huguet EL, Hamby A, et al. Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res 1995; 1(2):215-22.
    36. Saldanha G, Ghura V, Potter L, Fletcher A. Nuclear beta-catenin in basal cell carcinoma correlates with increased proliferation. Br J Dermatol 2004; 151(1):157-64.
    37. Saitoh T, Katoh M. Expression and regulation of WNT5A and WNT5B in human cancer: up-regulation of WNT5A by TNFalpha in MKN45 cells and up-regulation of WNT5B by beta-estradiol in MCF-7 cells. Int J Mol Med 2002; 10(3):345-9.
    38. Huang CL, Liu D, Nakano J, et al. Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor--an expression in non-small-cell lung cancer. J Clin Oncol 2005; 23(34):8765-73.
    39. Weeraratna AT, Jiang Y, Hostetter G, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 2002; 1(3):279-88.
    40. Kurayoshi M, Oue N, Yamamoto H, et al. Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 2006; 66(21):10439-48.
    41. Hoang B, Moos M, Jr., Vukicevic S, Luyten FP. Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J Biol Chem 1996; 271(42):26131-7.
    42. Illies MR, Peeler MT, Dechtiaruk A, Ettensohn CA. Cloning and developmental expression of a novel, secreted frizzled-related protein from the sea urchin, Strongylocentrotus purpuratus. Mech Dev 2002; 113(1):61-4.
    43. Jones SE, Jomary C. Secreted Frizzled-related proteins: searching for relationships and patterns. Bioessays 2002; 24(9):811-20.
    44. Kato M, Patel MS, Levasseur R, et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002; 157(2):303-14.
    45. Kim AS, Lowenstein DH, Pleasure SJ. Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon. Mech Dev 2001; 103(1-2):167-72.
    46. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006; 6(2):107-16.
    47. Sekido Y, Fong KM, Minna JD. Molecular genetics of lung cancer. Annu Rev Med 2003; 54:73-87.
    48. Belinsky SA, Liechty KC, Gentry FD, et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res 2006; 66(6):3338-44.
    49. Zochbauer-Muller S, Fong KM, Virmani AK, et al. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 2001; 61(1):249-55.
    50. Shames DS, Minna JD, Gazdar AF. DNA methylation in health, disease, and cancer. Curr Mol Med 2007; 7(1):85-102.
    1. Amira N, Mourah S, Rozet F, et al. Non-invasive molecular detection of bladder cancer recurrence. Int J Cancer 2002; 101(3):293-7.
    2. Sternberg CN. The treatment of advanced bladder cancer. Ann Oncol 1995; 6(2):113-26.
    3. Cheng JC, Weisenberger DJ, Gonzales FA, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol 2004; 24(3):1270-8.
    4. Chen S, Guttridge DC, You Z, et al. Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol 2001; 152(1):87-96.
    5. He B, Reguart N, You L, et al. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene 2005; 24(18):3054-8.
    6. He B, You L, Uematsu K, et al. A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 2004; 6(1):7-14.
    7. Watcharasit P, Bijur GN, Zmijewski JW, et al. Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc Natl Acad Sci U S A 2002; 99(12):7951-5.
    8. Mattern MR, Hofmann GA, Polsky RM, et al. In vitro and in vivo effects of clinically important camptothecin analogues on multidrug-resistant cells. Oncol Res 1993; 5(12):467-74.
    9. Bender CM, Pao MM, Jones PA. Inhibition of DNA methylation by 5-aza-2'-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 1998; 58(1):95-101.
    10. Velicescu M, Weisenberger DJ, Gonzales FA, et al. Cell division is required for de novo methylation of CpG islands in bladder cancer cells. Cancer Res 2002; 62(8):2378-84.
    11. Lee MG, Kim HY, Byun DS, et al. Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res 2001; 61(18):6688-92.
    12. Liang G, Gonzales FA, Jones PA, et al. Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2'-deoxycytidine. Cancer Res 2002; 62(4):961-6.
    13. Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2'-deoxycytidine (decitabine) treatment. Blood 2002; 100(8):2957-64.
    14. Richel DJ, Colly LP, Kluin-Nelemans JC, Willemze R. The antileukaemic activity of 5-Aza-2 deoxycytidine (Aza-dC) in patients with relapsed and resistant leukaemia. Br J Cancer 1991; 64(1):144-8.
    15. Momparler RL, Ayoub J. Potential of 5-aza-2'-deoxycytidine (Decitabine) a potent inhibitor of DNA methylation for therapy of advanced non-small cell lung cancer. Lung Cancer 2001; 34 Suppl 4:S111-5.
    16. Hurtubise A, Momparler RL. Evaluation of antineoplastic action of 5-aza-2'-deoxycytidine (Dacogen) and docetaxel (Taxotere) on human breast, lung and prostate carcinoma cell lines. Anticancer Drugs 2004; 15(2):161-7.
    17. Mizutani Y, Yoshida O, Bonavida B. Prognostic significance of soluble Fas in the serum of patients with bladder cancer. J Urol 1998; 160(2):571-6.
    18. Berenbaum MC. What is synergy? Pharmacol Rev 1989; 41(2):93-141.
    19. Luszczki JJ, Borowicz KK, Swiader M, Czuczwar SJ. Interactions between oxcarbazepine and conventional antiepileptic drugs in the maximal electroshock test in mice: an isobolographic analysis. Epilepsia 2003; 44(4):489-99.
    20. Berenbaum MC. A method for testing for synergy with any number of agents. J Infect Dis 1978; 137(2):122-30.
    21. Tallarida RJ. Statistical analysis of drug combinations for synergism. Pain 1992; 49(1):93-7.
    22. Mizutani Y, Fukumoto M, Bonavida B, Yoshida O. Enhancement of sensitivity of urinary bladder tumor cells to cisplatin by c-myc antisense oligonucleotide. Cancer 1994; 74(9):2546-54.
    23. Tallarida RJ. The interaction index: a measure of drug synergism. Pain 2002; 98(1-2):163-8.
    24. Fan J, Tang X, Zhang X. 10-Hydroxycamptothecin induces apoptosis in human T24 urinary bladder cancer cells. Chine J Med 1998; 78:301-3-4.
    25. Ling YH, Perez-Soler R, Tseng MT. Effect of DNA topoisomerase I inhibitor, 10-hydroxycamptothecin, on the structure and function of nuclei and nuclear matrix in bladder carcinoma MBT-2 cells. Anticancer Res 1993; 13(5A):1613-7.
    26. Fu YR, Yi ZJ, Yan YR, Qiu ZY. Hydroxycamptothecin-induced apoptosis in hepatoma SMMC-7721 cells and the role of mitochondrial pathway. Mitochondrion 2006; 6(4):211-7.
    27. Laco GS, Collins JR, Luke BT, et al. Human topoisomerase I inhibition: docking camptothecin and derivatives into a structure-based active site model. Biochemistry 2002; 41(5):1428-35.
    28. Hueber A, Esser P, Heimann K, et al. The topoisomerase I inhibitors, camptothecin and beta-lapachone, induce apoptosis of human retinal pigment epithelial cells. Exp Eye Res 1998; 67(5):525-30.
    29. Arango D, Mariadason JM, Wilson AJ, et al. c-Myc overexpression sensitises colon cancer cells to camptothecin-induced apoptosis. Br J Cancer 2003; 89(9):1757-65.
    30.贺芳,曾耀英,王通,邢飞跃.喜树碱诱导的HL-60细胞凋亡过程中线粒体的变化.细胞与分子免疫学杂志2006; 22(22):144-147.
    31. Sanchez-Alcazar JA, Ault JG, Khodjakov A, Schneider E. Increased mitochondrial cytochrome c levels and mitochondrial hyperpolarization precede camptothecin-induced apoptosis in Jurkat cells. Cell Death Differ 2000; 7(11):1090-100.
    32. Shao RG, Cao CX, Nieves-Neira W, et al. Activation of the Fas pathway independently of Fas ligand during apoptosis induced by camptothecin in p53 mutant human colon carcinoma cells. Oncogene 2001; 20(15):1852-9.
    33. Lee S, Lee HS, Baek M, et al. MAPK signaling is involved in camptothecin-induced cell death. Mol Cells 2002; 14(3):348-54.
    34. Costa-Pereira AP, McKenna SL, Cotter TG. Activation of SAPK/JNK by camptothecin sensitizes androgen-independent prostate cancer cells to Fas-induced apoptosis. Br J Cancer 2000; 82(11):1827-34.
    35. Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980; 20(1):85-93.
    36. Brown R, Plumb JA. Demethylation of DNA by decitabine in cancer chemotherapy. Expert Rev Anticancer Ther 2004; 4(4):501-10.
    37. Weisenberger DJ, Velicescu M, Cheng JC, et al. Role of the DNA methyltransferase variant DNMT3b3 in DNA methylation. Mol Cancer Res 2004; 2(1):62-72.
    38. Kim CH, Marquez VE, Mao DT, et al. Synthesis of pyrimidin-2-one nucleosides as acid-stable inhibitors of cytidine deaminase. J Med Chem 1986; 29(8):1374-80.
    39. Cheng JC, Matsen CB, Gonzales FA, et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 2003; 95(5):399-409.
    40. You Z, Saims D, Chen S, et al. Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis. J Cell Biol 2002; 157(3):429-40.
    41. Wu XR. Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 2005; 5(9):713-25.
    42. Schulz WA. Understanding urothelial carcinoma through cancer pathways. Int J Cancer 2006; 119(7):1513-8.
    43. Dinney CP, McConkey DJ, Millikan RE, et al. Focus on bladder cancer. Cancer Cell 2004; 6(2):111-6.
    1. Beaglehole R, Irwin A, Prentice T. The World Health Report 2004-Changing History.: Geneva,Switzerland, World Health Organization, 2004. pp. 122.
    2. American Cancer Society. Cancer Facts and Figures 2006. Atlanta, GA. American Cancer Society, 2006.
    3. Enokida H, Shiina H, Igawa M, et al. CpG hypermethylation of MDR1 gene contributes to the pathogenesis and progression of human prostate cancer. Cancer Res 2004; 64(17):5956-62.
    4. Droller MJ. Cancer heterogeneity and its biologic implications in the grading of urothelial carcinoma. J Urol 2001; 165(2):696-7.
    5. May M, Helke C, Nitzke T, et al. Survival rates after radical cystectomy according to tumor stage of bladder carcinoma at first presentation. Urol Int 2004; 72(2):103-11.
    6. Amling CL. Diagnosis and management of superficial bladder cancer. Curr Probl Cancer 2001; 25(4):219-78.
    7. van Rhijn BW, van der Poel HG, van der Kwast TH. Urine markers for bladder cancer surveillance: a systematic review. Eur Urol 2005; 47(6):736-48.
    8. Glas AS, Roos D, Deutekom M, et al. Tumor markers in the diagnosis of primary bladder cancer. A systematic review. J Urol 2003; 169(6):1975-82.
    9. Soloway MS, Briggman V, Carpinito GA, et al. Use of a new tumor marker, urinary NMP22, in the detection of occult or rapidly recurring transitional cell carcinoma of the urinary tract following surgical treatment. J Urol 1996; 156(2 Pt 1):363-7.
    10. Stampfer DS, Carpinito GA, Rodriguez-Villanueva J, et al. Evaluation of NMP22 in the detection of transitional cell carcinoma of the bladder. J Urol 1998; 159(2):394-8.
    11. Southgate J, Harnden P, Trejdosiewicz LK. Cytokeratin expression patterns in normal and malignant urothelium: a review of the biological and diagnosticimplications. Histol Histopathol 1999; 14(2):657-64.
    12. Shariat SF, Casella R, Khoddami SM, et al. Urine detection of survivin is a sensitive marker for the noninvasive diagnosis of bladder cancer. J Urol 2004; 171(2 Pt 1):626-30.
    13. Smith SD, Wheeler MA, Plescia J, et al. Urine detection of survivin and diagnosis of bladder cancer. Jama 2001; 285(3):324-8.
    14. Sanchini MA, Gunelli R, Nanni O, et al. Relevance of urine telomerase in the diagnosis of bladder cancer. Jama 2005; 294(16):2052-6.
    15. Lokeshwar VB, Schroeder GL, Selzer MG, et al. Bladder tumor markers for monitoring recurrence and screening comparison of hyaluronic acid-hyaluronidase and BTA-Stat tests. Cancer 2002; 95(1):61-72.
    16. Neves M, Ciofu C, Larousserie F, et al. Prospective evaluation of genetic abnormalities and telomerase expression in exfoliated urinary cells for bladder cancer detection. J Urol 2002; 167(3):1276-81.
    17. Bartoletti R, Dal Canto M, Cai T, et al. Early diagnosis and monitoring of superficial transitional cell carcinoma by microsatellite analysis on urine sediment. Oncol Rep 2005; 13(3):531-7.
    18. Jeronimo C, Henrique R, Hoque MO, et al. Quantitative RARbeta2 hypermethylation: a promising prostate cancer marker. Clin Cancer Res 2004; 10(12 Pt 1):4010-4.
    19. Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA. DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene 2002; 21(35):5450-61.
    20. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol 2004; 22(22):4632-42.
    21. Fujiwara K, Fujimoto N, Tabata M, et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res 2005; 11(3):1219-25.
    22. Kim H, Kwon YM, Kim JS, et al. Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. J Clin Oncol 2004; 22(12):2363-70.
    23. Dulaimi E, Hillinck J, Ibanez de Caceres I, et al. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res 2004; 10(18 Pt 1):6189-93.
    24. Feng Q, Balasubramanian A, Hawes SE, et al. Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst 2005; 97(4):273-82.
    25. Battagli C, Uzzo RG, Dulaimi E, et al. Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res 2003; 63(24):8695-9.
    26. Tokumaru Y, Harden SV, Sun DI, et al. Optimal use of a panel of methylation markers with GSTP1 hypermethylation in the diagnosis of prostate adenocarcinoma. Clin Cancer Res 2004; 10(16):5518-22.
    27. Dulaimi E, Uzzo RG, Greenberg RE, et al. Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin Cancer Res 2004; 10(6):1887-93.
    28. Chan MW, Chan LW, Tang NL, et al. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res 2002; 8(2):464-70.
    29. Urakami S, Shiina H, Enokida H, et al. Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clin Cancer Res 2006; 12(2):383-91.
    30. Levenson VV. DNA methylation biomarkers of cancer: moving toward clinical application. Pharmacogenomics 2004; 5(6):699-707.
    1. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol 2004; 22(22):4632-42.
    2. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349(21):2042-54.
    3. Bird AP, Wolffe AP. Methylation-induced repression--belts, braces, and chromatin. Cell 1999; 99(5):451-4.
    4. Prokhortchouk E, Hendrich B. Methyl-CpG binding proteins and cancer: are MeCpGs more important than MBDs? Oncogene 2002; 21(35):5394-9.
    5. Prokhortchouk A, Hendrich B, Jorgensen H, et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev 2001; 15(13):1613-8.
    6. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99(3):247-57.
    7. Laird PW, Jackson-Grusby L, Fazeli A, et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 1995; 81(2):197-205.
    8. Eads CA, Nickel AE, Laird PW. Complete genetic suppression of polyp formation and reduction of CpG-island hypermethylation in Apc(Min/+) Dnmt1-hypomorphic Mice. Cancer Res 2002; 62(5):1296-9.
    9. Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002; 416(6880):552-6.
    10. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1):6-21.
    11. Jones SE, Jomary C. Secreted Frizzled-related proteins: searching for relationships and patterns. Bioessays 2002; 24(9):811-20.
    12. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403(6765):41-5.
    13. Kuzmichev A, Reinberg D. Role of histone deacetylase complexes in the regulation of chromatin metabolism. Curr Top Microbiol Immunol 2001; 254:35-58.
    14. Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 2002; 31(2):141-9.
    15. Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21(1):103-7.
    16. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33 Suppl:245-54.
    17. Lee TI, Jenner RG, Boyer LA, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125(2):301-13.
    18. Holm TM, Jackson-Grusby L, Brambrink T, et al. Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell 2005; 8(4):275-85.
    19. Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 1998; 20(2):116-7.
    20. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 1997; 13(8):335-40.
    21. Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300(5618):489-92.
    22. Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003; 300(5618):455.
    23. Walsh CP, Bestor TH. Cytosine methylation and mammalian development. Genes Dev 1999; 13(1):26-34.
    24. Cui H, Cruz-Correa M, Giardiello FM, et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 2003; 299(5613):1753-5.
    25. Vatolin S, Abdullaev Z, Pack SD, et al. Conditional expression of the CTCF-paralogous transcriptional factor BORIS in normal cells results in demethylation and derepression of MAGE-A1 and reactivation of other cancer-testis genes. Cancer Res 2005; 65(17):7751-62.
    26. Suzuki K, Suzuki I, Leodolter A, et al. Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 2006; 9(3):199-207.
    27. Sato N, Maitra A, Fukushima N, et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res 2003; 63(14):4158-66.
    28. Xu GL, Bestor TH, Bourc'his D, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 1999; 402(6758):187-91.
    29. Narayan A, Ji W, Zhang XY, et al. Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer 1998; 77(6):833-8.
    30. Ma Y, Jacobs SB, Jackson-Grusby L, et al. DNA CpG hypomethylation induces heterochromatin reorganization involving the histone variant macroH2A. J Cell Sci 2005; 118(Pt 8):1607-16.
    31. Chen RZ, Pettersson U, Beard C, et al. DNA hypomethylation leads to elevated mutation rates. Nature 1998; 395(6697):89-93.
    32. Makar KW, Perez-Melgosa M, Shnyreva M, et al. Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nat Immunol 2003; 4(12):1183-90.
    33. Issa JP, Ahuja N, Toyota M, et al. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 2001; 61(9):3573-7.
    34. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006; 6(2):107-16.
    35. Sekido Y, Fong KM, Minna JD. Molecular genetics of lung cancer. Annu Rev Med 2003; 54:73-87.
    36. Zochbauer-Muller S, Fong KM, Virmani AK, et al. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 2001; 61(1):249-55.
    37. Zochbauer-Muller S, Lam S, Toyooka S, et al. Aberrant methylation of multiple genes in the upperaerodigestive tract epithelium of heavy smokers. Int J Cancer 2003; 107(4):612-6.
    38. Shames DS, Minna JD, Gazdar AF. DNA methylation in health, disease, and cancer. Curr Mol Med 2007; 7(1):85-102.
    39. Bestor TH. Unanswered questions about the role of promoter methylation in carcinogenesis. Ann N Y Acad Sci 2003; 983:22-7.
    40. Akiyama Y, Watkins N, Suzuki H, et al. GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 2003; 23(23):8429-39.
    41. Margetts CD, Astuti D, Gentle DC, et al. Epigenetic analysis of HIC1, CASP8, FLIP, TSP1, DCR1, DCR2, DR4, DR5, KvDMR1, H19 and preferential 11p15.5 maternal-allele loss in von Hippel-Lindau and sporadic phaeochromocytomas. Endocr Relat Cancer 2005; 12(1):161-72.
    42. Shivapurkar N, Stastny V, Suzuki M, et al. Application of a methylation gene panel by quantitative PCR for lung cancers. Cancer Lett 2007; 247(1):56-71.
    43. Suzuki M, Toyooka S, Shivapurkar N, et al. Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection. Oncogene 2005; 24(7):1302-8.
    44. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001; 61(8):3225-9.
    45. Baylin SB, Belinsky SA, Herman JG. Aberrant methylation of gene promoters in cancer---concepts, misconcepts, and promise. J Natl Cancer Inst 2000; 92(18):1460-1.
    46. Di Croce L, Raker VA, Corsaro M, et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002; 295(5557):1079-82.
    47. Tsou JA, Hagen JA, Carpenter CL, Laird-Offringa IA. DNA methylation analysis: a powerful new tool for lung cancer diagnosis. Oncogene 2002; 21(35):5450-61.
    48. Zhong S, Tang MW, Yeo W, et al. Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin Cancer Res 2002; 8(4):1087-92.
    49. Chang MS, Uozaki H, Chong JM, et al. CpG island methylation status in gastric carcinoma with and without infection of Epstein-Barr virus. Clin Cancer Res 2006; 12(10):2995-3002.
    50. Shivapurkar N, Takahashi T, Reddy J, et al. Presence of simian virus 40 DNA sequences in human lymphoid and hematopoietic malignancies and their relationship to aberrant promoter methylation of multiple genes. Cancer Res 2004; 64(11):3757-60.
    51. Toyooka S, Carbone M, Toyooka KO, et al. Progressive aberrant methylation of the RASSF1A gene in simian virus 40 infected human mesothelial cells. Oncogene 2002; 21(27):4340-4.
    52. Kitkumthorn N, Yanatatsanajit P, Kiatpongsan S, et al. Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer. BMC Cancer 2006; 6:55.
    53. Takahashi T, Suzuki M, Shigematsu H, et al. Aberrant methylation of Reprimo in human malignancies. Int J Cancer 2005; 115(4):503-10.
    54. Block TM, Mehta AS, Fimmel CJ, Jordan R. Molecular viral oncology of hepatocellular carcinoma. Oncogene 2003; 22(33):5093-107.
    55. Li X, Hui AM, Sun L, et al. p16INK4A hypermethylation is associated with hepatitis virus infection, age, and gender in hepatocellular carcinoma. Clin Cancer Res 2004; 10(22):7484-9.
    56. Yang B, Guo M, Herman JG, Clark DP. Aberrant promoter methylation profiles of tumor suppressorgenes in hepatocellular carcinoma. Am J Pathol 2003; 163(3):1101-7.
    57. Maekita T, Nakazawa K, Mihara M, et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 2006; 12(3 Pt 1):989-95.
    58. Schulmann K, Sterian A, Berki A, et al. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk. Oncogene 2005; 24(25):4138-48.
    59. Clement G, Braunschweig R, Pasquier N, et al. Methylation of APC, TIMP3, and TERT: a new predictive marker to distinguish Barrett's oesophagus patients at risk for malignant transformation. J Pathol 2006; 208(1):100-7.
    60. Battagli C, Uzzo RG, Dulaimi E, et al. Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res 2003; 63(24):8695-9.
    61. Dulaimi E, Hillinck J, Ibanez de Caceres I, et al. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res 2004; 10(18 Pt 1):6189-93.
    62. Tokumaru Y, Harden SV, Sun DI, et al. Optimal use of a panel of methylation markers with GSTP1 hypermethylation in the diagnosis of prostate adenocarcinoma. Clin Cancer Res 2004; 10(16):5518-22.
    63. Dulaimi E, Uzzo RG, Greenberg RE, et al. Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin Cancer Res 2004; 10(6):1887-93.
    64. Chan MW, Chan LW, Tang NL, et al. Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res 2002; 8(2):464-70.
    65. Fujiwara K, Fujimoto N, Tabata M, et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin Cancer Res 2005; 11(3):1219-25.
    66. Kim H, Kwon YM, Kim JS, et al. Tumor-specific methylation in bronchial lavage for the early detection of non-small-cell lung cancer. J Clin Oncol 2004; 22(12):2363-70.
    67. Feng Q, Balasubramanian A, Hawes SE, et al. Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst 2005; 97(4):273-82.
    68. Bhalla KN. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 2005; 23(17):3971-93.
    69. Issa JP. Decitabine. Curr Opin Oncol 2003; 15(6):446-51.
    70. Oki Y, Aoki E, Issa JP. Decitabine--bedside to bench. Crit Rev Oncol Hematol 2007; 61(2):140-52.
    71. Aparicio A, Weber JS. Review of the clinical experience with 5-azacytidine and 5-aza-2'-deoxycytidine in solid tumors. Curr Opin Investig Drugs 2002; 3(4):627-33.
    72. Kantarjian HM, O'Brien S, Cortes J, et al. Results of decitabine (5-aza-2'deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer 2003; 98(3):522-8.
    73. Issa JP, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 2004; 103(5):1635-40.
    74. Yang AS, Doshi KD, Choi SW, et al. DNA methylation changes after 5-aza-2'-deoxycytidine therapy in patients with leukemia. Cancer Res 2006; 66(10):5495-503.
    75. Oki Y, Kantarjian H, Davis J, et al. Hypomethylation induction in MDS after treatment withdecitabine at three different doses. J Clin Oncol 2006; 23(16s):6546abstr.
    76. Kim CH, Marquez VE, Mao DT, et al. Synthesis of pyrimidin-2-one nucleosides as acid-stable inhibitors of cytidine deaminase. J Med Chem 1986; 29(8):1374-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700