用户名: 密码: 验证码:
浊点萃取-火焰原子吸收光谱法分析环境样品中不同形态的Cr、Mn、Co和Cu
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染一直是破坏生态环境和危害人类健康很严重的问题。由于重金属元素的迁移性、毒性以及危害的严重性并不完全决定于其总量,而是很大程度上决定于其化学存在形态,因此,鉴别和准确测定环境样品中重金属的化学形态有非常现实的意义。
     本文将环境友好、高富集能力的浊点萃取技术和选择性好、灵敏度高的火焰原子吸收光谱法进行联用,建立了测定解毒铬渣浸提液中的Cr(Ⅲ)和Mn、土壤中有效态钴、烟草中铜的新方法。主要的研究内容包括以下部分:
     (1)浊点萃取-火焰原子吸收光谱法测定解毒铬渣中Cr(Ⅲ)和Mn
     以甲基红为络合剂,OP为表面活性剂,建立了浊点萃取-火焰原子吸收光谱法测定解毒铬渣中Cr(Ⅲ)和Mn的新方法。方法基于甲基红与Cr(Ⅲ)和Mn络合,被萃取到表面活性剂相中,从而实现和其他金属元素的分离。该方法详细研究了影响浊点萃取效率的几种主要因素。在最佳实验条件下,Cr(Ⅲ)和Mn的线性范围分别是0.05~2.00μg·mL-1、0.005~1.00μg·mL-1,线性相关系数分别是0.9993、0.9999,Cr(111)和Mn的检出限分别是0.05μ·mL-1、0.0035μg·mL-1,相对标准偏差分别是1.3%、1.8%。对解毒铬渣样品浸提液中Cr(Ⅲ)和Mn的测定,加标回收率分别在89.0~110.0%和90.0~105.0%范围内,说明该方法准确度好,结果满意。(2)浊点萃取-火焰原子吸收光谱法测定土壤中的有效态钻
     采用0.1mol·L-1盐酸对土壤中有效态钴进行浸提,以甲基红为络合剂,TritonX-114为表面活性剂,建立了浊点萃取与火焰原子吸收光谱法联用测定土壤中有效态钻的新方法。并研究了影响浊点萃取的几种主要因素。在最佳实验条件下,钴离子的线性范围是0.10~2.00μg·mL-1,方法的检出限是0.03μg·mL-1,相对标准偏差是3.3%,该法用于郑州郊区和四川烟草地土壤样品中有效态钴的测定,样品加标回收率在94.0-104.0%范围内,结果满意。通过测定发现不同地区土壤中有效态钴占钴总量的比例相差较大。
     (3)浊点萃取-火焰原子吸收光谱法测定烟草中的铜
     建立了一种测定烟草中铜的新方法。采用微波消解法对烟草样品进行前处理,然后以头孢唑啉钠和柠檬酸三铵为络合剂,OP为表面活性剂,与铜形成了多元络合物,对处理好的烟草样品溶液进行浊点萃取,提高了方法的灵敏度和选择性。详细研究了pH值、缓冲溶液用量、络合剂用量、表面活性剂浓度及平衡时间和平衡温度对浊点萃取的影响,并优化了实验条件。另外,还研究了常见的一些阳离子和阴离子对铜测定的干扰情况,用酒石酸钾钠溶液进行掩蔽,有效地掩蔽了A13+、Cd2+对测定的干扰。在最佳实验条件下,铜离子的线性范围是0.03~1.00μg·mL-1, R=0.9997,检出限是0.01μg·mL-1,相对标准偏差是4.3%,应用该方法对烟草样品中的铜进行测定,样品加标回收率在90.0-106.7%范围内,结果满意。
The pollutions caused by heavy metals have been serious problems which destroy ecological environment and harm human health. The migration, toxicity, and the serious harmfulness of heavy metals not only depended on the total amount, but largely on the chemical forms. Therefore, it is very important to identify and determine chemical forms of heavy metals accurately in environmental samples.
     New methods have been developed for determination of Cr(III) and Mn in the leaching solution of chromium residue of harmless treatment, available cobalt in soils, copper in tobaccos. These methods combined cloud point extraction technology of high enrichment ability with flame atomic absorption spectrometry(FAAS) of good selectivity and high sensitivity. The major research contents are summarized as follows:
     (1)Determination of Cr(Ⅲ) and Mn in chromium residue samples of harmless treatment by flame atomic absorption spectrometry after cloud point extraction
     A cloud point extraction (CPE) procedure has been developed for the determination of Cr(Ⅲ) and Mn in chromium residue samples of harmless treatment by flame atomic absorption spectrometry. The proposed method was based on the cloud point extraction of a complex from methyl red and Cr(Ⅲ) and Mn using emulsifier octyl polyethylene glycol phenol ether (OP) as surfactant. Cr(Ⅲ) and Mn were extracted to the surfactant phase, so as to realize the separation from other metal ions. The method was also studied several main factors which influenced the efficiency of cloud point extraction in detail. Under the optimized conditions, the calibration graphs of Cr(Ⅲ) and Mn were linear in range of0.05~2.00μg·mL-1and0.005~1.00μg·mL-1, and the correlation coefficient were0.9993and0.9999, respectively. The detection limits of Cr(Ⅲ) and Mn were0.0500μg·mL-1and0.003500μg·mL-1,respectively. The relative standard deviations (RSD) of Cr(Ⅲ) and Mn were1.3%and1.8%, respectively. The recoveries of Cr(Ⅲ) and Mn spiked in the leaching solution of chromium residue samples of harmless treatment were from 89.0%to110.0%and from90.0%to105.0%, respectively. The proposed method showed good accuracy, with the results satisfactory.
     (2)Determination of available cobalt in soils by flame atomic absorption spectrometry after cloud point extraction
     0.1mol·L-1hydrochloric acid (HC1) was selected as extracting agent. A novel method was proposed for the determination of available cobalt in soils by flame atomic absorption spectrometry after cloud point extraction.The present work used methyl red as complexing agent and TritonX-114as surfactant. And several main factors that affected the efficiency of cloud point extraction were studied. Under the optimized conditions, the calibration graph of Co was linear in range of0.10-2.0000μg·mL-1, the detection limit of the method was0.0300μg·mL-1, and the relative standard deviation was3.3%. The recoveries of Co spiked in soil samples were from94.0%to104.0%. The proposed method was successfully applied to the determination of available Co in soils, which were collected from the suburbs of Zhengzhou and Sichuan, and with the results satisfactory. It was found that the propotion of available cobalt was very different in soils of different areas after determination.
     (3)Determination of copper in tobaccos by flame atomic absorption spectrometry after cloud point extraction
     A novel method was proposed for determination of copper in tobaccos by flame atomic absorption spectrometry. Using microwave digestion for the pretreatment of tobacco samples first, and then cloud point extraction was carried out using cefazolin sodium and ammonium citrate tribasic as complexing agents, OP as surfactant. The sensitivity and selectivity of the method was improved a lot due to the formation of multiple complex. Conditions that would affect cloud point extraction were researched in detail, including the values of pH, dosages of buffer solution, concentration of the chelating agents and the surfactant, equilibration time and temperature. In addition, interference of some common cations and anions were also studied. The paper used potassium sodium tartrate as masking agent to conceal the interference of Al3+and Cd2+. Under the optimized conditions, the calibration graph of Cu was linear in range of0.03~1.0000μg·mL-1, the correlation coefficient was0.9997. The detection limit of the method was0.0100μg·mL-1, and the relative standard deviation was4.3%. The recoveries of Cu spiked in tobacco samples were from90.0%to106.7%. The method was applied to determine Cu in tobacco samples with the results satisfactory.
引文
[1]王笑笑,高腾云,侯文宏,等.影响动物源性食品质量安全的常见重金属的生物毒性研究进展[J].中国兽医学报,2013,33(1),150-160
    [2]邱小香,朱海燕.水体重金属的污染及其处理方法[J].湖南农业科学,2011,(14):34-35
    [3]魏春媛.浅析食品中重金属元素检测技术的现状和前景展望[J].科技创新与应用,2013,(1):60
    [4]高锦卿.土壤重金属污染及防治措施[J].资源与环境科学,2013,(1):220-225
    [5]石栓成.烟草中重金属的危害、来源和防治策略[C].中国环境科学学会学术年会论文集,2012,2680-2684
    [6]袁东星,王小如,杨梵原,等.化学形态分析[J].分析测试通报,1992,1](4):1-9
    [7]章骅,何品晶,邵立明,等.重金属在环境中的化学形态分析研究进展[J].环境化学,2011,30(1):130-137
    [8]倪哲明,李冰,杨红霞.环境样品中痕量元素的化学形态分析[J].岩矿测试,2005,24(2):118-128
    [9]Kohlmeyer V, Kuballa J, Jantzen E. Rapid Commun Mass Spectrom[J].2002,16:965-974
    [10]张豪,张松林,张威,等.重金属形态分析方法及研究进展综述[J].甘肃农业,2011,(2):86-87
    [11]冯素萍,鞠莉,沈永,等.沉积物中重金属形态分析方法研究进展[J].化学分析计量,2006,15(4):72-74
    [12]Seubert A. On-line coupling of ion chromatography with ICP-AES and ICP-MS[J]. TrAC Trends in Analytical Chemistry,2001,20(6/7):274-287
    [13]Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation[J]. Environ Pollut,2000,107(3):263-283
    [14]Francesconi K, Visoottiviseth P, Sridokchan W. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos:a potential phytoremediator of arsenic-contaminated soils[J]. The Science of the Total Environment,2002,284(1-3):27-35
    [15]Koch I, Wang L, Ollson C A, et al. The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada[J]. Environ Sci Technol,2000,34:22-26
    [16]周瑛,叶丽,竹鑫平HPLC-ICP-MS在食品中硒和砷形态分析及其生物有效性研究中的应用[J].化学进展,2007,19(6):982-995
    [17]李险峰,孟君,康艳辉.CE-ICP-AES用于大鼠血浆中Mg的形态分析[J].湖北大学学报(自然科学版),2009,31(2):157-160
    [18]雷晓康.ICP-MS及其联用技术用于海产品和水样中锡形态分析的研究[D].[硕士学位论文].南昌:南昌大学,2012.
    [19]钮树芳,石松利,王登奎.ICP-AES法测定蒙古扁桃叶片中元素含量[J].光谱学与光谱分析,2013,33(1):220-223
    [20]庞艳玲,孟德素,王怀友.薄层色谱-紫外可见分光光度法同时测定食品中的苏丹红 Ⅰ-Ⅳ[J].化学分析计量,2007,16(3):25-27
    [21]徐晟徽,郭书海,胡筱敏,等.沈阳张士灌区重金属污染再评价及镉的形态分析[J].应用生态学报,2007,18(9):2144-2148
    [22]白云飞.土壤底泥中砷形态提取与水样中砷形态保存实验研究[D].[硕士学位论文].北京:中国地质大学,2007.
    [23]Kadriye Ozlem S, Mustafa T, Mustafa S, et al. Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry[J]. Journal of Hazardous Materials,2008,153(3):1009-1014
    [24]Yalcin S, Apak R. Chromium(Ⅲ,Ⅵ) speciation analysis with preconcentration on a maleic acid-functionalized XAD sorbent[J]. Analytica Chimica Acta,2004,505(1):25-35
    [25]Marques M J, Salvador A, Morales-Rubio A, et al. Chromium speciation in liquid matrices: a survey of the literature[J]. Fresenius J Anal Chem,2000,367(7):601-613
    [26]Ghaedi M, Asadpour E, Vafaie A. Sensitized spectrophotometric determination of Cr(Ⅲ) ion for speciation of chromium ion in surfactant media using alpha-benzoin oxime[J]. Spectrochim Acta A Mol Biomol Spectrosc.,2006,63(1):182-188
    [27]贾春玲.浊点萃取-火焰原子吸收光谱法在Cr、Cu的形态分析中的应用[D].[硕士学位论文].郑州:郑州大学,2011.
    [28]Beni A, Karosi R, Posta J. Speciation of hexavalent chromium in waters by liquid-liquid extraction and GFAAS determination[J]. Microchemical Journal,2007,85(1):103-108
    [29]Hashemi M, Daryanavard S M. Ultrasound-assisted cloud point extraction for speciation and indirect spectrophotometric determination of chromium(Ⅲ) and (Ⅵ) in water samples[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012, 92(15):189-193
    [30]Wu Y W, Zhang J, Liu J F, et al. Fe3O4@ZrO2 nanoparticles magnetic solid phase extraction coupled with flame atomic absorption spectrometry for chromium(Ⅲ) speciation in environmental and biological samples[J]. Applied Surface Science,2012,258(18): 6772-6776
    [31]Volkan Numan B, Celal D, Ali G, et al. A new approach to separation and pre-concentration of some trace metals with co-precipitation method using a triazole[J]. Talanta,2008,76(2): 469-474
    [32]Ying L Y, Jiang H L, Zhou S C, et al. Ionic liquid as a complexation and extraction medium combined with high-performance liquid chromatography in the evaluation of chromium(Ⅵ) and chromium(Ⅲ) speciation in wastewater samples[J]. Microchemical Journal,2011, 98(2):200-203
    [33]Liang P, Shi T Q, Lu H B, et al. Speciation of Cr(Ⅲ) and Cr(Ⅵ) by nanometer titanium dioxide micro-column and inductively coupled plasma atomic emission spectrometry [J]. Spectrochimica Acta, Part B:Atomic Spectroscopy,2003,58(9):1709-1714
    [34]Arancibia V, Valderram M. Silv K, et al. Determination of chromium in urine samples by complexation-supercritical fluid extraction and liquid or gas chromatography [J]. Journal of Chromatography B,2003,785(2):303-309
    [35]Maeder T, Miscoria S, Jacq C, et al. Screen-printed electrochemical chromium(VI) Sensing Electrodes for Effluent Bioremediation Monitoring[J]. Procedia Engineering,2012,47: 1303-1306
    [36]魏婷,李佳颖.微波消解-石墨炉原子吸收法测定维药中的微量元素锰[J].科技传播,2012,(11):96-97
    [37]龙成梅,杨鼎,孙成斌,等.都匀毛尖茶中铁、铜、锰的测定[J].广州化工,2012,40(17):98-100
    [38]李孝良,倪进娟,陈效民,等.安徽省水稻土中锰形态及其影响因素研究[J].土壤通报,2010,41(6):1333-1338
    [39]左建湘.锰矿生产排放的酸浸废渣中锰的物质形态研究[J].怀化学院学报,2006,25(5):187-189
    [40]窦磊,周永章,李勇,等.珠江三角洲典型肝癌高发区土壤锰形态及其生态效应[J].应用生态学报,2008,19(6):1362-1368
    [41]吴旺喜,余汉年,李华禄,等.土壤中有效态锰的浸取与测定[J].江汉大学学报(自然科学版),2002,19(3):33-35
    [42]周晓艳,潘涔轩,张玉秀,等.从加纳某碳酸锰矿石中浸出锰的试验研究[J].湿法冶金,2013,32(1):24-26
    [43]沙鸥,陈丽,马卫兴.氧化变色酸2B光度法测定料酒中的微量锰[J].食品科学,2012,网络预发表.
    [44]陈静.火焰原子吸收分光光度法测定土壤中痕量钴[J].现代农业科技,2011,(11):11-12
    [45]Lindsay W L. Chemical Equilibrium in soils[M]. New York:John Wiley & Sons,1979.
    [46]吴庆梅,余海,张瑜龙,等.微波消解-电感耦合等离子体发射光谱法测定土壤中钴的研究[J].安徽农业科学,2012,40(29):14159-14160
    [47]肖灵,张培新,汤志云,等.多元素有效态浸提方法的研究[J].江苏地质,2004,28(2):120-124
    [48]韩张雄,熊英,王龙山,等.DTPA浸提-电感耦合等离子体质谱法测定石灰性土壤中的有效态钴和有效态铅[J].岩矿测试,2012,31(6):950-953
    [49]Tabrizi A B. Development of a cloud point extraction-spectrofluorimetric method for trace copper(Ⅱ) determination in water samples and parenteral solutions[J]. Journal of Hazardous Materials,2007,139(2):260-264
    [50]Ghiasvand A R, Ghaderi R, Kakanejadifard A. Selective preconcentration of ultra trace copper(Ⅱ) using octadecyl silica membrane disks modified by a recently synthesized glyoxime derivative[J]. Talanta,2004,62(2):287-292
    [51]杨阳,谢翼飞,李红,等.水泥在铜污染事故应急处理中的应用[J].环境科学与技术,2013,36(1):125-130
    [52]Ofomaja A E, Naidoo E B, Modise S J. Biosorption of coppe(Ⅱ) and lead(Ⅱ) onto potassium hydroxide treated pine cone powder[J]. Journal of Environmental Management,2010,91: 1674-1685
    [53]朱影影.植物中的重金属形态、分别及其毒性研究进展[J].淮南职业技术学院学报,2011,11(3):68-70
    [54]程红艳,谢英荷,贾红丽等.不同种植作物对污灌区土壤铜形态的影响[J].水土保持学报,2012,26(1):116-123
    [55]李文庆,张民,李贻学,等.土壤铜形态与环境因素的关系及其对黑麦草生长的影响[J].中国草地学报,2012,34(1):53-58
    [56]刘信安,丁云松,罗彦凤.卡尔曼滤波-分光光度法同时分析长江和嘉陵江地表水中的微量铜、镉和锌[J].光谱学与光谱分析,2008,28(6):1383-1386
    [57]金献忠,陈建国,朱丽辉,等.高压消解-ICP-AES测定木材及木制品中的铜铬砷[J].光谱学与光谱分析,2007,27(9):1837-1839
    [58]张慧,许晓菁,杨一青,等.浊点萃取技术及其应用研究进展[.J].化工进展,2012,31(S1):441-447
    [59]Li H Z, Zhai Y B. Solid-phase extraction of trace Au(Ⅲ) with SDG and determination by the catalytic spectrophoto metric method[J]. Rare Metals,2008,27(6):560-565
    [60]Lee H B, Peart T E. Determination of bisphenol A in sewage effluent and sludge by solid-phase and supercritical fluid extraction and gas chromatography/mass spectrometry[J]. Aoac Int,2000,83(2):290-297
    [61]Garcia-Ayuso L E, Velasco J, Dobarganes M C, et al. Determination of the oil content of seeds by focused microwave-assisted soxhlet extraction[J]. Chromatographia,2000,52(1-2): 103-108
    [62]Noorbasha N. Meeravali, K. Madhavi, Sunil Jai Kumar. Microwave assisted aqua regia extraction of thallium from sediment and coal fly ash samples and interference free determination by continuum source ETAAS after cloud point extraction[J]. Talanta,2013, 104:180-186
    [63]Lian Y P. Zhen W, Tai Z G, et al. Cloud point extraction and flame atomic absorption spectrometry analysis of palladium, platinum, and gold ions from industrial polluted soil[J]. Rare metals,2012,31(5):512-516
    [64]Tan Z J, Li F F. Cloud-point extraction and preconcentration of bisphenol A from water samples[J]. J. Cent. South Univ,2012,19(8):2136-2141
    [65]Khammas Z A A. Recent trends for separation and preconcentration in metal ions and organic compounds analysis after clould-point methodology:developments and analytical applications-areview[J]. Eurasian J. Anal. Chem,2009,4(1):1-35
    [66]Hamta S, Mina R, Nasibeh K, et al. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,98:70-75
    [67]Zhao L L, Zhong S X, Fang K M, et al. Determination of cadmium(Ⅱ), cobalt(Ⅱ), nickel(Ⅱ), lead(Ⅱ), zinc(Ⅱ), and copper(Ⅱ) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry [J]. Journal of Hazardous Materials,2012, 240:206-212
    [68]Da Silva M A M, Frescura V L A, Curtius A J. Determination of trace elements in water samples by ultrasonic nebulization inductively coupled plasma mass spectrometry after cloud point extraction[J]. Spectrochimica Acta Part B,2000,55(7):803-813
    [69]El-Shahawi M S, Hamza A, Al-Sibaai A A, et al. A new method for analysis of sunset yellow in food samples based on cloud point extraction prior to spectrophotometric determination[J]. Journal of Industrial and Engineering Chemistry,2013,19(2):529-535
    [70]Pourreza N, Fat' hi M R, Hatami A. Indirect cloud point extraction and spectrophotometric determination of nitrite in water and meat products[J]. Microchemical Journal,2012,104: 22-25
    [71]Wen X D, Wu P, Chen L, et al. Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction[J]. Analytica Chimica Acta,2009,650(1):33-38
    [72]Bosch Ojeda C, Sanchez Rojas F, Cano Pavon J M. Preconcentration of cadmium in environmental samples by cloud point extraction and determination by FAAS[J]. American Journal of Analytical Chemistry,2010,1(3):127-134
    [73]Ghaedi M, Shokrollahi A, Niknam K, et al. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(Ⅱ), lead(Ⅱ), palladium(Ⅱ) and silver(Ⅰ) in environmental samples[J]. Journal of Hazardous Materials,2009.168(2-3):1022-1027
    [74]Pinto C G, Pavon J L P, Cordero BM, et al. Cloud point preconcentration and flame atomic absorption spectrometry:application to the determination of cadmium[J]. J Anal At Spectrom,1996,11:37-41
    [75]Rod A, Borhani S, Shemirani F. Cloud point preconcentration and flame atomic absorption spectrometry:application to the determination of manganese in milk and water samples[J]. Eur Food Res Technol,2006,223(5):649-653
    [76]Javadi N, Dalali N. Cloud-point extraction for on-line trace determination of copper(Ⅱ) by flame atomic absorption spectrometry[J]. Journal of the Iranian Chemical Society,2011, 8(1):231-239
    [77]Ghaedi M, Shokrollahi A, Niknam K, et al. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(Ⅱ), lead(Ⅱ), palladium(Ⅱ) and silver(Ⅰ) in environmental samples[J]. Hazard. Mater,2009,168(2):1022-1027
    [78]Wen X D, Deng Q W, Ji S L. Design of rapidly synergistic cloud point extraction of ultra-trace lead combined with flame atomic absorption spectrometry determination [J]. Microchemical Journal,2011,100:31-35
    [79]Zhu X S, Hu B, Jiang Z C. Cloud point extraction for speciation of chromium in water samples by electrothermal atomic absorption spectrometry [J]. Water Research,2004,39(4): 589-595
    [80]Shemirani F, Baghdadi M, Ramezani M. Preconcentration and determination of ultra trace amounts of arsenic(Ⅲ)and arsenic(Ⅴ) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry[J]. Talanta,2005, 65(4):882-887
    [81]Liang P. Sun Z M, Cao J. Speciation of Mn(Ⅱ) and Mn(Ⅶ) in water samples by cloud point extraction separation and their determination by graphite furnace atomic absorption spectrometry[J]. At. Spectrosc.2007,28(2):62-66
    [82]Giokas D L, Paleologos E K, Karayannis M 1. Speciation of Fe(Ⅱ) and Fe(Ⅲ) by the modified ferrozine method, FIA-spectrophotometry, and flame AAS after cloud point extraction [J]. Anal. Bioanal. Chem.,2002,373(4-5):237-243
    [1]刘玉强,李丽,王琪,等.典型铬渣污染场地的污染状况与综合整治对策[J].环境科学研究,2009,22(2):248-253
    [2]杨治立,邱会东,兰伟,等.铬渣无害化和资源化处置技术研究现状[J].冶金能源,2008,27(3):59-62
    [3]中华人民共和国环境保护行业标准.HJ/T301-2007,铬渣污染治理环境保护技术规范(暂行)[S].
    [4]中华人民共和国国家标准.GB/T15555.4-1995,固体废物六价铬的测定,二苯碳酰二肼分光光度法[S].
    [5]中华人民共和国国家标准.GB/T15555.6-1995,固体废物总铬的测定,直接吸入火焰原子吸收分光光度法[S].
    [1]Han H Y, Zhou J, Xu Y Y, et al. Determination of water-soluble and acid-soluble zinc in soils by flame atomic absorption spectrometry after cloud point extraction[J]. Soil Science and Plant Analysis,2012,43(18):2389-2399
    [2]查立新,马玲,刘文长,等.振荡提取和超声提取用于土壤样品中元素形态分析[J].岩矿测试,2011,30(4):393-399
    [3]Han H Y, Xu Y Y, Zhang C. Determination of available cadmium and lead in soil by flame atomic absorption spectrometry after cloud, point extraction[J]. Soil Science and Plant Analysis,2011,42(14):1739-1751
    [4]尹君,刘文菊,谢建治,等.土壤中有效态镉、汞浸提剂和浸提条件研究[J].河北农业大学学报,2000,23(20):25-28
    [5]王畅,郭鹏然,陈杭亭,等.土壤和沉积物中重金属生物可利用性的评估[J].岩矿测试,2009,28(2):108-112
    [6]中华人民共和国环境保护行业标准.HJ/T166-2004,土壤环境监测技术规范[S].
    [7]李亮亮,张大庚,李天来,等.土壤有效态重金属提取剂选择的研究[J].土壤,2008,40(5):819-823
    [8]熊礼明,鲁如坤.土壤有效Cd浸提剂对Cd的浸提机制[J].环境化学,1992,11(3):41-47
    [9]胡燕,伍燕妮,蒋玲.浊点萃取-火焰原子吸收光谱法测定水样中的微量钴[J].广东化工,2009,36(11):137-139
    [10]中华人民共和国林业行业标准.LY/T1260-1999,森林土壤有效铜的测定[S].
    [11]中华人民共和国国家标准.GB/T17138-1997,土壤质量-铜、锌的测定-火焰原子吸收分光光度法[S].
    [1]张艳玲,周汉平.烟草重金属研究概述[J].烟草科技/烟草虎穴,2004,(12):20-24
    [2]彭瑞兴.空气-乙炔火焰原子吸收光谱法测定烟草中锌、铜、镉.光谱实验室[J].2004,21(3):606-608
    [3]吴玉萍,邓建华,聂振远,等.烟草中有害金属元素的检测技术概述[J].中国烟草科学,2007,28(3):47-51
    [4]胡艳,贾文平.浊点萃取-火焰原子吸收光谱法测定某些中药中的铜含量[J].化学研究与应用,2010,22(5):648-651
    [5]李丽华,张金生,李艳南,等.浊点萃取-火焰原子吸收光谱法测定菠菜中镁、锌和铜[J].理化检验-化学分册,2012,48(5):547-549
    [6]黄海霞,王秀峰,吴旭宇,等.浊点萃取-原子吸收光谱法测定塑料中的痕量铜[J].分析试验室,2013,32(1):103-105
    [7]Pino V, Ayla J H, Afonso A M, et al. Determination of polycyclic aromatic hydrocarbons in seawater by high performance liquid chromatography with fluorescence detection following micelle-mediated preconcentration[J]. J Chromatogr A,2002,949(1/2):291-299
    [8]Haddou B, Canselier J P, Gourdon C. Cloud point extraction of phenol and benzyl alcohol from aqueous stream[J]. Sep Purif Technol,2006,50(1):114-121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700