用户名: 密码: 验证码:
大气CO_2浓度升高对冬小麦生理生态的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冬小麦是我国重要的粮食作物,在CO2浓度升高的气候变化条件下,我国冬小麦的产量、生长发育和氮素吸收如何变化成为亟待回答的科学问题。本文利用中国农业科学院FACE试验平台,大气CO2浓度设550±60 ppm(FACE处理)和400±40 ppm(对照)两个水平,施氮量设常规施氮肥(NN,189kg·hm-2 )和低施氮肥(LN,47kg·hm-2 )两个水平,选取中麦175和CA0493两个冬小麦供试品种,三次重复,在北京昌平开展冬小麦生长发育对高CO2浓度的响应试验,从冬小麦形态指标、产量变化、干物质生产和分配、氮素和吸收利用和光合适应几个方面进行了主要的研究,得出了以下主要结论:
     (1) FACE处理使冬小麦株高比对照显著增加2.78%;使冬小麦旗叶叶面积比对照显著增加8.98%,其中低氮条件下,FACE处理使旗叶面积的增加幅度高于常规施氮水平。也就是说,CO2浓度升高使旗叶面积增加,同时可能使叶片厚度变薄。
     (2) CO2浓度升高对于两个供试品种的产量影响不同,FACE处理使CA0493显著增产24.67%,但是对中麦175的产量没有显著影响。大气CO2浓度升高使乳熟期中麦175乳熟期叶片出现早衰,这在一定程度上限制了中麦175对于高CO2浓度的响应,可以说明不同小麦品种对于高CO2浓度响应存在差异。FACE处理使CA0493的穗粒数增加3.45个·穗-1,增幅为14.48%(P=0.059),这可能是其增产的主要原因。
     (3) CO2浓度、施氮量与品种之间的交互作用对冬小麦地上部干物重的影响达到了显著水平。对于冬小麦CA0493,大气CO2浓度升高,施氮有利于CA0493的增加地上部干物重;对于冬小麦中麦175,大气CO2浓度升高,低氮条件下地上部干物重增加的潜力大。
     (4)冬小麦生长后期,与对照相比,FACE处理使CA0493的茎、叶的干物重分配比例降低,更多的输送给穗部,有利于穗部干物质的积累;对于中麦175,FACE处理使叶的干物重分配比例降低,使茎和穗的干物重分配比例增加。
     (5)乳熟期,FACE处理使植株氮素吸收量比对照增加9.78%(P=0.098)。在开花期,大气CO2浓度升高,使植物体内的氮素比对照从叶片向茎和穗输送增加,这期间叶子是主要的氮源,到乳熟期,叶片和茎是主要的氮源,FACE处理使氮素比对照从叶和茎向穗部输送增加。
     (6)对于中麦175,FACE处理使开花期之前净光合速率增加32.36%~38.35%,乳熟期净光合速率降低;旗叶气孔导度在开花期之后显著降低,降幅为25.78%~87.08%;使冬小麦旗叶在各生育期的蒸腾速率降低,;孕穗期和乳熟期,FACE处理使胞间CO2浓度与环境CO2浓度的比值(Ci/Ca)分别增加10.67%(P<0.05)和32.35%(P<0.01)。
     (7)乳熟期,FACE处理的中麦175旗叶表现出光合适应现象。乳熟期,FACE处理使中麦175叶片的SPAD值和叶绿素含量均下降,进一步说明CO2浓度升高使叶片出现了早衰现象,这一因素可能导致叶片出现光合适应现象,也可能是光合适应现象导致FACE条件下叶片早衰。
Winter wheat is a very important grain crop in China. Climate chamge is happening with elevated CO2, how yield of winter wheat response to elevated CO2, and how elevated CO2 influnce on winter wheat growth、development and nitrogen uptake are becoming an urgent scientific question to answer. Experiment were based on the CAAS’s FACE system, with two CO2 concentration levels (550±60 ppm and 400±40 ppm)、two N fertilizer leavl (Normal Nitrogen is 189kg·hm-2 and Low Nitrogen is 47kg·hm-2) and two winter wheat varieties( CA0493 and ZM175). Each treatment has three replicants.Experimets were taken to investigate the response of wheat growth to elevated CO2 at Changping, Beijing. Research was done on effects of elevated CO2 on the morphology, yield, dry matter production and distribution, nitrogen uptake and utilization and photosynthetic acclimation. Conclusions are listed as follows:
     (1) Elevated CO2 resulted in taller wheat (+2.78%) and larger flag leaf area (+8.98%).That is interesting to find that with LN conditions, stimulation of flag leaf area with elevated CO2 was greater than NN conditions.we conculd that flag leaf area increased, but became thinner at elevated CO2.
     (2) Effect of elevated CO2 on yield was different between two varieties.Yield of CA0493 increased 24.67% significantly with exposure to elevated CO2; however, yield of ZM175 showed litter effect of elevated CO2.Leaf sencense got earier for wheat of ZM175 with exposure to elevated CO2, which will limit the response of ZM175 to elevated CO2 and result in difference of yield response to elevated CO2 between two varieties.For CA0493, elevated CO2 increased the kernel number per spike up to 3.45 kernels per spike, that is 14.48% increasment(P=0.059), which was the main reason for CA0493 to increase yield.
     (3) The interaction effects of CO2×N×variey on aboveground dry matter was significant. For CA0493 exposed to elevated CO2, normal nitrogen fertilizer did stimulate aboveground dry matter, however, for ZM175 exposed to elevted CO2, aboveground dry matter increased with Low nitrogen.
     (4) At the later stage of CA0493, elevated CO2 decreased the proportion of leaf dry matter to aboveground dry matter and stem dry matter propotion, but increased the head dry matter proportion.That is good for head of CA0493 to get more dry matter. At the later stage of ZM175, elevated CO2 devreased the proportion of leaf dry matter to aboveground dry matter, but increased stem drymatter proportion and head dry matter proportion.
     (5) Aboveground N uptake increased 9.78% with exposure to elevated CO2(P=0.098) at dough maturity. More nitrogen was shifted to stem and head at elevated CO2 and leaves were main source of nitrogen at flowering stage. While till dough maturiety, leaf and stem were main source of nitrogen and shifted more nitrogen to head at elevated CO2.
     (6) For ZM175, elevated CO2 resulted in higher Pn(+32.36%~+38.35%) before flowering, however, decreased in dough maturity. Stomal conductance decreased (-25.78%~-87.08%) significantly afer flowering with exposure to elevated CO2. Transporation rate decreased at elevated CO2, but Ci/Ca increased 10.67% in booting and 32.35% in dough maturity at elevated CO2, respectively.
     (7) In dough maturity, photosynthetic acclimation occurs in the flag leaf of ZM175. Elevated CO2 decreased the content of chlorophyll and SPAD in dough, which means that leaf of ZM175 got earlier senescence with exposure to elevated CO2. This would limit the response of ZM175 to elevated CO2 and result in photosynthetic acclimation of leaf, or photosynthetic acclimation was one of reasons for leaf senescence.
引文
1.白莉萍,仝乘风,林而达,等. CO2浓度增加对不同冬小麦品种后期生长与产量的影响.中国农业气象,23(2):13~16.
    2.胡健,王余龙,杨连新,等.开放式二氧化碳浓度提高对武香粳14叶片硝酸还原酶活力的影响.应用生态学报,2006,17 (11) : 2179~2184.
    3.蒋高明,韩兴国,林光辉.大气CO2浓度升高对植物的直接影响—国外十余年来模拟实验研究之主要手段及基本结论.植物生态学报,1997,21(6):489~502.
    4.李伏生,康绍忠.不同氮和水分条件下CO2浓度升高对春小麦碳氮比和碳磷比的影响.植物生态学报, 2002, 26(3):295~302.
    5.李伏生,康绍忠.两种氮水平下CO2浓度升高对冬小麦生长和氮磷浓度的影响.土壤学报,2003,40(4):599~605.
    6.汤玉玮,林振武,陈敬祥.硝酸还原酶活力与作物耐肥性及其在生化育种上应用的探讨.中国农业科学,1985,18(6):39~42.
    7.王修兰,徐师华,李佑翔.CO2浓度倍增对小麦生育性状和产量构成的影响.生态学报,1996,16(3):328~332.
    8.王修兰.作物—CO2环境模拟装置及评价.农业工程学报,1997, 13(1):120~125.
    9.温民,王春乙,高素华. CO2浓度倍增对冬小麦生长发育产量形态及发芽率的影响.生态农业研究,1994,2(2)27~42.
    10.许大全.光合作用及有关过程对长期高CO2浓度的响应.植物生理学通讯, 1994,30(2): 81~87.
    11.杨连新,黄建晔,李世峰,等.开放式空气二氧化碳浓度增高对小麦氮素吸收利用的影响.应用生态学报,2007c,18(3):519~525.
    12.杨连新,李世峰,王余龙等.开放式空气二氧化碳浓度增高对小麦产量形成的影响.应用生态学报,2007a,18(1):75~80.
    13.杨连新,王余龙,李世峰,等.开放式空气二氧化碳浓度增高对小麦物质生产和分配的影响.应用生态学报,2007b,18(2):339~346.
    14.朱新开,盛海君,顾晶,等.应用SPAD值预测小麦叶片叶绿素和氮含量的初步研究.麦类作物学报, 2005, 25(2):46~50.
    15. Ainsworth E.A., Long S.P.. What we have learned from 15 years of free-air CO2 enrichment (FACE) ? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Philologist, 2005, 165: 351~372.
    16. Ainsworth E.A., Long S.P.. What we have learned from 15years of free-air CO2 enrichment (FACE) ? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 2005, 165: 351~372
    17. Ainsworth E.A., Rogers A., Nelson R., Long S.P.. Testing the‘source–sink’hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutionsin Glycine max. Agricultural and Forest Meteorology, 2004, 122: 85~94.
    18. Biswas P.K., Hileman D.R.. Response of vegetation to carbon dioxide: field studies of sweet potatoes and cowpeas in response to elevated carbon dioxide. Report 022, US Department of Energy, Carbon dioxide Research Division, Office of Energy Research, Washington D C, 1988.
    19. Bowes G.. Facing the inevitable: plants and increasing atmospheric CO2. Annual Review of Plant Physiology and Plant Molecular Biology ,1993, 44: 309~332.
    20. Calfapietra C., Gielen B., Galemma A.N.J., Lukac M., De Angelis P., Moscatelli M.C., Ceulemans R., Scarascia-Mugnozza G.. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation. Tree Phys., 2003, 23: 805~814.
    21. Chaudhuri U.N., Kirkham M.B., Kanemasu E.T.. Root growth of winter wheat under elevated carbon dioxide and drought. Crop Sci., 1990, 30: 853~857.
    22. Conley M.M., Kimball B.A., Brooks T.J., Pinter P.J., Hunsaker D.J., Wall G.W., Adam N.R., LaMorte R.L., Matthias A.D., Thompson T.L., Leavitt S.W., Ottman M.J., Cousins A.B., Triggs J.M.. CO2 enrichment increases water-use efficiency in sorghum. New Phytologist,2001, 151: 407~412.
    23. Culotta E.. Will plants profit from high CO2? Science, 1995, 268: 654~656.
    24. Cure J.D. Carbon dioxide doubling responses: A crop survey// Strain B.R., Cure J.D., eds. Direct Effects of Increasing Carbon Dioxide on Vegetation, DOE/ER0238. United States Department of Energy, Washington DC, USA,1985: 99~116.
    25. DeLucia E.H., Thomas R.B.. Photosynthetic responses to CO2 enrichment of four hardwood species in a forest understory. Oecologia, 2000, 122: 11~19.
    26. DeLucia E.H., Thomas R.B.. Photosynthetic responses to CO2 enrichment of four hardwood species in a forest understory. Oecologia, 2000, 122: 11~19.
    27. den Hertog J., Stulen I., Fonseca F., et al. Modulation of carbon and nitrogen allocation in Urtica dioica and Plantago major by elevated CO2: Impact of accumulation of nonstructural carbohydrates and ontogenetic drift. Physiologia Plantarum, 1996, 98: 77~88.
    28. Dijkstra P., Schapendonk AHMC, Groenwold K.,et al. Seasonal changes in the response of winter wheat to elevated atmosphe, CO2 concentration grown in Open-Top Chambers and field tracking enclosures. Global Change Biology, 1999, 5: 563~576.
    29. Drake B.C., Gonzalez M.A., Long S.P. More efficient plants: A consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 609~639.
    30. Drake B.C., Gonzalez M.A., Long S.P.. More efficient plants: A consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, 48: 609~639.
    31. Drake B.G., Leadly P.W., Arp W.J.. An open chamber for field studies of elevated atmospheric CO2 concentration on salt marsh vegetation. Functional Ecology, 1989, 3: 363~371.
    32. Ellsworth D.S., Oren R., Huang C., Phillips N., Hendrey G.R.. Leaf and canopy responses toelevated CO2 in a pine forest under free-air CO2 enrichment. Oecologia, 1995, 104: 139~146.
    33. Ferrario-Mery S, ThibaudMC, Betsche T, et al. Modulation of carbon and nitrogen metabolism and of nitrate reductase, in untransformed Nicotiana plumbaginifolia during CO2 enrichment of plants grown in pots and hydroponic culture. Planta, 1997, 202: 510~521.
    34. Firn G.A., Brun W.A.. Effect of atmospheric CO2 enrichment on growth, nonstructural carbohydrate content and root nodule activity in soybean. Plant physiology, 1982, 69: 327~331.
    35. Forster P., Ramaswamy V., Artaxo P., et al. Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. USA: Cambridge University Press, 2007.
    36. Fuhrer J.. Agro-ecosystem responses to combination of elevated CO2, ozone, and global climate change. Agriculture Ecosystems & environment, 2003, 97:1~20.
    37. Fuhrer J.. Agroecosystem responses to combination of elevated CO2, ozone, and global climate change. Agr. Ecosyst. Environ., 2003, 97: 1~20.
    38. Genthon C., Bamola J.M., Raynaud D., et al. Vostok ice core: climatic to CO2 and orbital forcing changes over the last climatic cycle. Nature, 1987, 329: 414~418.
    39. Gifford, R.M. The CO2 fertilizing effect– does it occur in the real world? New Phytol., 2004, 163: 221~225.
    40. Grulke N.E., Riechers G.H., Oechel W.C., et al. Carbon balance in tussock tundra under ambient and elevated atmospheric CO2. Oecologia, 1990, 83: 485~494.
    41. Gunderson C.A., Wullschleger S.D.. Photosynthetic acclimation in trees to rising atmospheric CO2: a broader perspective. Photosynthesis Research, 1994, 39: 369~388.
    42. Gunderson C.A., Wullschleger S.D.. Photosynthetic acclimation in trees to rising atmospheric CO2: a broader perspective. Photosynthesis Research, 1994, 39: 369~388.
    43. Hebeisen T., Luscher A., Zanetti S., Fischer B.U., Hartwig U.A., Frehner M., Hendrey G.R., Blum H., Nosberger J.. Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management. Global Change Biology, 1997, 3: 149~160.
    44. Hendrey G.R., Lewin K.F., Nagy J.. Free air carbon dioxide enrichment: development, progress, Results. Vegetation,1993, 104/105:17~31.
    45. Hendrey G.R., Lipfert F.W., Kimball B.A., et al. Free-air carbon dioxide enrichment (FACE) facility development:ⅡField tests at Yazoo City, MS, 1987. Report 046, US Department of Energy, Carbon dioxide Research Division, Office of Energy Research, Washington DC, 1988.
    46. Herrick J.D., Thomas R.B.. No photosynthetic downregulation in sweetgum trees (Liquidambar styraciflua L.) after three years of CO2 enrichment at the Duke forest FACE experiment. Plant, Cell & Environment, 2001, 24: 53~64.
    47. Hocking P.J., Meyer C.P. Effects of CO2 enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize. Australian Journal of PlantPhysiology, 1991, 18: 339~356.
    48. Hymus G.J., Baker N.R., Long S.P.. Growth in elevated CO2 can both decrease and increase photochemistry and photoinhibition of photosynthesis in a predictable manner. Dactylis glomerata grown in two levels of nitrogen nutrition. Plant Physiology, 2001, 127: 1204~1211.
    49. Idso K.E., Idso S.B.. Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years' research. Agriculture and Forest Meteorology, 1994, 69: 153~203.
    50. IPCC, Working GroupⅡ, Climate Change Impacts, Adaptation and Vulnerability. Intergovernmental Panel on Climate Change. Cambridage, UK: Cambridge University Press, 2007.
    51. Isopp H., Frehner M., Long S.P., N?sberger J.. Sucrose-phosphate synthase responds differently to source–sink relations and to photosynthetic rates: Lolium perenne L. growing at elevated pCO2 in the field. Plant, Cell & Environment, 2000, 23: 597~607.
    52. Jablonski L.M., Wang X., Curtis P.S.. Plant reproduction under elevated CO2 conditions: a meta-analysis of reports of 79 crop and wild species. New Phytologist, 2002, 156: 9~26.
    53. Karnosky D.F., 2003: Impact of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps. Environ. Int., 29: 161~169.
    54. Kimball B.A., Kobayashi K., Bindi M.. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy, 2002, 77: 293~368.
    55. Kimball B.A., Pinter Jr P.J., Wall G.W., et al. Comparisons of responses of vegetation to elevated carbon dioxide in free-air and open-top chamber facilities. In :Allen Jr. L H, Kirkham M B, Olszyk D M, and Whitman C E ,eds. Advances in Carbon Dioxide Research. Madison, Wisconsin, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.1997, 113~130.
    56. Kimball B.A., Pinter Jr. P.J., Garcia R.L., et al. Productivity and water use of wheat under free-air CO2 enrichment.Global Change Biology, 1995, 1: 429~442.
    57. Korner, C., Asshoff R., Bignucolo O., Hattenschwiler S., Keel S.G., PelaezRiedl S., Pepin S., Siegwolf R.T.W. , Zotz G.. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science, 2005, 309: 1360~1362.
    58. Lawlor D.W., Mitchell R.A.C.. The effects of increasing CO2 on crop photosynthesis and productivity: a review of field studies. Plant Cell Environ., 1991, 14: 807~818.
    59. Leadly P.W., Drake B.G.. Open top chambers for exposing plant canopies to elevated CO2 concentration and for measuring net gas exchange. Vegetatio, 1993, 104/105: 3~15.
    60. Lewin K.F., Hendrey G.R., Kolber Z.. Brookhaven National Laboratory free-air carbon dioxide enrichment facility. Crit Rev Plant Sci, 1992, 11: 135~141.
    61. Liberloo M., Dillen S.Y., Calfapietra C., Marinari S., Zhi B.L., DeAngelis P., Ceulemans R.. Elevated CO2 concentration, fertilization and their interaction: growth stimulation in a short-rotation poplar coppice (EUROFACE). Tree Physiol., 2005, 25, 179~189.
    62. Lin E.D., et al. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philosophical Transactions of the Royal Society, 2005. 360: 2149~2154.
    63. Long S.P., Ainsworth E.A., Leakey A.D.B., Morgan P.B.. Global food insecurity. Treatment ofmajor food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philos. T. Roy. Soc. B, 2005, 360: 2011~2020.
    64. Long S.P., Ainsworth E.A., Leakey A.D.B., Nosberger J., Ort D.R.. Food for thought: lower expected crop yield stimulation with rising CO2 concentrations. Science, 2006, 312: 1918~1921.
    65. Long, S.P., Ainsworth E.A., Rogers, Ort D.R.. Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol., 2004, 55: 591~628.
    66. Lüscher A., Hartwig U.A,. Suter D., Nosberger J.. Direct evidence that symbiotic N2 fixation in fertile grassland is an important trait for a strong response of plants to elevated atmospheric CO2. Global Change Biology , 2000, 6: 655~662.
    67. Lüscher A., Hendrey G.R., Nosberger J.. Long-term responsiveness to free air CO2 enrichment of functional types, species and genotypes of plants from fertile permanent grassland. Oecologia, 1998, 113: 37~45.
    68. McLeod A.R., Long S.P.. Free-air carbon dioxide enrichment (FACE) in global change research: A review. Adv Ecol Res, 1999, 28: 1~56.
    69. Medlyn B.E., Badeck F.W., DePury D.G.G., Barton C.V.M., Broadmeadow M., Ceulemans R., DeAngelis P., Forstreuter M., Jach M.E., Kellom?ki S., Laitat E., Marek M., Philippot S., Rey A., Strassemeyer J., Laitinen K., Liozon R., Portier B., Roberntz R., Wang K., Jarvis P.G.. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment, 1999, 22: 1475~1495.
    70. Mercado J.M., Javier F., Gordillo L., et al. 1999. Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl. Phycol., 1999, 11: 455~461.
    71. Naumburg E., Ellsworth D.S.. Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE. Oecologia, 2000, 122: 163~174.
    72. Nie G., Hendrix D.L., Webber A.N., et al. Increased accumulation of carbohydrates and decreased photosynthetic gene transcript levels in wheat grown at an elevated CO2 concentration in the field. Plant physiol., 1995, 108: 975~983.
    73. Nie G.Y., Long S.P., Garcia R.L., et al. Effect of free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat, as indicated by changes in leaf proteins. Plant, Cell and Environment, 1995, 18 :855~864.
    74. Norby R.J., DeLucia E.H., Gielen B., Calfapietra C., Giardina C.P., King J.S., Ledford J., McCarthy H.R.. Forest response to elevated CO2 is conserved across a broad range of productivity. P. Natl. Acad. Sci USA, 2005, 102: 18052~18056.
    75. Norby R.J., Sholtis J.D., Gunderson C.A., Jawdy S.S.. Leaf dynamics of a deciduous forest canopy: no response to elevated CO2. Oecologia, 2003, 136: 574~584.
    76. Nowak R.S., Ellsworth D.S., Smith S.D.. Functional responses of plants to elevated atmospheric CO2– do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 2004, 162: 253~280.
    77. Nowak R.S., Ellsworth D.S., Smith S.D.. Functional responses of plants to elevated atmospheric CO2– do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist, 2004, 162: 253~280.
    78. Pal M., Rao L.S., Jain A.C., et al. Effects of elevated CO2 and nitrogen on wheat growth and photosynthesis. Biol. Plant, 2005, 49: 467~470.
    79. Peng S., J. Huang J.E. Sheehy R.C. Laza R.M. Visperas X.H. Zhong G.S. Centeno G.S. Khush, K.G. Cassman. Rice yields decline with higher night temperature from global warming. P. Natl. Acad. Sci. USA of the United States of America, 2004, 101: 9971~9975.
    80. Pinter Jr P.J., Kimball B.A., Wall G.W., et al. Effects of elevated CO2 and soil nitrogen fertilizer on final grain yields of spring wheat//Annual Research Report. U. S. Water Conservation Laboratory, USDA, Agricultural Research Service, Phoenix, Arizona, USA,1997: 71~74.
    81. Retuerto R., Woodward F.I. The influences of increased CO2 and water-supply on growth, biomass allocation and water-use efficiency of Sinapis alba L. Grown under different wind speeds. Oecologia, 1993, 94: 415~427.
    82. Rodhe H.A.. Comparison of the contribution of various gases to the greenhouse effect. Science, 1990, 248: 1217~1219.
    83. Rogers A., Ellsworth D.S.. Photosynthetic acclimation of Pinus taeda (loblolly pine) to long-term growth in elevated pCO2 (FACE). Plant, Cell & Environment, 2002, 25: 851~858.
    84. Rogers A., Humphries S.W.. A mechanistic evaluation of photosynthetic acclimation at elevated CO2. Global Change Biology, 2000, 6: 1005~1011.
    85. Rogers G.S., Milham P.J., Gillings M., et al. Sink strength may be the key to growth and nitrogen responses in N-deficient wheat at elevated CO2. Australian Journal of Plant Physiology, 1996, 23(3): 253~264.
    86. Rogers G.S., Payne L., Milham P., et al. Nitrogen and phosphorus requirements of cotton and wheat under changing atmospheric CO2 concentrations.Plant and Soil, 1993, 156: 31~234.
    87. Rogers H.H., Cure J.D., Smith J.M.. Soybean growth and yield response to elevated carbon dioxide. Agriculture, Ecosystems and Environment, 1986, 24: 113~128.
    88. Sage R.F.. A model describing the regulation of ribulose-1,5-bisphosphate carboxylase, electron transport and triose phosphate used in response to light intensity and CO2 in C3 plants. Plant Physiology, 1990, 94: 1728~1734.
    89. Sage R.F.. A model describing the regulation of ribulose-1,5-bisphosphate carboxylase,electron transport and triose phosphate used in response to light intensity and CO2 in C3 plants. Plant Physiology, 1990, 94: 1728~1734.
    90. Seneweera S.P., Conroy J.P., Ishimaru K., et al. Changes in source-sink relations during development influence photosynthetic acclimation of rice to free air CO2 enrichment (FACE). Funct. plant Biol., 2002, 29: 945~953.
    91. Singsaas E.L., Ort D.R., DeLucia E.H.. Diurnal regulation of photosynthesis in understory saplings. New Phytologist, 2000, 145: 39~49.
    92. Srivastava A.C., Pal M., Sengup ta UK. Changes in nitrogen metabolism of Vigna radiata in response to elevated CO2. Biol. Plant, 2002, 45: 395~399.
    93. Stitt M., Krapp A.. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment, 1999, 22: 583~621.
    94. Stitt M., Krapp A.. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment, 1999, 22: 583~621.
    95. Tubiello F.N., Amthor J.A., Boote K., Donatelli M., Easterling W.E., Fisher G., Gifford R., Howden M., Reilly J., Rosenzweig C.. Crop response to elevated CO2 and world food supply. Eur. J. Agron., 2007b, 26: 215~223.
    96. Tubiello F.N., Ewert F.. Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. Eur. J. Agron., 2002, 18: 57~74.
    97. Vanhatalo M., J. Back and S. Huttunen, 2003: Differential impacts of long-term (CO2) and O3 exposure on growth of northern conifer and deciduous tree species. Trees-Struct. Funct., 17, 211-220.
    98. von Caemmerer S., Ghannoum O., Conroy J.P., Clark H., Newton P.C.D.. Photosynthetic responses of temperate species to free air CO2 enrichment (FACE) in a grazed New Zealand pasture. Australian Journal of Plant Physiology, 2001, 28: 439~450.
    99. Wall G.W.. Elevated atmospheric CO2 alleviates drought stress in wheat. Agriculture, Ecosystems and Environment, 2001, 87: 261~271.
    100. Wand S.J.E., Midgley G.F., Jones M.H., Curtis P.S.. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology,1999, 5: 723~741.
    101. Wittig V.E., Bernacchi C.J., Zhu X.G., Calfapietra C., Ceulemans R., Deangelis P., Gielen B., Miglietta F., Morgan P.B., Long S.P.. Gross primary production is stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure. Glob. Change Biol., 2005, 11: 644~656.
    102. Zanetti S., Hartwig U.A., Luscher A., Hebeisen T., Frehner M., Fischer B.U., Hendrey G.R., Blum H., Nosberger J.A.. Stimulation of symbiotic N2 fixation in Trifolium repens L. under atmospheric pCO2 in a grassland ecosystem. Plant Physiology, 1996, 112: 575~583.
    103. Ziska. L.H., George K.. Rising carbon dioxide and invasive, noxious plants: potential threats and consequences. World Resource Review, 2004, 16: 427~447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700