用户名: 密码: 验证码:
两个生育时期水稻耐低磷胁迫相关性状的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤中有效磷缺乏是制约水稻生产的重要因素之一。选育磷高效水稻品种,是改善水稻磷营养状况的一种更为经济、环保、长远的途径。分子标记辅助选择结合表型鉴定是选育水稻磷高效基因型的一条途径,而QTL定位是进行分子标记辅助选择和图位克隆的基础。本研究在进行遗传连锁图谱分子标记加密的基础上,以超级杂交稻协优9308不育系的保持系协青早B和恢复系中恢9308杂交衍生的198个株系组成的重组自交系群体为材料,利用水培方法,在分蘖期和抽穗期分别对磷效率相关性状作了初步定位,同时对两个生育时期根系的酸性磷酸酶活性与磷效率之间的关系作了初步分析。主要结果如下:
     1.应用328个SSR标记对亲本协青早B和中恢9308进行多态性筛选,共获得98个亲本多态性SSR分子标记,多态性频率为29.8%。在参考分析已有图谱的基础上,选取35个SSR标记对281个单株的RIL群体进行标记基因型检测。经卡方检验,35个SSR标记中,当P< 0.05时,有18个符合孟德尔1:1的单基因理论分离比,占总标记数的51.4%,其余17个为显著偏分离,占总标记数的48.6%。在所有17个偏分离标记中,7个(41.2%)偏向父本中恢9308,10个(58.8%)偏向母本协青早B。应用MAPMAKER/EXP 3.0,将35个标记全部加入到各自的连锁群。加密后的连锁图谱共有198个标记,每个连锁群上的标记数介于4~25个之间;总图距为1765.6 cM,标记间平均图距为8.96 cM,图距范围为0.2 cM-34.4 cM。
     2. QTL定位结果表明,在两个生育时期共检测到控制6个性状表现的21个加性QTL,分布在第4、5、6、7、10、11染色体上。其中4个相对根干重QTL、3个相对冠干重QTL、3个相对总干重QTL、5个相对根长QTL、4个相对分蘖力QTL和2个相对根冠比QTL。除此之外,还在第1、5、6、9染色体检测到3对非加性QTL互作效应。在分蘖期于第4染色体的RM307-RM5953区间内,均定位到控制相对冠干重、相对总干重及相对根冠比的QTL;在第10染色体的RM311-RM6142区间内,各自检测到1个相对根干重和相对分蘖力的QTL。类似的现象在抽穗期也有出现。比较分蘖期和抽穗期的定位结果看,除相对根长外,其它5个性状在两个生育时期都各自在相同的区间定位到相应QTL。除此之外,在分蘖期检测到的2对上位性效应中,有1对在抽穗期也被检测到。在第4染色体的RM307-RM3317区间内检测到多个QTL,是所有染色体中聚集QTL数目最多的一个区间,在该区间可能存在控制水稻磷效率的基因。
     3.在低磷条件下,两个生育时期亲本及RIL群体根系的酸性磷酸酶活性均有提高。虽然在正常供磷条件下,父本中恢9308的根系酸性磷酸酶活性高于母本协青早B,但在低磷条件下协青早B的根系酸性磷酸酶活性高于中恢9308,这暗示着根系酸性磷酸酶活性在低磷胁迫和正常处理条件下可能受不同的遗传基础调控。对比两个生育时期根系相对酸性磷酸酶活性发现,抽穗期的酶活性要低于分蘖期的酶活,这个结果也可通过相关分析得以间接佐证。相关分析结果表明,在分蘖期,根系的相对酸性磷酸酶活性与相对根干重、相对冠干重、相对总干重、相对分蘖力、根系相对磷吸收量的相关程度要高于抽穗期,这暗示着根系酸性磷酸酶活性在生育期前期对磷效率的贡献率,要高于生育期后期的贡献率。QTL定位结果表明,仅在分蘖期于第3和第7染色体分别定位到一个控制根系相对酸性磷酸酶活性的QTL,在抽穗期未定位到相关QTL。
The low level of available phosphorus in soils is a major yield-limiting factor in rice production. Breeding high phosphorus efficient cultivars may represent a more sustainable solution than sole reliance on fertilizer application. Molecular marker assisted selection (MAS) can be integrated with traditional methods of artificial selection on phenotypes to breed rice cultivars with high phosphorus efficiency. Wheares QTL mapping is the basis of the MAS and map-based cloning. The present research mainly aimed to map QTLs for traits related to phosphorus deficiency tolerance at tillering stage and heading stage in rice after increasing the density of rice genetic linkage map with a number of 35 SSR markers. In addition, the rice root acid phosphatase was evaluated and its relationship with phosphorus efficiency was studied. A RIL population consisting of 195 lines derived from maintainer line Xieqingzao B (abbreviated as Xie B) and restoring line Zhonghui 9308(abbreviated as R9308) of super hybrid rice Xieyou 9308 was used and hydrophonic method was employed in the experiment. The relative parameter, defined as a ratio of value under phosphorus deficient condition to that measured under sufficient condition was used to evaluate the tolerance ability of parents and RIL population in the experiment. The main results are outlined as follows:
     1. A total of 328 SSR markers were used to screen the polymorphism between Xie B and R9308, and 98 polymorphic markers were obtained with the polymorphism rate of 29.8%. Based on the preliminary framework of the linkage map, 35 polymorphic markers were chosen to genotype the RIL population consisting of 281 lines. The chi-squares test indicated that a number of 18 markers which accounted for 51.4% were consistent with theoretical segregation ratio of 1:1 at the significance level of 5%, and the other 17 markers which accounted for 48.6% deviated significantly. Among all the deviation markers, 7 markers deviated to male parent R9308 and the other 10 deviated to female parent Xie B. By using MAPMAKER/EXP 3.0, all the 35 SSR markers were localized onto the chromosomes. The marker-newly-added linkage map consists of 198 SSR markers and covers a length of 1765.6 cM with the average distance of 8.96 cM between adjacent markers.
     2. By using CIM method, a total of 21 additive QTLs for phosphorus deficiency tolerance related traits were detected at two development stages, which distributed through chromosome 4, 5, 6, 7, 10, 11. Among them, 4 was for relative root dry weight(RRDW), 3 was for relative shoot dry weight(RSDW), 3 was for relative total dry weight(RTDW), 5 was for relative root length(RRL), 4 was for relative tillering ability(RTA) and 2 was for relative root/shoot ratio(RRRS). In addition, 3 pairs of epistatic effect between QTLs which have no additive effect were also detected on chromosome 1, 5, 6, and 9. At tillering stage, QTLs for RSDW, RTDW and RRRS were detected at the same region of RM307-RM5953 on chromosome 4 and QTLs for RRDW and RTA were detected at the same region of RM311-RM6142 on chromosome 10. The situation that QTLs for different traits localized at the same region was also found at heading stage. Except for RRL, same QTLs were detected for the other 5 traits at the same region at tillering stage and heading stage. Interestingly, among three pairs of epistatic effect, one pair was detected at two development stages. A cluster of QTLs were detected at the region of RM307-RM5953 on chromosome 4 in which phosphorus efficiency related gene may lie.
     3. Under phosphorus surficient condition, the root acid phosphatase activity of male parent R9308 was higher than that of female parent Xie B. Under phosphorus stress condition, however, the situation is quite reverse although the root acid phosphatase activity of the parents and RIL population lines increased at both development stages, which indicated that the genetic system for acid phosphatase under stress condition was different with that for acid phosphatase under normal culture. The simple correlation analysis showed that the contribution of AAP to phosphorus efficiency at tillering stage was greater than that of at heading stage. There were two QTLs for RRAPA at tillering stage, but no QTL was detected at heading stage.
引文
1.曹黎明,潘晓华.水稻不同耐低磷基因型的评价指标分析.上海农业学报, 2000, 16(4): 31-34
    2.曹黎明,潘晓华.水稻耐低磷基因型种质的筛选与鉴定.江西农业大学学报, 2000, 22(2): 162-168
    3.曹立勇,占小登,庄杰云,等.水稻产量性状的QTL定位与上位性分析.中国农业科学, 2003, 36(11): 1241-1247
    4.程式华,胡培松.中国水稻科技发展战略.中国水稻科学, 2008, 22(3): 223-226
    5.程式华,庄杰云,曹立勇,等.超级杂交稻分子育种研究.中国水稻科学, 2004, 18(5): 377-383
    6.丁洪,李生秀,郭庆元,等.酸性磷酸酶活性与大豆耐低磷能力的相关研究.植物营养与肥料学报, 1997, 3(2): 123-128
    7.杜娟,曾亚文,普晓英,等.云南地方稻核心种质耐低磷材料的评价方法研究及初步筛选.西南农业学报, 2008, 21(2): 390-395
    8.杜娟,曾亚文,杨树明,等.水稻磷高效重组自交系群体的筛选鉴定.生态环境, 2008, 17(3): 1151-1156
    9.樊明寿,徐冰,王艳.缺磷条件下玉米根系酸性磷酸酶活性的变化.中国农业科技导报, 2001, 3(3): 33-36
    10.高方远,陆贤军,康海岐,等.水稻耐低磷种质的苗期筛选与鉴定,作物学报, 2006, 32(8): 1151 -1155
    11.郭再华,贺立源,黄魏,等.耐低磷水稻筛选与鉴定.植物营养与肥料学报, 2006, 12(5): 642-648
    12.黄宇,张海伟,徐芳森.植物酸性磷酸酶的研究进展.华中农业大学学报, 2008, 27(1): 148-154
    13.李德华,向春雷,姜益泉,等.低磷胁迫下不同水稻品种根系生理特性的研究.华中农业大学学报, 2006, 25(6): 626-629
    14.李海波,夏铭,吴平.低磷胁迫对水稻苗期侧根生长及养分吸收的影响.植物学报, 2001, 43(11): 1154-1160
    15.李继云,刘秀娣,李振声,等.有效利用土壤营养元素的作物育种新技术研究.中国科学(B辑), 1995, 25(1): 41-48
    16.李晓林,姚青. VA菌根与植物的矿质营养.自然科学进展, 2000, 10(6): 524-531
    17.李永夫,罗安程,王为木等.耐低磷水稻基因型筛选指标的研究.应用生态学报, 2005, 16(1): 119-124
    18.李志刚,谢甫绨,宋书宏.大豆高效利用磷素基因型的筛选.中国农学通报, 2004, 20(5): 126-129
    19.梁泉,廖红,梅曼彤,等.作物磷效率相关性状的QTL分析研究进展.分子植物育种, 2006, 4(4): 453-463
    20.梁永书,张启军,王世全等.测序水稻品种SSR遗传连锁图谱的构建及其农艺性状基因座分析.中国生物工程杂志, 2007, 27(1): 28-34
    21.刘峰,吴晓雷.大豆分子标记在RIL群体中的偏分离分析.遗传学报, 2000, 27(10): 883-887
    22.刘刚,许盛宝,倪中福,等.小麦RIL群体SSR标记偏分离的遗传分析.农业生物技术学报, 2007, 15(5): 828-833
    23.刘慧,刘景福,刘武定.不同磷营养油菜品种根系形态及生理特性差异研究.植物营养与肥料学报, 1999, 5(1): 40-45
    24.刘鹏,区伟贞,王金祥.磷有效性与植物侧根的发生发育.植物生理学通讯, 2006, 42(3): 395-400
    25.刘仁虎,孟金陵. MapDraw,在Excel中绘制遗传连锁图的宏.遗传, 2003, 25(3): 317-321
    26.刘亚,李自超,米国华,等.水稻耐低磷种质的筛选与鉴定.作物学报, 2005, 31(2): 238-242
    27.刘芷宇.土壤根系微区养分环境研究概况.土壤学进展, 1980, 8(3): 1-11
    28.卢扬江,郑康乐.提取水稻DNA的一种简易方法.中国水稻科学, 1992, 6(1): 47-48
    29.明凤,米国华,张福锁,等.发育时期对水稻耐低磷胁迫有关性状QTLs检测的影响.中国水稻科学, 2001, 15(4): 248-252
    30.明凤.水稻耐低磷胁迫生理生化机制的QTLs分析.中国农业大学博士论文.北京.中国农业大学. 2000
    31.穆平,黄超,李君霞,等.低磷胁迫下水稻产量性状变化及其QTL定位.作物学报, 2008,
    34(7): 1137-1142
    32.穆平,黄超,李自超.中国粳稻核心种质耐低磷性的鉴定与筛选.中国农业大学学报, 2008
    13(6): 1-5
    33.穆平,张洪亮,姜德峰,等.利用水、旱稻DH系定位产量性状的QTL及其环境互作分析.中国农业科学, 2005, 38(9): 1725-1733
    34.彭勇,梁永书,王世全,等.水稻SSR标记在RI群体的偏分离分析.分子植物育种, 2006, 4(6): 786-790
    35.沈希宏,陈深广,曹立勇,等.超级杂交稻协优9308重组自交系的分子遗传图谱构建.分子植物育种, 2008, 6(5): 861-866
    36.施勇烽,应杰政,王磊,等.鉴定水稻品种的微卫星标记筛选.中国水稻科学, 2005, 19(3): 195-201
    37.宋宪亮,孙学振,张天真.偏分离及对植物遗传作图的影响.农业生物技术学报, 2006, 14(2): 286-292
    38.汤翠凤,徐福荣,余腾琼,等.水稻耐低磷种质的初步筛选.分子植物育种, 2005, 3(5): 711-715
    39.唐丁,郭龙彪,曾大力,等.两例水稻极端异常分离现象的遗传分析.遗传, 2006, 28(10): 1259-1264
    40.童学军,李惠珍,曾焕泰,等.低磷胁迫下溶液培养大豆生长和磷素营养特性及其与土培下磷效率特性的关系.植物营养与肥料学报, 2001, 7(3): 298-304
    41.王汝慈,曹立勇,程式华.水稻耐低磷胁迫研究进展.中国农学通报, 2009, 25(6): 77-83
    42.吴平,倪俊健.应用AFLP与RFLP标记研究水稻磷吸收与利用率的数量性状位点.植物学报, 2000, 42 (3) : 229-233
    43.吴伟明,宋祥甫,邹国燕.利用水上栽培方法研究水稻根系.中国水稻科学, 2000, 14(3): 189-192
    44.吴照辉,贺立源,张丽梅,等.作物磷高效种质资源筛选研究进展.山地农业生物学报, 2008, 27(1): 61-68
    45.徐青萍,罗超云,廖红,等.大豆不同品种对磷胁迫反应的研究.大豆科学, 2003, 22(2): 108-114
    46.许曼丽,范晓晖.营养胁迫下不同植物根系的反应和根际效应.土壤, 1977, 3: 137-141
    47.严建兵,汤华,黄益勤,等.玉米F2群体分子标记偏分离的遗传分析.遗传学报, 2003, 30(10): 913-918
    48.严小龙,廖红,戈振扬,等.植物根构型特性与磷吸收效率.植物学通报, 2000, 17(6): 511-519
    49.严小龙,张福锁.植物营养遗传学.中国农业出版社, 1997, 40-42
    50.余守武,谢建坤,万勇,等.水稻抗旱性相关性状的QTLs定位研究进展.分子植物育种, 2004, 2(3): 391-400
    51.张浩,曾亚文,杜娟,等.云南水稻地方品种磷高效种质的筛选及生态分布规律研究.植物遗传资源学报, 2007, 8(4): 442-446
    52.张玉山,陈庆全,吴薇,等.水稻SSR标记遗传连锁图谱着丝粒的整合及其偏分离分析.华中农业大学学报, 2008, 27(2): 167-171
    53.赵向前,吴为人.水稻ILP标记遗传图谱的构建.遗传, 2008, 30(2): 225-230
    54.周志高,汪金舫,周健民.植物磷营养高效的分子生物学研究进展.植物学通报, 2005, 22(1): 82-91
    55. Ae N and Arihara J. Uptake mechanism of iron-associated phosphorus in in pigeonpean growing on Indian Alfisol and its significance to phosphorus availability in cropping systems. In: Proc. of 4th Int. Conf. of Soil Sci. Society. 1990, 2: 164-169
    56. Akinrinde E A, Gaizer T. Differences in the performance and phosphorus-use efficiency of some tropical rice (Oryza sativa L.) varieties. Pakistan J Nutr, 2006, 5 (3): 206-211
    57. Armstrong R D and Helyar K R. Changes in soil phosphate fractions in the rhizosphere of semi-arid pasture grasses. Aust J Soil Res, 1992, 30: 131-143.
    58. Bosse D and Kock M. Influence of phosphate starvation on phosphohydrolases during development of tomato seedlings. Plant, Cell Environ, 1998, 21(3): 325-332
    59. Cheng R, Saito A, Takano Y, et al. Estimation of the position and effect of a lethal factor locus on a molecular marker linkage map. Theor Appl Genet, 1996, 93(4): 494-502
    60. Coe E H and Polacco M. Gene list and working maps. Maize Genet Coop Newslett, 1995, 69(1): 157-191
    61. Dean L A and Fried M. Soil plant relationships in the phosphorus nutrition of plants. In: Pierre W H and Norman A G. (eds.), Soil and Fertilizer Phosphorus in Crop Nutrition. Academic Press, Inc., New York, NY. 1953, 4: 43-58
    62. Dechassa N, Schenk M K, Claassen N, et al. Phosphorus efficiency of cabbage, carrot, and potato. Plant Soil, 2003, 250: 215-224
    63. deo Pozo J C, Allona I, Rubio V, et al. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. Plant J, 1999, 19(5): 579-589
    64. Devaiah B N, Karthikeyan A S and Raghothama K G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol, 2007, 143: 1789-1801
    65. Dinkelaker B, Reambeld V and Marschner H. Citric acid exudation and precipitation of calcium citrate in the rhizosphere of white lupin (lupirus albus L.). Plant Cell Environ, 1989, 12: 285-292
    66. Duff S M G, Sarath G and Plaxton W C. The role of phosphatases in plant phosphorus metabolism. Physiol Plantarum, 1994, 90(4): 791-800
    67. Fageria N K, Wright R J and Baligar V C. Rice cultivar evaluation for phosphorus use efficiency. Plant Soil, 1988, 111(1): 105-109
    68. Fang Z, Shao C, Meng Y, et al. Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci, 2009, 176: 170-180
    69. Foehse D, Claassen N and Jungk A. Phosphorus efficiency of plants I. External and internal P requirement and P uptake efficiency of different plant species. Plant Soil, 1988, 110(1): 101-109
    70. Foehse D, Claassen N and Jungk A. Phosphorus efficiency of plants II. Significance of root radius, root hairs and cation anion balance for phosphorus influx in seven plant species. Plant Soil, 1991, 123: 261-272
    71. Gahoonia T S and Nielsen N E. The effect of root induced pH changes on the depletion of inorganic and organic phosphorus in the rhizosphere. Plant Soil, 1992, 143: 185-191
    72. Gahoonia T S and Nielsen N E. Variation in acquisition of soil phosphorus by wheat and barley genotypes. Plant Soil, 1996, 178: 223-230
    73. Gahoonia T S, Care D and Nielsen N E. Root hairs and acquisition of phosphorus by wheat and barley cultivars. Plant Soil , 1997, 191: 181-188
    74. Gahoonia T S, Nielsen N E and Lyshede O B. Phosphorus acquisition of cereal cultivars in the field at three levels of P fertilization. Plant Soil, 1999, 211: 269-281
    75. Gahoonia1 T S and Nielsen N E. Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil, 2004, 260: 47-57
    76. Goldstein A H, Danon A, Baertlein D A, et al. Phosphate starvation inducible metabolism in Lycopersicon esculentum. II.Characterization of the phosphate starvation induced excreted acid phosphatase. Plant Physio, 1988, 87: 716-720
    77. Gourley C J P, Allan D L and Russelle M P. Defining phosphorus efficiency in plants, Plant Soil, 1993, 155/156: 289-292
    78. Guo Z H, Ding P, He L Y, et al. Genetic Analysis of Agricultural Traits in Rice Related to Phosphorus Efficiency. Acta Genetica Sinica, 33(7): 634-641
    79. Hajabbasi M A and Schumacher T E. Phosphorus effects on root growth and development in two maize genotypes. Plant Soil, 1994, 158: 39-46
    80. Haran S, Logendra S, Seskar M, et al. Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physio, 2000, 124: 615-626
    81. He Y, Lian H, Yan X. Localized supply of phosphorus induces root morphological and architecture changes of rice in split and stratifield soil cultures. Plant Soil, 248: 247-256
    82. Hetrick B A D. Mycorrhizas and root architecture. Experientia, 1991, 47: 355-362.
    83. Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil, 2001, 237: 173-195
    84. Hof?and E. Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phospahte by rape. Plant Soil, 1992, 140: 279-289
    85. Hu B, Wu P, Liao C Y, et al. QTLs and epistasis underlying activity of acid phosphatase under phosphorus sufficient and deficient condition in rice (Oryza sativa L.), Plant Soil, 2001, 230: 99-105
    86. Hubel F and Beck E. Maize root phytase: Purification, characterization, and localization of enzyme activity and its putative substrate. Plant Physio, 1996, 112(4): 1429-1436
    87. Hur Y J, Lee H G, Jeon E J, et al. A phosphate starvation-induced acid phosphatase from Oryza sativa: phosphate regulation and transgenic expression. Biotechnol Lett, 2007,29: 829-835
    88. IRRI. IRRI annual report for 1984. International Rice Research Institute, 1985, Manila, The Philippines
    89. IRRI. IRRI Program Report for 1970. International Rice Research Institute, 1971, Manila. The Philippines
    90. Itho S and Barber S A. Phosphorus uptake by six plant species as related to root hairs. Agron J, 1983, 75: 457-461
    91. Joci B and Sari M R. Efficiency of nitrogen, phosphorus, and potassium use by corn, sunflower, and sugarbeet for the synthesis of organic matter. Plant Soil, 1983, 72(2/3): 219-223
    92. Jones-Rhoades M W and Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell , 2004,14: 787-799
    93. Kirk G J D and Du L V. Changes in rice root architecture, porosity,and oxygen and proton release under phosphorus deficiency. New Phytol, 1997, 135: 191-200
    94. Koyama T, Chammek C and Snitwonge P. Varietal differences of Thai rice in the resistance to phosphorus deficiency. Trop Agr Res Cent Jpn Tech, 1973, Bull 4
    95. Lakshmi P and Narayanan A. Effect of phosphorus deficiency on root growth, phytomass production and nutrient content of groundnut horsegram and sesame. Plant Physiol Biochem, 1988,
    15(1): 116-122
    96. Li J, Xie Y, Dai A, et al. Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. J Genet Genomics, 2009, 36: 173-183
    97. Lincoln S E, Daly M J and Lander E S. MAPMAKER/EXP version 3.0, A tutorial and reference manual. Whithead Institute for Biomedical Research, USA, 1993.
    98. Lebreton C, Jancic V L, Steed A, et al. Identification of QTLs for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot, 1995, 46 : 853-865
    99. Li D, Zhu H, Liu K, et al. Purple acid phosphatases of Arabidopsis thaliana. J Biol Chem, 2002, 277(31): 27772-27781
    100. Li Y F, Luo A C, Wei X H, et al. Changes in phosphorus fractions, pH, and phosphatase activity in rhizosphere of two rice genotypes. Pedosphere, 2008, 18(6): 785-794
    101. Li Y F, Luo A C, Wei X H, et al. Genotypic variation of rice in phosphorus acquisition from iron phosphate: contributions of root morphology and phosphorus uptake kinetics. Russian J Plant Physio, 2007, 54(2): 230-236
    102. Lincoln S E, Daly M J and Lander E S. Constructing genetic linkage maps with MAPMAKER/EXP version 3.0: a tutorial and reference manual. A Whitehead Institute for Biomedical Research Technical Report (3rd edition). January, 1993
    103. Lipsett J. The phosphorus content and yield of grain of different wheat varieties in relation to phosphorus deficiency. Aust J Agric Res, 1964, 15 (1): 1-8
    104. Lynch J P. Root architecture and plant productivity. Plant Physiol, 1995, 109: 7-13
    105. Ma W Q, Zhang F S and Zhang W F. Fertilizer production and consumption and the resource, environment, food security and sustainable development in China. Resour Sci, 2005, 27: 33-40
    106. Ma X F, Wright E, Ge Y, et al. Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes. Plant Sci, 2009, 176: 479-488
    107. Majumder N D, Rakshit S C and Borthakur D N. Genetic effect on uptake of selected nutrients in some rice. Plant Soil, 1990, 123: 117-120
    108. Marschner H, Romheld V, Zhang F S, et al. Mobilization of mineral nutrients in the rhizosphere by root exudates. Transactions 14th International Congress of Soil Sci, 1990, vol II: 158-163
    109. McCouch S R, Kochert G, Yu Z H, et al. Molecular mapping of rice chromosomes. Thero Appl Genet, 1988, 76:815-829
    110. McCouch S R, Cho Y G, Yano M, et al. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13
    111. McLachlan K D. Acid phosphatase activity of intact roots and phosphorus nutrition in plants.I.Assay conditions and phosphatase activity. Austrilian J Agri Rese, 1980, 31(3): 429-440
    112. Miller S S, Liu J, Allan D L, et al. Molecular Control of Acid Phosphatase Secretion into the Rhizosphere of Proteoid Roots from Phosphorus-Stressed White Lupin. Plant Physio, 2001, 127:
    594-606
    113. Ming F, Lu Q, Wang W, et al. Cloning, expression and function of phosphate transporter encoded gene in Oryza sativa L. Sci China Ser C-Life Sci, 2006, 49(5): 409-413
    114. Ming F, Zheng X W, Mi G H, et al. Identification of quantitative trait loci affecting tolerance to low phosphorus in rice (Oryza Sativa L.), Chin Sci Bull, 2000, 45(6): 520-525
    115. Murphy J and Riley J P. A modified single solution method for determination of phosphate in natural waters. Analytical Chimica Acta, 1962, 27: 31-36
    116. Ni J J, Luo A C, Zhang Y S, et al. Low phosphorus effects on the metabolism on rice seedlings. Comm Soil Sci Plant Anal, 1996, 27: 3073-3084
    117. Ni J J, Wu P, Senadhira D, et al. Mapping QTLs for phosphorus deficiency tolerance in rice(Oryza sativa L.). Theor Appl Genet, 1998, 97: 1361-1369
    118. Nielsen N E. A transport kinetic concept of ion uptake by plants. III. Test of the concept by results from water culture and pot experiments. Plant Soil, 1976, 45: 659-677
    119. Park M R, Baek S H, de los Reyes B G, et al. Overexpression of a high-affinity phosphate transporter gene from tobacco (NtPT1) enhances phosphate uptake and accumulation in transgenic rice plants. Plant Soil, 2007, 292(1-2): 259-269
    120. Rae A L, Cybinski D H, Jarmey J M, et al. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Mol Bio, 2003, 53(1-2): 27-36
    121. Raghothama K G and Karthikeyan A S. Phosphate acquisition. Plant Soil, 2005, 274: 37-49
    122. Reiter R S, Coors J G, Sussman M R, et al. Genetics analysis of tolerance to low-phosphorus stress in maize using RFLP. Theor Appl Genet, 1991, 82: 561-568
    123. R?hm M and Werner D. Isolation of root hairs from seedlings of Pisum sativum. Identification ofroot hair specific proteins by in situ labelling. Physiol Plantarum. 1987, 69: 129-136
    124. Schachtman D P, Reid R J and Ayling S M. Phosphorus uptake by plants: from soil to cell. Plant Physiol, 1998, 116: 447-453
    125. Seo H M, Jung Y, Song S, et al. Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. Biotechnol Lett, 2008, 30(10): 1833-1838
    126. Shimizu A , Kato K, Komatsu A, et al. Genetic analysis of root elongation induced by phosphorus deficiency in rice (Oryza sativa L.): fine QTL mapping and multivariate analysis of related traits. Theor Appl Genet, 2008, 117: 987-996
    127. Shimizu A, Yanagihara S, Kawasaki S, et al. Phosphorus deficiency-induced root elongation and its QTL in rice(Oryza sativa L.). Theor Appl Genet, 2004, 109: 1361-1368
    128. Smith S N. Response of inbred lines and crosses in maize to variations of nitrogen and phosphorus supplied as nutrients. J Am Soc Agron, 1934, 25: 785-804
    129. Su J, Xiao Yan, Li M, et al. Mapping QTLs for phosphorus-deficiency tolenrance at wheat seedling stage. Plant Soil, 2006, 281:25-36
    130. Tadano T, Ozawa K, Sakai H, et al. Secretion of acid phosphatase by the roots of crop plants under phosphorus deficient conditions and some properties of the enzyme secreted by lupin roots. Plant Soil, 1993, 155/166: 95-98
    131. Torabi S, Wissuwa M, Heidari M, et al. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics, 2009, 9(1): 159-170
    132. Vance C P, Uhde S C and Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 423-447
    133. Veljanovski V, Vanderbeld B, Knowles V L, et al. Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived arabidopsis suspension cells and seedlings. Plant Physio, 2006, 142: 1282-1293
    134. Wang S, Basten C J and Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, USA, 2006. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
    135. Wasaki J, Yamamura T, Shinanao T. et al. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant Soil, 2003, 248(1-2): 129-136
    136. Wasaki J, Yonetani R, Kuroda S, et al. Transcriptional analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ, 2003, 26: 1515-1523
    137. Wissuwa M and Ae N. Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant Soil, 2001, 237: 275-286
    138. Wissuwa M and Ae N. Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breed, 2001, 120: 43-48
    139. Wissuwa M, Wegner J, Ae N, et al. Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet, 2002,105: 890-897
    140. Wissuwa M, Yano M and Ae N. Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet, 1998, 97: 777-783
    141. Yan X, Liao H, Trull M C, et al. Induction of a major leaf acid phosphatase does not conferadaption to low phosphorus availability in common bean. Plant Physio, 2001, 125: 1901-1911
    142. Yang H, Knapp J, Koirala P, et al. Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol J, 2007, 5: 735-745
    143. Yang J, Hu C, Hu H, et al. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721-723
    144. Yi K, Wu Z, Zhou J, et al. OsPTF1, A Novel Transcription Factor Involved in Tolerance to Phosphate Starvation in Rice. Plant Physio, 2005, 138: 2087-2096
    145. Zhao B, Deng Q M, Zhang Q J, et al. Analysis of segregation distortion of molecular markers in F2 population of rice. Acta Genetica Sinica, 2006, 33(5): 449-457

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700