零传动滚齿机热特性分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“零传动”又称直接驱动,其在齿轮加工机床上的应用,完全取消滚齿机传动链的齿轮传动机构,不仅完全消除了传动链的几何误差对加工精度的影响,而且消除了齿轮传动机构生成的热误差对加工精度的影响。但是无法消除电机、轴承等其他因素发热对加工精度的影响。而且由此产生的热误差也在机床所有的误差项中所占的比例大大增加,由原来的40%~70%增加到60%~80%。本文在研究零传动数控滚齿机YK3610结构的基础之上,分析其热特性,重点从理论分析和试验角度研究零传动滚齿机热变形对加工精度的影响,为高效高精度零传动滚齿机热误差补偿提供依据。
     首先分析了零传动滚齿机的热特性,主要包括热源分析、传热方式和传热计算、发热计算及热变形分析。电机定子和转子发热是零传动滚齿机的主要热源,其中定子发热占电机总发热的三分之二以上。另外,对于高效高精度机床而言,主轴轴承发热也是一个很大的热源,主轴轴承的配置数量和安装方式直接影响其发热量。
     零传动滚齿机热变形对加工精度的影响是本文研究重点。分析零传动滚齿机由于电机和轴承受热对工件主轴和滚刀主轴可能产生的变形方式,对各种热变形情况进行计算分析,进一步对反映在加工工件上的相关误差进行了数学计算。工件主轴的径向热变形严重影响工件的齿向加工精度,而滚刀主轴的轴向和径向热变形对工件的齿距偏差和齿向偏差都产生很大的影响。
     从试验的角度主要研究工件主轴和滚刀主轴的热变形。试验发现,受到主轴热结构的影响,工件主轴在径向热变形Y向明显大于X向,对工件加工精度有很大影响,工件主轴轴向热变形很大,但是对加工精度影响很小;而滚刀主轴由于受热结构的影响,径向热变形X向明显大于Z向,对加工精度产生直接影响,而且滚刀主轴的轴向热变形受到尾架的影响,变形比较复杂;利用热变形试验数据计算其对齿轮加工精度的影响。
     最后,本文主要从结构优化和热误差补偿两方面来研究机床热变形控制技术,以工件主轴为例分析改进电机冷却系统,有利于减小热变形对加工精度的影响;而热误差补偿技术成本低效果明显,文中提出了热误差补偿的建模方法和补偿的实施过程。
The technology“direct-drive”has been applied in gear hobbing machine tool, so the structure of gear transmission is removed, which not only reduces the effect of the geometry error on the machining precision, but also avoids the effect of the thermal error from the gear transmission structure on the machining precision. The precision and efficiency are raised greatly. But the effect of the heat on the machining precision, which is from electromotor, bearing and so on, can’t be eliminated on the machine tool. And the rate of thermal error rises greatly in all the errors, which is from 40%~70% to 60%~80%. The heat source, the way of thermal transfer and so on are analyzed based on the structure of Direct-drive gear hobbing machine YK3610. The effect of the thermal deformation on machining precision is focused on theoretically and experimentally based on the machine tool. Thermal error compensation can be performed by it on the high-speed and high-precision machine tool.
     Firstly, thermal characteristic of direct-drive gear hobbing machine is analyzed in the paper, including thermal source, the way of thermal transfer, calculation of thermal transfer and calculation of heat. The rotor and stator of motor are the main thermal resource, and the 2/3 of the quantity of heat is from the rotor, which is the primary factor leading to thermal deformation on the machine tool. In addition, bearings are another important thermal resource. The layout and the number of the bearings have a direct effect on the quantity of heat.
     The effect of thermal deformation on the machining precision based on direct-drive hobbing machine is studied on primarily in the paper. The condition of the thermal deformation on workpeice spindle and hob spindle is analyzed by studying on the heat from the motor and bearings. Then error of the workpiece is calculated theoretically, and the error is from the thermal deformation of the spindles. It is known that the radial thermal deformation has an important effect on the gear direction precision from the analysis former. The radial and axial thermal deformations of the hob spindle have a great effect on the gear distance error and the direction error.
     The best way to testify the effect of machine tool on the machining precision is experiment. The thermal deformation of the workpiece spindle and the hob spindle is studied experimentally. The experiment indicates that the Y-direction thermal deformation of the workpiece spindle is larger than the X-direction one because of the effect of the thermal structure, and the Y-direction thermal deformation has a great effect on the machining precision of the work piece. The axial thermal deformation is very large, but it has a small effect on the machining precision of the work piece. The X-direction thermal deformation of the hob spindle is larger than the Z-direction one because of the effect of the thermal structure, and the axial thermal deformation is very complicated because of the effect of the trail bracket.
     At last, the control technology of the thermal deformation on the machine tool, including structure optimization and error compensation is studied in the paper. For example, the betterment of the cooling system of the motor can reduce the effect of the thermal deformation on machining precision. The thermal error compensation is in common use, because the cost is very low and the effect is obvious. The way to build mathematics model and the implementary progress are referred in order to compensate the thermal errors in the paper.
引文
[1]陈兆年.陈了辰.机床热态特性学基础[M].北京:机械工业出版社,1989.
    [2]刘润爱.零传动滚齿机关键技术研究及其应用[D].重庆:重庆大学,2006.10.
    [3]乐美豪.渐开线圆柱齿轮精加工现状[J].制造技术与机床,1996,(7):11-14.
    [4]乐美豪.我国齿轮、螺纹、花键机床市场的现状和展望(一).制造技术与机床,1999,(l):5-8.
    [5]乐美豪.我国齿轮、螺纹、花键机床市场的现状和展望(二).制造技术与机床,1999,(2):5-7.
    [6]徐鸿根.齿轮制造技术的发展动态.制造技术与机床[J].1994,(9):43-45.
    [7]乐美豪.我国齿轮制造业的发展现状及展望(上).制造技术与机床,2000,(11):8-9.
    [8]乐美豪.我国齿轮制造业的发展现状及展望(下).制造技术与机床,2000,(12):7-9.
    [10]吴焱明.齿轮加工数控技术的研究[D].合肥:合肥工业大学,2000.10.
    [11] Mohammed A.Alfares,Abdallah A.Esharkawy. Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system[J].Journal of Materials Processing Technology,2003,vo1.136:48-59.
    [12] B.W.Huang,H.K.Kung. Variations of instability in a rotating spindle with various bearings[J].International Journal of Mechanical Sciences,2003,vo1.45:57-72.
    [13] Hongqi Li,Yung C.Shin. Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model[J]. International Journal of Machine Tools & Manufacture,2004,vo1.44:347-364.
    [14]李先广,廖绍华,曹华军,刘飞.齿轮加工机床绿色设计与制造策略及实践[J].制造技术与机床,2003,(11):18-21.
    [15]李先广.当代先进制齿及制齿机床技术的发展趋势[J].制造技术与机床,2003,(2):10-11.
    [16] Power dry cutting technical information.http://www.gleason.com,2003.3.
    [17] The ecological and economical benefits of power dry cutting.http://www.gleason.com, 2003.3.
    [18] Dr.Ing.A.Mundt. Successful hobbing without coolant.Liebherr-Verzahntechnik GmbH,22.April 1999.
    [19] Takahide Tokawa, Yukihisa Nishimura, Yozo Nakamura.High Productivity Dry Hobbing System[J].Mitsubishi Heavy Industries,Ltd.Technical Review,2001,38(1):28-32.
    [20]张希康编译.不用切削油的干态高速滚齿[J].机械传动.1999,23(1):42-45.
    [21]赵正书.干式切削及其在齿轮加工中的应用[J].机械工艺师,2000,(9):62-63.
    [22]郭策.高速高精度数控车床主轴系统的动态与热态特性研究[D].南京:东南大学,2003.6.
    [23] Bernd Bossmanns, Jay F Tu. A Power Flow Model for High Speed Motorized Spindles-Heat Generation Characterization[J] . Journal of Manufacturing Science and Engineering, Transactions of the ASME,2001,123: 494-505.
    [24] Bernd Bossmanns, Jay F Tu . A thermal model for high speed motorized spindles[J].International Journal of Machine Tools & Manufacture,1999,39:1345-1366
    [25] Chi-Wei Lin, Jay F Tu, Joe Kamman. An integrated thermo-mechanical-dynamic model to characterizemotorized machine tool spindles during very high speed rotation[J].International Journal of Machine Tools & Manufacture,2003,43:1035-1050.
    [26] Hongqi Li, Yung C Shin.Integrated Dynamic Thermo-Mechanical Modeling of High Speed Spindles, Part 1: Model Development[J].Journal of Manufacturing Science and Engineering, Transactions of the ASME,2004,126:148-158.
    [27] Hongqi Li, Yung C Shin.Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model[J].International Journal of Machine Tools & Manufacture,2004,44:347-364.
    [28] J.Bryan.International Status of Thermal Error Research, Annals of the CIRP,1990,39(2):645-656.
    [29] Jin Kyung Choi,Dai Gil Lee.Thermal Characteristic of the Spindle Bearing System with a GearLocated on the Bearing Span.International Journal of Machine Tools & Manufacture, 1998,Vo1.38:1017-1030.
    [30] Bern Bossmanns,Jay F.Tu. A Thermal Model for High Speed Motorized Spindles[J]. International Journal of Machine Tools & Manufacture,1999,Vol.39:1345-1366.
    [31] Sun-min Kim,Kang-Jae Lee,Sun kyu Lee.Effect of bearing support structure on the high-speed spindle bearing compliance[J] . International Journal of Machine Tools &Manufacture,2002,vo1.42:365-373.
    [32] Sun-min Kim ,Sun kyu Lee. Prediction of thermo-elastic behavior in a spindle-bearing system considering bearing surrounding[J].International Journal of Machine Tools & Manufacture,2002,vo1.41:809-831.
    [33] Chi-Wei Lin, Jay F.Tu Joe Kamman.An integrated thermal-mechanical-dynamic model to characterize motorized machine tool spindles during very high speedrotation[J].International Journal of Machine Tools & Manufacture,2003,vo1.43:1035-1050.
    [34]杨启威.轴承系统温度场分析[J].轴承,1997,( 3 ) :2-6.
    [35]蒋兴奇,马家驹,赵联春.高速精密角接触球轴承热分析[J].轴承,2000,(8):1~4.
    [36]张伯霖,夏红梅,黄晓明.高速电主轴设计制造中若干问题的探讨[J].制造技术与机床,2001,(7):1-14.
    [37]张伯霖,张志润,肖曙红.超高速加工与机床的零传动[J].中国机械工程,1996,(5)
    [38]黄晓明.高速电主轴热态特性的有限元分析[D].广州:广东工业大学,2003.6.
    [39] Jenq-Shyong Chen, Wei-Yao Hsu.Characterizations and models for the thermal growth of a motorized high speed spindle[J].International Journal of Machine Tools & Manufacture,2003,vol.43:1163-1170.
    [40]王萍萍.零传动滚齿机直接驱动工件主轴关键技术研究[D].重庆:重庆大学,2006.10.
    [41]宋琨.零传动滚齿机刀架部件设计技术研究[D].重庆:重庆大学,2006.10.
    [42] http://www.gleason.com .
    [43] http://www.Liebherr.com.
    [44]巩丽.数控滚齿机支承部件设计与分析技术研究[D].重庆:重庆大学,2006.10.
    [45]张安民.圆柱齿轮精度[M].北京:中国标准出版社2002.8.
    [46] http://www.Mitsubishigearcenter.com.
    [47]刘润爱,张根保.滚齿机及滚齿加工技术的发展趋势[J].现代制造工程,2003,(11):84-86.
    [48]张伯霖等.超高速机床进给系统的零传动[J].制造技术与机床,1997(8).
    [49]应济.固体热接触理论及机床结构热优化研究[D].浙江:浙江大学,1995.
    [50]郭前建,杨建国等.数控机床热误差的在线测量与补偿加工[J].制造技术与机床,2008,(4)32-37.
    [51]王治森,吴焱明等.支持全球制造的智能化网络数控系统[J].中国机械工程,1999,10(12):1354-1357.
    [52]韩江,赵福民,王治森,吴焱明.网络数控系统的概念及其技术内容[J].中国机械工程,2001,12(10):1141-1145.
    [53] Dr.Ing.A.Mundt.Successful hobbing without coolant[J]. Liebherr-Verzahntechnik GmbH,22. April 1999,4.
    [54]李先广.面向绿色制造的高速干式切削滚齿机设计与评价技术研究[D].重庆:重庆大学,2003.10.
    [55]刘润爱,张根保.零传动齿轮加工机床关键技术研究[J].制造技术与机床,2004,(12):47-49.
    [56]周延祐,李中行.电主轴技术讲座·第二讲电主轴的基本参数与结构[J].制造技术与机床,2003(7): 64~67.
    [57]渐开线圆柱齿轮精度第1部分:轮齿同侧齿面偏差的定义和允许值[S].中华人民共和国国家标准.2002.6.1实施.
    [58] Choi K J,Lee D G.Thermal characteristics of the spindle bearing system with a gear located on the bearing span[J].Journal of Machine Tools and Manufacture,1998,38(9):1017-1030.
    [59]吉田孝文.机床主轴高速滚动轴承的传热分析[J].国外轴承技术,2002,4:1-5.
    [60]王建文,安琦.圆柱滚子轴承发热量及温度场的研究[J].华东理工大学学报(自然科学版),2006,36(9):1130-1133.
    [61]奚鸿祥编著.滚齿[M].北京:机械工业出版社,1966.3.
    [62]何开明.YKS3120六轴数控高速滚齿机[J].机械与电子,2001,(2):50.
    [63] Takashi Emura,Zhaowei Zhong.Study on a numerically controlled hobbing machine using direct-drive servomechanism[J].Proceedings of the 1989 International Power Transmission and Gearing Conference: New Technologies for Power Transmissions of the 90's, 1989,697-704.
    [64] Zhong Zhaowei, Emura Takashi.Direct-drive NC hobbing machine (1st report, increase of ervo-stiffness by using an inertial damper ) [J].Nippon Kikai Gakkai Ronbunshu,C Hen, 1987,53(496):2561-2566.
    [65] Zhong ZhaoWei,Emura Takashi.Direct-drive NC hobbing machine (2nd report.Investigation of cutting accuracy) [J].Nippon Kikai Gakkai Ronbunshu C Hen/Transactions of the Japan Society of Mechanical Engineers,Part C,1989,55(516):2259-2264.
    [66]张民安编.圆柱齿轮精度[M].北京:中国标准出版社,2002.
    [67] Michiaki Hashitani,Kouichi Masuo.ZE15A Gear Grinding Machine for economical hard gear finishing of quiet, small gears[J].Mitsubishi Heavy Industries, Ltd.Technical Review,2005,42(2):1-5.
    [68]黄晓明.高速电主轴热态特性的有限元分析[D].广州:广东工业大学,2003.
    [69]张伯霖,夏红梅,黄晓明.数控机床高速化的研究与应用[J].中国机械工程,12(10):1132-1137.
    [70]戴显明,张珂,吴玉厚.数控机床高速电主轴的性能研究[J].沈阳建筑工程学院学报(自然科学版),2002,18(4):321-322.
    [71]第一机械工业部机械科学研究院译.金属切削机床的热变形和温度场的计算[M].北京:第一机械工业部机械科学研究院,1964.
    [72] Brian Kellock . The Future for High-Speed Spindles[J] . Machinery and Production Engineering, 1999,157:43-46.
    [73]张伯霖.高速切削技术及应用[M].北京:机械工业出版社,2002.
    [74]黄晓明,张伯霖,肖曙红.高速电主轴热态特性的有限元分析[J].航空制造技术,2003,(10):20-24.
    [75]肖曙红,黄晓明,张伯霖.高速角接触球轴承发热及其影响因素[J].机床与液压,2004,(12):17-20.
    [76]胡爱玲.高速电主轴动静态特性的有限元分析[D].广州:广东工业大学,2004.5.
    [77]刘士玉,刘百喜.电主轴的结构设计与应用[J].世界制造技术与装备市场,2004,(3):85-86.
    [78]张孝恩,张明利,电主轴在加工中心上的应用[J].制造技术与机床,2000,(9):25-26.
    [79]宋德儒,吴玉厚,张珂,王立杰.陶瓷轴承电主轴在高速精密磨床中的应用[J].机电产品开发与创新,2005,18(2):97-99.
    [80] George Ellis.Direct-drive rotary motors streamline machine design[J].Control Engineering,2000,3:152.
    [81] http://www.Kollmorgen.com.
    [82]韩建达,谈大龙,蒋新松.直接驱动机器人关节加速度反馈解耦控制[J].自动化学报,2000,26(3):289-295.
    [83] F.Aghili, M.Buehler. A new indirect adaptive control strategy for a synchronous direct drive motor[J].IEEE International Conference on Robotics and Automation Minneapolis,1996,(4):2865-2870.
    [84] J.D.Han, Y.C.Wang. Acceleration feedback control for direct-drive motor system[J]. IEEE International Conference on Intelligent Robots and Systems,2000,(5):1068-1074.
    [85] Naoyuki TAKESUE,Guoguang ZHANG,Junji FURUSHO et al.High stiffness control of direct-drive motor system by a homogeneous ER fluid[J].IEEE International Conference on Robotics and Automation,1999,188-192.
    [86] Kenichi KOYANAGI, Naoyuki TAKESUE, Guoguang ZHANG, et al. High gain feedback control of direct-drive motor system by a homogeneous ER fluid[J].IEEE,2000,1833-1837.
    [87]苏玉鑫,段宝岩.提高直接驱动电动机系统刚度的机电一体化设计[J].机械工程学报,2001,37(8):75-79.
    [88]巩娟,李庆祥,李玉和.精密工作台的设计与试验研究[J].光学技术,2005,31(4):636-638.
    [89]谭伟,赵锡芳.机器人直接驱动技术研究现状及发展[J].机械工程师,2000,(4):4-7.
    [90]吴云洁,王卫红,尔联洁.三轴电动飞行转台控制系统工程设计与实现[J].系统仿真学报,2002,14(1):97-99.
    [92]张新玉,张根保等.零传动滚齿机热变形对加工精度的影响[J].机床与液压,2008,236(2):1-2.
    [93]张新玉,张根保等.零传动滚齿机传动链精度分析[J].制造技术与机床,2007.10.
    [94]范梦吾.高速电主轴热变形的有限元分析[D].广州:广东工业大学,2004.4.
    [95]吴焱明,陶晓杰编著.齿轮数控加工技术的研究[M].合肥:合肥工业大学出版社,2005.
    [96]洪有为.机床主轴系统热特性建模分析及结构优化设计[D].南京:东南大学,2005.3.
    [97]范梦吾.两种电主轴热态特性的比较分析[J].航空制造技术,2007,(4):77-79.
    [98]林伟青,傅建中.拟实环境下高速电主轴建模与热态特性研究[J].仪器仪表学报,2007.6,27(6):988-990.
    [99] Y.Y.Hsu, S.S.Wang.A new compensation method for geometry errors of five-axis machine tools[J].International Journal of Machine Tools & Manufacture,2007,vol.47:352-360
    [100]闫占辉,于骏一.机床热变形的研究现状[J].吉林大学自然科学学报,2001,31(2):95-97.
    [101]鲁远栋,徐中行,刘立新等.数控机床热变形误差补偿技术[J].机床与液压,2007,35(2):43-50.
    [102]张新玉,张根保,黄强等.零传动滚齿机几何误差与热误差综合建模[J].机械设计,2008(3):40-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700