用户名: 密码: 验证码:
自动调隙摆线针轮行星传动设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摆线针轮行星传动具有承载能力大、传动效率高、重量轻、结构紧凑、体积小等优点。作为行星齿轮传动的一种,其应用前景十分广阔。摆线针轮行星传动和渐开线少齿差行星齿轮传动,同属K-H-V行星齿轮传动,其工作原理和结构基本相同。所不同者,摆线针轮行星传动的行星齿轮的齿廓曲线不是渐开线,而是采用变幅外摆线的内侧等距曲线(其中用短幅外摆线的等距曲线较普遍);中心轮齿廓与上述曲线共轭的是圆。摆线针轮行星齿轮机构是一种独特的大减速比减速器,其相互啮合的内、外齿轮的齿形分别采用摆线曲线和圆弧曲线。它广泛应用于各种机械传动中。
     论文针对现有摆线针轮行星传动中啮合间隙不能自动补偿的现状,开展了自动调隙摆线针轮行星传动的新型结构研究,并在结构设计的基础上,对此新型结构进行了动力学仿真,研究了其运动特性。综上,本文取得了以下一些研究成果:
     ①基于摆线针轮行星传动的理论,采用编程实现了摆线轮齿廓的参数化设计,通过运动仿真软件对此软件生成的齿廓进行了仿真验证。
     ②针对普通摆线针轮减速器中摆线轮和针轮啮合间隙不能自动补偿,难于保证精密传动的现状,提出了可自动调隙摆线针轮减速器的创新设计方法,即将摆线轮和针齿套的接触面做成锥形,当传动间隙增大时,锥形针齿套在弹簧预紧力的作用下,可作轴向移动,从而自动补偿间隙,提高传动精度。
     ③建立了自动调隙摆线针轮减速器的三维几何模型,进行了装配验证。
     ④进行了自动调隙摆线针轮减速器的工程设计,计算了传动效率,并绘制了此结构的二维工程图纸。
     ⑤建立了自动调隙摆线针轮行星传动的动力学仿真模型,仿真结果验证了创新摆线针轮减速器的传动性能。
Cycloid pin gear planet transmission is characterized by large bearing capacity, high driving efficiency, light weight, compact design, small size, etc. As a kind of planet transmission, it possesses broad application foreground. Both cycloid pin gear planet transmission and involute few teeth difference planetary transmission belong to K-H-V planet gear transmission, their principle and structure is almost identical. The only difference between them is that the profile curve of cycloid pin gear planet transmission is not involute but medial isometric curve of variable amplitude epicycloids (where isometric curve of curtate epicycloid is used even common); and the conjugated curve between center gear and above curve is circle. Cycloid pin gear planet mechanism is a kind of special speed reducer with larger reduction ratio; its intermeshing tooth profiles of inner and outer gear are cycloid and circle separately. It has been widely used in different mechanical transmission.
     This paper studies new structure of auto-adjusting cycloid pin gear planet transmission to solve the problem that the meshing gap can not adjust automatically in the common cycloid pin gear planet transmission. Based on the structure design, the dynamical simulation of this new structure has been performed, and its motion characteristic is inwestigated. In conclusion, this paper has obtained the following results:
     ①Cycloid profile parameterization design based on cycloid pin gear planet transmission theory has been realized by programming, furthermore, the profile generated by the software has been verified by motion simulation software.
     ②A new innovative design method is presented to improve the situation that the meshing gap which leads to inefficient precision transmission can not adjust automatically in the common cycloid pin gear planet transmission. In this new structure, the interface between cycloid gear and ring pin gear has made to be cone, when the transmission gap increases, the gap will be adjusted automatically and the transmission accuracy will be improved becase of the axial displacement of conical ring pin gear which is generated by spring force.
     ③3D geometry model of auto-adjusting cycloid pin gear speed reducer has been build and its assembly verification has been performed.
     ④The engineering design of auto-adjusting cycloid pin gear speed reducer has been given, and so did its transmission efficiency calculation and its 2D engineering drawings.
     ⑤Dynamical simulation model of auto-adjusting cycloid pin gear planet transmission has been build, and its simulation results have shown the transmission performance of auto-adjusting cycloid pin gear planet speed reducer.
引文
[1]饶振纲.行星传动机构设计[M].上海:国防工业出版社,1994.
    [2]机械设计手册编委会.机械设计手册.机械工业出版社,2004.
    [3]王良模.鼓式制动器自动调隙机构试验台的研制.汽车工艺与材料,2001.
    [4]关天民.摆线针轮行星传动中最佳修形量的确定方法[J].中国机械工程,2002,13(10):811-814.
    [5]关天民,雷蕾,孙英时,等.FA型摆线针轮行星传动装置的反求设计[J].中国机械工程,2003,14(3):68-71.
    [6]关天民.针摆传动行星传动中修形所产生的回转误差计算与分析[J].组合机床与自动化加工技术,2001(10):15-18.
    [7]关天民,孙英时,雷蕾,等.二齿差摆线针轮行星传动的受力分析[J].机械工程学报,2002,38(3):59-63.
    [8]闰小平.盘形凸轮曲线的二次B样条逼近[J].长沙铁道学院学报,2000,18(1):95-97.
    [9]黄民毅.等样条函数在凸轮机构设计中的应用[J] .四川工业学院学报,1999,18(3):44-46.
    [10]孙寡广.计算机图形学[M].北京:清华大学出版社,1995.
    [11]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:北京航空航天大学出版社1994.
    [12]马香峰.确定共轭曲面的方法及其应用[M].北京:机械工业出版社,1989.
    [13]何永乐.胀管式自动调隙机构.航空工程,1999.
    [14]罗名佑.行星齿轮机构[M].北京:高等教育出版社,1984.
    [15]吴鸿业.齿轮啮合原理[M].哈尔滨:哈尔滨工业出版社,1979.
    [16]李力行.摆线针轮行星传动的齿形修正与受力分析.机械工程学报,1986,22(1):40-18.
    [17]孙英时,关天民.二齿差摆线针轮实际受力分析.机械设计与制造,2002.12(5):54-56.
    [18]关天民,孙英时.二齿差摆线针轮行星传动的受力分析.机械传动,2001,25(4):19-23,58.
    [19]孙英时,关天民.二齿差摆线针轮行星传动受力的理论分析.鞍山钢铁学院学报,2001,24(5):346-349.
    [20]孙英时,关天民,刘莉.等效代换齿廓二齿差摆线轮的受力分析.机械设计与制造,2001,2(1):55-56.
    [21]李长勋主编.AutoCAD ObjectARX程序开发技术.国防工业出版社,2005.
    [22]庞素敏,陈小安.摆线轮齿廓参数化设计及动力学仿真.现代制造工程,2008,3:50-53.
    [23]夏得伟,张俊生,陈树勇等.UG NX4.0中文版机械设计典型范例教程.电子工业出版社,2006.
    [24] Joseph T Hanft,Harry A Hogan,David M Hood.Three-dimensional finite element modeling of the horse s footEJ.IEEE,1995(2):59-62.
    [25] Mattheck C,Burkhardt S.A new method of structure shape optimization based on biological growth[J].International Journal of Fatigue,1990,12(3):185- 190.
    [26] Xie Y M,Steven G P.Evolutionary structure optimization[M].New York:Springer- Verlag Berlin Heidelberg.1997.
    [27] Forrest S(ed). Genetic Algorithms, Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann Publishers.1993.
    [28] Holland J H. Adaptation in Natural and Artificial Systems .MIT Press.1975.
    [29] Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading,MA,Addison-Wisly.l 989.
    [30] Michalewicz Z. Genetic Algorithms+Data Structures =Evolution Programs. Springer-Verlag,Second, Extended Edition.1994.
    [31] Ta-Shi Lai. Geometric design of roller drives with cylindrical meshing elements (J). Mechanism and Machine Theory, 2005, 40:55–67.
    [32] Zhonghe Ye *, Wei Zhang, Qinghai Huang, Chuanming Chen. Simple explicit formulae for calculating limit dimensions to avoid undercutting in the rotor of a Cycloid rotor pump (J). Mechanism and Machine Theory, 2005, 41:405-414.
    [33] Yunhong Meng *, Changlin Wu, Liping Ling. Mathematical modeling of the transmission performance of 2K–H pin cycloid planetary mechanism. Mechanism and Machine Theory, 2007, 42:776-790.
    [34]齿轮国家标准汇编,北京:中国标准出版社,1991.
    [35]刘基博.外摆线两种形成方式的等同性与通用方程.衡冶科技,1993.
    [36]何卫东.机器人用高精度RV减速器中摆线轮的优化新齿形.机械工程学报,2000,36(3):51~55.
    [37]李思益,王海燕,刘昌祺.一种新型“两齿差”行星传动机构的研究及应用.机械科学与技术,2001,No.2.
    [38]郑州工学院机械原理与机械零件教研室.摆线针轮行星传动.北京:科学出版社,1978.
    [39]李真.摆线齿轮误差的研究机械传动[J].1992.(3):24~28.
    [40]薛嘉庆,李力行.运用最优化方法对摆线轮齿形修正量的搜寻[J].齿轮,1990.(3):34~40.
    [41]郑建荣. ADAMS虚拟样机技术入门与提高.机械工业出版社,2001.
    [42] Li Lixing.GLlalt Tianm in et The flew optim um tooth profile of the cycloid gear and the CAD of cycloid drive In:Xinth W0 d Congress on the Theory of Machinm and Mechanisrrls,Mllano,Italy:l995(1):355~359.
    [43] Guan T M .Force analysis considering manufacture error of the pin—hole—output mechan ism in the cycloid drive.Chinese Journal ofMechanical Engineering,2002,15(2):142-144.
    [44] Faydor L. Litvin. Reduction of noise of loaded and unloaded misaligned gear drives.Computer Methods in Applied Mechanics and Engineering January 2006.
    [45] Juha Hedlund and Arto Lehtovaara.Modeling of helical gear contact with tooth deflection.Tribology International. January 2006.
    [46] Zhang Y,WuZ. Offset face gear driver tooth geometry and contact analysis. Transaction of the ASME,1993,119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700