用户名: 密码: 验证码:
从猪胚胎骨骼肌cDNA文库中分离、定位新基因并分析部分基因的功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着猪基因组研究工作的不断深入,许多与猪生产性状(生长、胴体与肉质性状)相关的新基因被证实。但相对猪整个基因组来说,仍然还有大量基因没有发现。而猪胚胎期形成的肌纤维数目与猪日增重及生长速度呈正相关,是动物产肉量的重要决定因素。因此,从猪胚胎cDNA文库中分离证实与猪生产性状相关的基因,必将会为分子育种实践提供重要的指导作用。
     本文从猪55天胚胎骨骼肌cDNA文库中筛选出15个功能基因,通过功能分析选出CA3和HUMMLC2B基因作进一步研究,并取得了如下结果:
     1.通过猪55天胚胎骨骼肌cDNA文库测序并结合猪EST数据库的信息分离出15个猪基因,即K-ALPHA-1、TUBB、MAPRE1、TUBA3、ATP6VOE、RPL6、RPL7、RPL10、HUMMLC2B、BNIP3L、NHP2L1、CA3、CCNT2、PC4和FLJ30294,并分析其cDNA及预测的蛋白质序列(CCNT2和FLJ30294除外)。
     2.在猪×仓鼠辐射杂种板中对上述所分离的基因进行染色体定位(HUMMLC2B除外),定位结果如下:K-ALPHA-1定位于SSC5p,TUBB定位于SSC7p11,TUBA3定位于SSC5p11-p15,MAPRE1定位于SSC17q21-23,RPL6定位于SSC14q22-24,RPL7定位于SSC4q11-14,RPL10定位于SSCXq26,ATP6VOE定位于SSC16q,BNIP3L定位于SSC14q21-22,CCNT2定位于SSC15q12-14,NHP2L1定位于SSC5p12-15,FLJ30294定位于SSC3q11-14,PC4定位于SSC16q11-14,CA3定位于SSC4q11-q14,同时用猪×啮齿类体细胞杂种板对CA3基因进行了区域定位(SSC4q11-q14)。
     3.对于CA3基因,通过猪cDNA文库测序和猪ESTs序列拼接分别获得了两个长短不同的cDNA序列,命为CA3b和CA3a,序列分析显示CA3b与CA3a之间存在一gap,预测的蛋白质显示CA3b缺少CA3a的C末端(78aa)。并且荧光共聚焦显微镜的观察结果显示GFP融合的CA3a蛋白位于整个细胞中,而CA3b仅位于细胞质中。
     4.获得了猪CA3和HUMMLC2B基因的全长基因组DNA序列,并分析了其基因组结构。结果显示CA3基因是由7个外显子和6内含子组成(相对CA3a的cDNA序列),约10.5kb。HUMMLC2B基因是由7个外显子和6个内含子组成,约2.9kb,包含多个重复序列。两个基因所有内含子和外显子的拼接位点都符合GT-AG规则。
     5.为了研究猪候选基因在骨骼肌发育中可能的作用,应用实时荧光定量PCR技术对候选基因进行了时空表达谱分析。结果显示,CA3基因在通城猪胚胎33天骨骼肌中表达量最低,65天达到最高,然后下降到一定程度并和出生后的表达量保持相对稳定的水平。而在大白猪胚胎骨骼肌中的表达模式和通城猪不同,即在33天表达量最低,但在65天和90天表达量没有明显差异。组织表达谱显示CA3在骨骼肌和肝脏中表达量最高,在肺脏、淋巴结、胃、大肠和小肠中表达量较低,而在心脏和脾脏中没有检测到表达。
     6.而HUMMLC2B基因在通城猪胚胎骨骼肌中的表达模式和长白猪相似(胚胎33天、65天、90天),但在通城猪出生后随年龄的增加其表达量不断降低(出生后2天、28天和成年)。组织表达谱分析显示HUMMLC2B基因仅在所有被检测的骨骼肌中表达,并且表达量较高,而其它组织中除脂肪中有极少量的表达外,都没有检测到表达。
     7.亚细胞定位结果显示GFP融合的HUMMLC2B蛋白位于整个细胞中。
     8.SNPs的检测结果证实CA3基因有两个可用于PCR-RFLP的SNPs位点,即BsuRI-PCR和Hinfl-PCR,分别位于第五和第六内含子中。而HUMMLC2B基因有23个潜在的SNPs,其中可用于PCR-RFLP的四个SNPs位点,即HinlI-PCR(两个),MspI-PCR和BglI-PCR,分别位于第三内含子,第四外显子和第五内含子中(MspI-PCR和BglI-PCR位点);另外四个SNPs位点用DHPLC技术检测,两个SNPs位于第六内含子中,两个SNPs位于第七外显子中。
     9.对上述PCR—RFLP多态位点在五指山猪、香猪、巴马香猪三个小型猪品种以及莱芜猪、通城猪、大白猪、长白猪和杜洛克中分析基因型和等位基因频率以及各等位基因在不同猪品种中的分布差异。
     10.在我室与通城县畜牧局合作组建的试验群体中(三个纯繁群:通城猪、大白和长白猪及两个三元杂交群:长大通和大长通),分析猪CA3和HUMMLC2B基因的多态与部分经济性状的关联。结果显示:①对于CA3基因,G8603A位点多态与肌内脂肪含量呈极显著相关(P<0.01),且与腿臀比率呈显著相关(P<0.05);G8371A位点GG基因型个体与GA基因型个体间大理石纹和肌内脂肪含量差异极显著(P<0.01),而与三点平均背膘厚差异显著(P<0.05)。②对于HUMMLC2B基因,G1094A和T1513C位点没有检测到与性状的关联;G1876A位点GG基因型个体和GA基因型个体间屠宰率和肉色差异显著(P<0.05);T2005G位点GG基因型个体与TG基因型个体肉色差异显著(P<0.05),且TT基因型个体和TG基因型个体间红细胞数(RBC)、红细胞压积(HCT)、红细胞分布密度(RDW)差异显著(P<0.05)。
With the development of porcine genomic studies, many genes associated with pig production traits have been identified, however, additional genes need be identified and further characterized. Moreover, the number of porcine muscle fibers, fixed at birth, is an important factor affecting animal meat quality and quantity, which positive associations exist between muscle fiber number and average daily gain and growth rate. Therefore, it will be necessary for isolation and identification of these genes associated with econimic traits from the fetal cDNA library of porcine skeletal muscle.In this present study, porcine 15 genes were isolated from skeletal muscle cDNA library of pig day-55 embryos, and CA3 and HUMMLC2B genes were choosen for further analyses of the potential functions. These main results were as follows:1. Combining sequencing of the cDNA library and porcine EST data, porcine 15 genes were isolated and identified, and these genes were: K-ALPHA-J, TUBB, MAPRE1, TUBA3, ATP6VOE, RPL6, RPL7, RPL10, HUMMLC2B, BNIP3L, NHP2L1, CA3, CCNT2, PC4 and FLJ30294. Sequences of cDNA and predicted proteins of these genes (except for CCNT2 and FLJ30294) were further analyzed.2. These above genes (except for HUMMLC2B) were assigned in pig×hamster hybrids panel, and the results were followed: K-ALPHA-1: SSC5p, TUBB: SSC7p11, MAPRE1: SSC17q21-23, TUBA3: SSC5p11-pl5, RPL6: SSC14q22-24, RPL7: SSC4q11-14, RPL10: SSCXq26, ATP6VOE: SSC16q, BNIP3L: SSC14q21-22, CCNT2: SSC15q12-14, NHP2L1: SSC5pl2-15, FLJ30294: SSC3q11-14, PC4: SSC16q11-14 and CA3: SSC4q11-q14. CA3 was further mapped using porcine somatic cell hybrid panel.3. To the CA3 gene, two different cDNA sequences (namely CA3b and CA3a) were obtained by sequencing of the cDNA library and e-PCR of porcine ESTs sequences, respectively. A gap was shown between the cDNA sequences of CA3b and CA3a by sequence comparison, and the predicted proteins showed that CA3b was the absence of 78 amino acids in the C-terminal domain of CA3a. The fluorescence mapping result using confocal microcopy showed the GFP-fused CA3a protein was distributed throughout the whole cell, but the GFP-fused CA3b protein was only distributed in cytoplasm.4. The full-length DNA sequences of the CA3 and HUMMLC2B genes were obtained and the genomic structures were analyzed. It was identified that the CA3 gene comprised 7 exons and 6 introns (for the cDNA sequence of CA3a), which spaned about 10.5 kb. The HUMMLC2B gene comprised 7 exons and 6 introns, which spaned about 2.9kb. All splice sites of exon/intron of the two genes conformed to the GT/AG rule.
     5. In order to study potential functions of target genes, temporal and spatial expression profiles were analyzed using real-time PCR. It was demonstrated that the expression levels of CA3 increased from prenatal 33-day-old to 65-day-old skeletal muscle in Tongcheng pigs. These levels subsequently decreased to similar levels as those seen in prenatal 90-day-old pigs, as well as those in postnatal 2-day-old, 28-day-old, and adult pigs, but the expression patterns of Chinese Tongcheng pig embryos were different from that of Landrace pig embryos. CA3 was expressed at higher levels in skeletal muscle and liver than lung, lymph node, large and small intestine, but was not detected in heart and spleen in an adult Wuzhishan pig.
     6. The results revealed HUMMLC2B expression variation in a waveform manner in the skeletal muscle of both Chinese Tongcheng and Western Landrace pig breeds at days 33, 65 and 90 post coitum (p.c). After birth, the expression levels of HUMMLC2B were also found to decrease gradually with age. Our spatial expression analysis showed that HUMMLC2B was highly expressed in the semitendinosus, gastroenemius, biceps femoris and longissimus dorsi muscles. In contrast, only low levels of expression of this gene were evident in fat, and no expression was detectable in brain, heart, kidney, lung, liver, lymph node, spleen, stomach, or in either the large or small intestine.
     7. Construction of GFP-fused HUMMLC2B expression vector was transfected into PK15 cells, and the fluorescence mapping result using confocal microcopy showed that the protein was distributed throughout the whole cell containing cytoplasm and nucleus.
     8. Single nucleotide polymorphisms (SNPs) in the CA3 and HUMMLC2B genes were detected. It was demonstrated that the CA3 gene included two SNPs for PCR-RFLP (BsuRI-PCR and HinfI-PCR), which were respectively located in the 5th and 6th introns. The HUMMLC2B gene contained four PCR-RFLP sites (two Hin1I-PCR, MspI-PCR and BglI-PCR), which were respectively located in the 3 th intron, 4th exons and 5th introns (for the last two sites) among twenty-three potential polymorphism sites following screening the HUMMLC2B genome DNA sequence. Additional four SNPs, which were respectively located in the 6th intron (two SNPs) and the 7th exon (two SNPs), were detected using denaturing high performance liquid chromatography (DHPLC).
     9. Genotypes and allele frequencies of these above six PCR-RFLP sites of the CA3 and HUMMLC2B genes were determined in five Chinese pig breeds, Wuzhishan pigs, Xiang pigs, Bama xiang pigs, Tongcheng pigs and Laiwu pigs, and three introduced pig breeds, Landrace, Yorkshire and Duroc.
     10. Associations were analyzed between genotypes of these above polymorphisms of the CA3 and HUMMLC2B genes and phenotypes of economic traits in the experimental population constructed by the cooperation of our lab and animal husbandry bureau of Tongcheng county, which consisted of Tongcheng, Large White, Landrace and and a further pair of three-cross breeds, Landrace×(Large White×Tongcheng) and Large White×(Landrace×Tongcheng). The results were as follows:①For the CA3 gene, highly significant associations in the G8607A site was detected between genotypes with intramuscular fat content (P<0.01) and significant association between genotypes with percentage of ham (P<0.05); In the G8371A site, there were highly significant association between the GG genotype of pigs with intramuscular fat content and marbling score and that of the GA genotype (P<0.01), and significant association with average backfat thickness (P<0.05).②For the HUMMLC2B gene, no significant association in the G1094A and T1513C sites was detected between genotypes and traits; In the G1876A site, there was significant association between the GG genotype of pigs with dressing percent and meat color and that of the GA genotype (P<0.05); In the T2005G site, there was significant association between the GG genotype of pigs with meat color and that of the TG genotype (P<0.05), and between the TT genotype of pigs with total erythrocytes (RBC), hematocrit (HCT) and red cell distribution width and that of the TG genotype (P<0.05).
引文
1.蔡霞.定量PCR技术及其应用现状.现代诊断与治疗,2005,16(2):112-115
    2.陈代文,张克英,胡祖禹.猪肉品质特征的形成原理.四川农业大学学报,2002,20(1):60-66
    3.陈压西,黄爱龙,齐珍元,郭树华.鸭乙型肝炎病毒核酸荧光定量PCR方法的建立及应用.重庆医科大学学报,2003,28(1):36-39
    4.陈玉栋,张楚喻,邹俊煊,潘兹书,陈立新,李田,郭长林.建立快速定量检测猪瘟兔化弱毒苗的荧光定量PCR技术.中国病毒学,2003,18(2):124-128
    5.陈润生.优质猪肉的指标及其度量方法.养猪业,2002(3):1-5
    6.高萍,傅伟龙,朱晓彤,刘丽,江青艳.蓝塘仔猪IGF-1水平与组织IGF-1,G HR基因的表达.畜牧兽医学报,2005,36(1):38-42
    7.何推青,杨洪,赵娜,周丽,程小雯,吕星,管扶,刘涛,刘建军,房师松,何建凡,郑伯健,周俊安,张丹,刘小立,庄志雄.深圳东门市场野生动物SARS病毒的监测.疾病监测,2004,19(8):287-290
    8.黄士新,沈富林,李洁,周文骏,曹莹,孙亚云.荧光PCR法定量检测动物源性饲料中的牛、羊成分.上海畜牧兽医通讯,2004,4:12-13
    9.李长春.藏鸡腿肌全长cDNA文库构建与其ESTs的生物信息学分析和验证.[博士学位论文],武汉:华中农业大学,2005
    10.李文海,邓学梅,李宁,王少华,赵毅强,杜正霖,张然,吴克亮,吴常信.SSH法结合定量PCR技术研究双肌臀猪肌肉组织的差异表达基因.生物化学与生物物理进展,2005,32(4):353-358
    11.刘榜.15个猪品种MHCII类区4个基因的SNPs分析及与免疫性状的关联.[博士学位论文],武汉:华中农业大学,2003
    12.廖成,赵慕钧,李载平.小鼠一个新基因mLPTS的克隆、表达及亚细胞定位.遗传学报,2002,29(10):865-870
    13.覃文,曹际娟,朱水芳.加工产品中转基因玉米Bt11成分实时荧光PCR定量(性)检测.生物技术通报,2003,6:46-50
    14.覃文,曹际娟,朱水芳.实时荧光PCR定量检测加工产品中转基因玉米Mon810成分.食品科学,2003,24(8):132-134
    15.杨立桃,赵志辉,丁嘉羽,张承妹,贾军伟,张大兵.利用实时荧光定量PCR方法分析转基因水稻外源基因拷贝数.中国食品卫生杂志,2005,17(2):140-144
    16.余梅.猪12号染色体上四个新基因的分离、鉴定和物理定位.[博士学位论文],武汉:华中农业大学,2002
    17.王茫桔,瞿祥虎,王立升,翟芸,武淑兰,贺福初.人类新型Kruppel类转录因子hBKLF的 cDNA克隆、亚细胞定位及表达特征.遗传学报,2003,30(1):1-9
    18.王学敏.猪Sar1b基因的克隆、染色体定位、原核表达及其与部分性状的关联分析.[硕士学位论文],武汉:华中农业大学,2005
    19.王彦芳.猪PA28和PA700基因家族相关基因的分离、定位、ShIPs检测及其与性状的关联分析.[博士学位论文],武汉:华中农业大学,2004
    20.朱建裕,朱水芳,廖晓兰,高必达.实时荧光RT-PCR一步法检测番茄环斑病毒.植物病理学报,2003,33(4):338-341
    21.朱正茂.应用cDNA宏阵列技术发现猪某些产肉性状的候选基因.[博士学位论文],武汉:华中农业大学,2003
    22. Alver A, Ucar F, Keha E E, Kalay E, Ovali E. Effects of leptin and insulin on CA Ⅲ expression in rat adipose tissue. J Enzyme Inhib Med Chem. 2004, 19 (3): 279-281
    23. Aoki H, Sadoshima J, Izumo S. Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nat Med. 2000, 6: 183-188
    24. Askham J M, Vaughan K T, Goodson H V, Morrison E E. Evidence that an interaction between EB1 and p 150~(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol Biol Cell. 2002, 13: 3627-3645
    25. Banerjee S, Kumar B R, Kundu T K. General transcriptional coactivator PC4 activates p53 function. Mol Cell Biol. 2004, 24(5): 2052-2062
    26. Barclay J K. Carbonic anhydrase Ⅲ inhibition in normocapnic and hypercapnic contracting mouse soleus. Can J Physiol Pharmacol. 1987, 65(1): 100-104
    27. Barth A I, Siemers K A, Nelson W J J. Dissecting interactions between EB1, microtubules and APC in cortical clusters at the plasma membrane. Cell Sci. 2002, 115: 1583-1590
    28. Beckmann P, Schroffel J, Moser G, Bartenschlager H, Reiner G, Geldermann H. Linkage and QTL mapping for sus scrofa chromosome 3. J Anim Breed Genet. 2003, 120(1): 20-27
    29. Bergenhem N C, Sait S S, Eddy R L, Shows T B, Tashian R E. Assignment of the gene for human carbonic anhydrase Ⅷ (CA8) to chromosome 8q11-->q12. Cytogenet Cell Genet. 1995, 71(3): 299-300
    30. Bernhard E J, El-Deity W S. Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell. 2004, 6(6): 597-609
    31. Berrieman H K, Lind M J, Cawkwell L. Do β-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol. 2004, 5: 158-64
    32. Beuerle J R, Azzazy H M E, Styba G, Dub S-H, Christenson R H. Characteristics of myoglobin, carbonic anhydrase Ⅲ and the myoglobin/carbonic anhydrase Ⅲ ratio in trauma, exercise, and myocardial infarction patients. Clinica Chimica Acta. 2000, 294:115-128
    33. Bidanel J P, Milan D, Chevalet C, Woloszyn N, Bourgeois F, Caritez J C, Gruand J, Le Roy P, Bonneau M, Lefaucheur L, Mourot J, Prunier A, Desautes C, Mormede P, Renard C, Vaiman M, Robic A, Gellin J, Ollivier L, Legault C. Mapping of quantitative trait loci (QTL) in F2 crosses between Meishan and Large white pig breeds in France. Pro of Intern Conf on Pig Production. 1998, 51-55
    34. Bozzo C, Stevens L, Toniolo L, Mounier Y, Reggiani C. Increased phosphorylation of myosin light chain associated with slow-to-fast transition in rat soleus. Am J Physiol Cell Physiol 2003, 285:C575-C583
    35. Brown D, Zhu X L, Sly W S. Localization of membrane-associated carbonic anhydrase typeⅣ in kidney epithelial ceils. Proc Natl Aead Sci USA. 1990, 87:7457-7461
    36. Buchanan F C, Fitzsimmons C J, Van kessel A G, Thue T D, Winkelman sire D C, Schmutz S M. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Uenet. Sel. 2002, 34: 105-116
    37. Bumstead N, Silliboume J, Rennie M, Ross N, Davison F. Quantification of marek's disease virus in chicken lymphocytes using the polymerase chain reaction with fluorescence detection. J Virol Methods. 1997, 65(1): 75-81
    38. Butterworth P, Barlow J, Konialis C, Povey S, Edwards Y H. The assignment of human erythrocyte carbonic anhydrase CA1 to chromosome 8. Cytogenet Cell Genet. 1985, 40:597
    39. Cabiscol E, Levine R L. Carbonic anhydrase Ⅲ. Oxidative modification in vivo and loss of phosphatase activity during aging. J Biol Chem. 1995, 270: 14742-14747
    40. Cabiscol E, Levine R L. The phosphatase activity of carbonic anhydrase Ⅲ is reversibly regulated by glutathiolation. Proc Natl Aead Sci USA. 1996, 93(9): 4170-4174
    41. Chang M S, Sasaki H, Campbell M S, Kraeft S K, Sutherland R, Yang C Y, Liu Y, Auclair D, Hao L, Sonoda H, Ferland L H, Chert L B. HRad17 colocalizes with NHP2L1 in the nucleolus and redistributes after UV irradiation. J Biol Chem. 1999, 274(51): 36544-36549
    42. Chen J C, Chesler M. pH transients evoked by excitatory synaptic transmission are increased by inhibition of extracellular carbonic anhydrase. Proc Natl Acad Sci USA. 1992, 89: 7786-7790
    43. Chen G, Cizeau J, Vande Velde C, Park J H, Bozek G, Bolton J, Shi L, Dubik D, Greenberg A. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J Biol Chem. 1999, 274: 7-10
    44. Cote C, Riverin H, Barras M J, Tremblay R R, Fremont P, Frenette J. Effect of carbonic anhydrase-Ⅲ inhibition on substrate utilization and fatigue in rat soleus. Can J Physiol Pharmacol. 1993, 71: 277-283
    45. Cote C H, Ambrosio F, Perreault G. Metabolic and contractile influence of carbonic anhydrase Ⅲ in skeletal muscle is age dependent. Regul Integr Comp Physiol. 1999, 76: 559-565
    46. Datta P K, Shepard T H. Intracellular localization of carbonic anhydrase in rat liver and kidney tissues. Arch Biochem Biophys. 1959, 81(1): 124-129
    47. Davis C P, Barrett K, Torte P, Wacasey K. Serial myoglobin levels for patients with possible myocardial infarction. Acad Emerg Med. 1996, 3:590-597
    48. Davis M B, West L F, Barlow J H, Butterworth P H W, Lloyd J C, Edwards Y H. Regional localization of carbonic anhydrase genes CA1 and CA3 on human chromosome 8. Somat. Cell Molec Genet. 1987, 13:173-178
    49. Davis R L, Weintraub H, Lassar A B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987, 51: 987-1000
    50. Davoli R, Fontanesi L, Cagnazzo M, Scotti E, Buttazzoni L, Yerle M, Russo V. Identification of SNPs, mapping and analysis of allele frequencies in two candidate genes for meat production traits: the porcine myosin heavy chain 2B (MYH4) and the skeletal muscle myosin regulatory light chain 2 (HUMMLC2B). Anita Genet. 2003, 34: 221-225
    51. De Koning D J, Janss L L, Rattink A P, van Oers P A, de Vries B J, Groenen M A, vander Poel J J, de Groot P N, Brascamp E W, van Arendonk J A. Detection of quantitative trait loci for backfat thinknes and intramuscular fat content in pigs (sus scrofa). Genetics. 1999, 152: 1679-1690
    52. Delgado I, Huang X, Jones S, Zhang L, Hatcher R, Gao B, Zhang P. Dynamic gene expression during the onset of myoblast differentiation in vitro. Genomics. 2003, 82(2): 109-121
    53. DeRosa A A. Isolation and characterization of carbonic anhydrase from ostertagia ostertagi. [Doctor thesis]. Louisiana, Louisiana State University, 2004
    54. Dodgson S J, Forster R E, Schwed D A, Storey B T. Contribution of matrix carbonic anhydrase to citrulline synthesis in isolated guinea pig liver mitochondria. J Biol Chem. 1983, 258: 7696-7701
    55. Donohoe G C, Laaksonen M, Pulkki K, Ronnemaa T, Kairisto V. Rapid single-tube screening of C282Y hemochromatosis mutation by real time multiplex allele-specific PCR without fluorescent probes. Clin Chem. 2000, 46: 1540-1547
    56. Dowdy S F, Lai K M, Weissman B E, Matsui Y, Hogan B L, Stanbridge E J. The isolation and characterization of a novel cDNA demonstrating an altered mRNA level in nontumorigenic Wilms' microcell hybrid cells. Nucleic Acids Res. 1991, 19: 5763-5769
    57. Dwyer C M, Fletcher J M, Stickland N C. Muscle cellularity and postnatal growth in the pig, 1993, J Anim Sci. 71(12): 3339-3343
    58. Edwards Y H, Barlow J H, Konialis C P, Povey S, Butterworth P H. Assignment of the gene determining human carbonic anhydrase, CAI, to chromosome 8. Ann Hum Genet. 1986, 50, 123-129
    59. Eriksson A E, Liljas A. X-ray crystallographic studies of carbonic anhydrase isoenzymes Ⅰ, Ⅱ, and Ⅲ. In: Dodgson S J, Tashian R E, Carter N D (eds) The Carbonic Anhydrases. Cellular Physiology and Molecular Genetics. 1991, 33-48.
    60. Faerman A, Shani M. The expression of the regulatory myosin light chain 2 gene during mouse embryogenesis. Development. 1993, 118: 919-929
    61. Fei P, Wang W, Kim S H, Wang S, Burns T F, Sax J K, Buzzai M, Dicker D T, McKenna W G, Nottrott S, Hartmuth K, Fabrizio P, Urlaub H, Vidovic I, Ficner R, Luhrmann R. Functional interaction of a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 5' stem-loop of U4 snRNA. EMBO J. 1999, N18 (21): 6119-6133
    62. Feldstein J B, Silverman D N. Purification and characterization of carbonic anhydrase from the saliva of the rat. J Biol Chem. 1984, 259:5447-5453
    63. Ferniey R T, Wright R D, Coghlan J P. A novel carbonic anhydrase from the ovine parotid gland. FEBS. 1979, 105:299-302
    64. Fiedler I, Rehfeldt, C, Ender K, Henning M. Histophysiological features of skeletal muscle and adrenal glands skeletal muscle. Age Ageing. 1998, 16: 244-248
    65. Fleming R E, Parkkila S, Parkkila A K, Rajaniemi H, Waheed, Sly W S. Carbonic anhydrase Ⅳ expression in rat and human gastrointestinal tract: Regional, cellular and subcellular localization. J Clin Invest. 1995, 96: 2907-2913
    66. Fremont P, Boudriau S, Cote C, Tremblay R R, Rogers P A. Acetazolamide-sensitive and resistant carbonic anhydrase activity in rat and rabbit skeletal muscles of different fiber type composition. Int J Biochem. 1989, 21: 143-147
    67. Fremont P, Riverin H, Frenette J, Rogers P A, Cote C. Fatigue and recovery of rat soleus muscle are influenced by inhibition of an intracellular carbonic anhydrase isoform. Am J Physiol. 1991, 260:R615-R621
    68. Fujii J, Otsu K, Zorzato F, de Leon S, Khanna V K, Weiler J E, OBrien P J, MacLennan D H. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science. 1991, 253(5018): 448-451
    69. Fujikawa-Adachi K, Nishimori 1, Sakamoto S, Morita M, Onishi S, Yonezawa S, Hollingsworth M A. Identification of carbonic anhydrase Ⅳ and Ⅵ mRNA expression in human pancreas and salivary glands. Pancreas. 1999a, 18: 329-353
    70. Fujikawa-Adachi K, Nishimori I, Taguchi T, Onishi S. Human carbonic anhydrase ⅩⅣ (CA14) cDNA cloning, mRNA expression, and mapping to chromosome 1. Genomics. 1999b, 61: 74-81
    71. Fujikawa-Adachi K, Nishimori I, Taguchi T, Yuri K, Onishi S. cDNA sequence, mRNA expression, and chromosomal localization of human carbonic anhydrase-related protein, CA-RP Ⅺ. Biochim Biophys Acta. 1999c, 1431(2): 518-524
    72. Fujikawa-Adachi K, Nishimori I, Taguchi T, Onishi S. Human mitochondrial carbonic anhydrase VB. cDNA cloning, mRNA expression, subcellular localization, and mapping to chromosome x. J Biol Chem. 1999d, 274(30): 21228-21233
    73. Geers C, Gros G. Carbonic anhydrase inhibition affects contraction of directly stimulated rat soleus. Life Sci. 1988, 42: 37-45
    74. Geers C, Gros G. Effects of carbonic anhydrase inhibitors on contraction, intracellular pH and energy-rich phosphates of rat skeletal muscle. J Physiol. 1990, 423: 279-297
    75. Ge H, Roeder R G. Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class Ⅱ genes. Cell. 1994, 78: 513-523
    76. Gerbens F, Jansen A, Van Erp A J, Harders F, Meuwissen T H, Rettenberger G, Veerkamp J H, te Pas M F. The adipocyte fatty acid binding protein locus: characterization and association with intramuscular fat content in pigs. Mamm Genome. 1998, 9(12): 1022-1026
    77. Gerbens F, Verburg F J, Van Moerkerk H T, Engel B, Buist W, Veerkamp J H, te Pas M F. Associations of heart and adipocyte fatty acid-binding protein gene expressionwith intramuscular fat content in pigs. J Anim Sci. 2001, 79(2): 347-54
    78. Heath R, Schwartz M S, Brown I R, Carter N D. Carbonic anhydrase Ⅲ in neuromuscular disorders. J Neurol Sci. 1983, 59(3): 383-388
    79. Green R A, Wollman R, Kaplan K B. APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Biol Cell. 2005, 16 (10): 4609-4622
    80. Gros G, Dodgson S J. Velocity of CO_2 exchange in muscle and liver. Annu Rev Physiol. 1988, 50: 669-694
    81. Gruber F, Falkner F G, Domer F, Hammerle T. Quantitation of viral DNA by real-time PCR applying duplex amplification, internal standardization and two-colour fluorescence detection. Appl Environ Microbiol. 2001, 67, 2837-2839
    82. Gulick J, Hewett T E, Klevitsky R, Buck S H, Moss R L, Robbins J. Transgenic Remodeling of the Regulatory Myosin Light Chains in the Mammalian Heart. Circulation Research. 1997, 80: 655-664
    83. Haile D T, Parvin J D. Activation of transcription in vitro by the BRCA1 carboxyl-terminal domain. J Biol Chem. 1999, 274: 2113-2117
    84. Halsted C H, Villanueva J, Chandler C J, Ruebner B, Munn R J, Parkkila S, Niemela O. Centrilobular distribution of acetaldehyde and collagen in the ethanol-fed micropig. Hepatology. 1993, 18: 954-960
    85. Hawken R J, Murtaugh J, Flickinger GH, Yerle M, Robic A, Milan D, Gellin J, Beattie C W, Schook L B, Alexander L J. A first-generation porcine whole-genome radiation hybrid map. Mamm Genome, 1999, 10(8): 824-830.
    86. Heath R, Carter N D, Jeffery S, Edwards R J, Watts D C, Watts R L, Rodeck C, Opitz J M, Reynolds J F. Fetal plasma carbonic anhydrase Ⅲ in prenatal diagnosis of duchenne muscular dystrophy. Am J Med Genet. 2005, 20(1): 115-122
    87. Henkin R I, Martin B M, Agarwal R P. Decreased parotid saliva gustin/carbonic anhydrase Ⅵ secretion: An enzyme disorder manifested by gustatory and olfactory dysfunction. Am J Med Sci. 1999, 318: 380-391
    88. Hewett-Emmett D, Tashian R E. Functional diversity, conservation and convergence in the evolution of the α-, β- and γ-carbonic anhydrase gene families. Mol Phylogenet Evol. 1996, 5: 50-77
    89. Hewett-Emmet D. Evolution and distribution of the carbonic anhydrase gene families. In: Chegwidden W R, Carter N D, Edwards Y H (eds). The Carbonic Anhydrases: New Horizons. Birkhauser Verlag Basel, Switzerland, 2000, 29-76
    90. Higuti T, Kawamura Y, Kuroiwa K, Miyazaki S, Tsujita H. Molecular cloning and sequence of two cDNAs for human subunit c of H(+)-ATP synthase in mitochondria. Biochim Biophys Acta. 1993, 1173(1): 87-90
    91. Hilvo M, Tolvanen M, Clark A, Shen B, Shah G N, Waheed A, Halmi P, Hanninen M, Hamalainen J M, Vihinen M, Sly W S, Parkkila S. Characterization of CA XV, a new GPI-anchored form of carbonic anhydrase. Biochem J. 2005, 392: 83-92
    92. Hovenier R, Kanis E, Van Asseldonk T, and Westednk NG, Genetic parameters of pig meat quality traits in a halothane negative population. Livest Prod Sci. 1992, 32: 309-321
    93. Imazu T, Shimizu S, Tagami S, MatsushimaM, Nakamura Y, Miki T, Okuyama A, Tsujimoto Y. Bcl-2/E1B 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with bcl-2/Bcl-xL and induces apoptosis by altering mitochondrial membrane permeability. Oncogene. 1999, 18(32): 4523-4529
    94. Ivanov S V, Kuzmin I, Wei M H, Pack S, Geil L, Johnson B E, Stanbridge E J, Lerman M I. Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type yon Hippel-Lindan transgenes. Proc Natl Acad Sci USA. 1998, 95: 12596-12601
    95. Ivanov S, Liao S Y, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill M J, Proescholdt M A, Oldfield E H, Lee J, Zavada J, Waheed A, Sly W, Lerman M I, Stanbridge E J. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol. 2001, 158: 905-919
    96. Jackwood D J, Spalding B D, Sommer S E. Real-time reverse transcriptase-polymerase chain reaction detection and analysis of nucleotide sequences coding for a neutralizing epitope on infectious bursal disease viruses. Avian Diseases. 2003, 47: 738-744
    97. Kadoya Y, Kuwahara H, Shimazaki M, Ogawa Y, Yagi T. Isolation of a novel carbonic anhydrase from human saliva and immunohistochemical demonstration of its related isoenzymes in salivary gland. Osaka City Med J. 1987, 33: 99-109
    98. Kandil E, Kohda K, Ishibashi T, Tanaka K, Kasahara M: PA28 subunits of the mouse proteasome: primary structures and chromosomal localization of the genes. Immunogenetics. 1997, 46: 337-344
    99. Kannan P, Tainsky M A. Coactivator PC4 mediates AP-2 transcriptional activity and suppresses ras-induced transformation dependent on AP-2 transcriptional interference. Mol Cell Biol. 1999, 19: 899-908
    100. Karan D, Kelly D L, Rizzino A, Lin M F, Batra S K. Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cells, carcinogenesis. 2002, 23 (6): 967-975
    101. Kazemi-Noureini S, Colonna-Romano S, Ziaee A A, Malboobi M A, Yazdanbod M, Setayeshgar P, Maresca B. Differential gene expression between squamous cell carcinoma of esophageus and its normal epithelium; altered pattern of real, akrlc2, and rablla expression. World J Gastroenterol. 2004, 10(12): 1716-1721
    102. Kelly R, Alonso S, Tajbakhsh S, Cossu G, Buckingham M. Myosin light chain 3F regulatory sequences confer reglonalised cardiac and skeletal muscle expression in transgenic mice. J Cell Biol. 1995, 129: 383-396.
    103. Kenmochi N, Yoshihama M, Higa S, Tanaka T. The human ribosomal protein L6 gene in a critical region for Noonan syndrome. J Hum Genet. 2000, 45 (5): 290-293
    104. Khalifah, R. G. & Silverman, D. (1991) Carbonic Anhydrase Kinetics and Molecular Function in the Carbonic Anhydrases; Cellular Physiology and Molecular Genetics (Dodgson, S., Tashian, R., Gros, G. Carter, N., eds.), pp. 49-70, Plenum Press, New York
    105. Kim S J, Rabbani Z N, Vollmer R T, Schreiber E G, Oosterwijk E, Dewhirst M W, Vujaskovic Z, Kelley M J. Carbonic anhydrase Ⅸ in early-stage non-small cell lung cancer. Clin Cancer Res. 2004, 10 (23): 7925-7933
    106. Kim S J, Rabbani Z N, Dewhirst M W, Vujaskovic Z, Vollmer R T, Schreiber E G, Oosterwijk E, Kelley M J. Expression of HIF-lalpha, CA IX, VEGF, and MMP-9 in surgically resected non-small cell lung cancer. Lung Cancer. 2005, 49 (3): 325-335
    107. Kimber M S, Pai E F. The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrases. EMBO J 2000, 19: 1407-1418
    108. Kivela A J, Parkkila S, Saarnio J, Karttunen T J, Kivela J, Parkkila A-K, Pastorekova S, Pastorek J, Waheed A, Sly W S, Rajaniemi H. Expression of transmembrane carbonic anhydrase isoenzymes Ⅸ and Ⅻ in normal human pancreas and pancreatic turnouts. Histochem Cell Biol. 2000, 114: 197-204
    109. Kopacek J, Baratbova M, Dequiedt F, Sepelakova J, Kettmann R, Pastorek J, Pastorekova S. MAPK pathway contributes to density- and hypoxia-induced expression of the tumor-associated carbonic anhydrase Ⅸ. Biochirn Biophys Acta. 2005, 1729 (1): 41-49
    110. Kowalewska M, Radziszewski J, Kulik J, Barathova M, Nasierowska-Guttmajer A, Bidzinski M, Pastorek J, Pastorekova S, Siedlecki J A. Detection of carbonic anhydrase 9-expressing tumor cells in the lymph nodes of vulvar carcinoma patients by RT-PCR. Int J Cancer. 2005, 116 (6): 957-962
    111. Krrmbholz A, Wurm R, Scheck O, Birch-Hirschfeld E, Egerer R, Henke A, Wutzler P, Zell R. Detection of porcine tescbovimses and enterovimses by LightCycler real-time PCR. J Virol Methods. 2003, 113(1): 51-63
    112. Kuninger D, Kuzmickas R, Peng B, Pintar J E, Rotwein P. Gene discovery by microarray: identification of novel genes induced during growth factor-mediated muscle cell survival and differentiation. Genomics. 2004, 84: 876-889
    113. Lakkis M M, Bergenhem N C H, Tashian R E. Expression of mouse carbonic anhydrase ⅶ in E. coli and demonstration of its CO_2 hydrase activity. Biochem Biophs Res Commu. 1996, 226: 268-272
    114. Leinonen J, Kivela J, Parkkila S, Parkkila A-K, Rajaniemi H. Salivary carbonic anhydrase isoenzyme Ⅵ is located in the human enamel pellicle. Caries Res. 1999, 33: 185-190
    115. Lewis S E, Erickson R P, Barnett L B, Venta P J, Tashian R E. N-ethyl-N-nitrosourea-induced null mutation at the mouse Car-2 locus: an animal model for human carbonic anhydrase Ⅱ deficiency syndrome. Proc. Nat. Acad. Sci. 1988, 85: 1962-1966
    116. Liao S Y, Brewer C, Zavada J, Pastorek J, Pastorekova S, Manetta A, Berman M L, DiSaia P J, Stanbridge E J. Identification of the MN antigen as a diagnostic biomarker of cervical intraepithelial squamous and glandular neoplasia and cervical carcinomas. Am J Pathol. 1994, 145: 598-609
    117. Lowe N, Edwards Y H, Edwards M, Butterworth P H. Physical mapping of the human carbonic anhydrase gene cluster on chromosome 8. Genomics. 1991, 10 (4): 882-888
    118. Lowey S, Waller G S, Trybus K M. Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Nature. 1993, 365: 454-456
    119. Lynch C J, Brennan W A, Vary T C, Carter N, Dodgson S J. Carbonic anhydrase Ⅲ in obese Zucker rats. Am J Physiol. 1993a, 264: E621-630.
    120. Lynch C J, Hazen SA, Horetsky R L, Carter N D, and Dodgson S J. Differentiation-dependent expression of carbonic anhydrase Ⅱ and Ⅲ in 3T3 adipocytes. Am J Physiol Cell Physiol. 1993b, 265: C234-C243
    121. Lyons G E, Buckingham M E, Tweedie S, Edwards Y H. Carbonic anhydrase Ⅲ, an early mesodermal marker, is expressed in embryonic mouse skeletal muscle and notochord. Development. 1991, 111(1): 233-244
    122. Ludwig J, Kerscher S, Brandt U, Pfeiffer K, Getlawi F, Apps D K, Schagger H. Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules. J Biol Chem. 1998, 273: 10939-10947
    123. McPherron A C, Lawler A M, Lee S J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature. 1997, 387: 83-90
    124. Metcalfe H K, Monson JP, Drew P J, Iles R A, Carter N D, Cohen RD. Inhibition of gluconeogenesis and urea synthesis in isolated rat hepatocytes by acetazolamide. Biochem Soc Trans. 1985, 13: 255
    125. Metzger J M, Moss R L. Myosin light chain 2 modulates calcium-sensitive cross-bridge transitions in vertebrate skeletal muscle. Biophys J. 1992, 63: 460-468
    126. Milan D, Hawken R, Cabau C, Leroux S, Genet C, Lahbib Y, Tosser G, Robic A, Hatey F, Alexander L, Beattie C, Schook L, Yerle M, Gellin J. IMpRH server: an RH mapping server available on the Web. Bioinformatics. 2000, 6(6): 558-559
    127. Mitas M, Mikhitarian K, Walters C, Baron P L, Elliott B M, Brothers T E, Robison J G, Metcalf J S, Palesch Y Y, Zhang Z, Gillanders W E, Cole D J. Quantitative real-time RT-PCR detection of breast cancer micrometastasis using a muiti-gene marker panel. Int J Cancer. 2001, 93: 162-171
    128. Miyaji E, Nishimori I, Taniuchi K, Takeuchi T, Ohtsuki Y, Onishi S. Overexpression of carbonic anhydrase-related protein Ⅷ in human colorectal cancer. J Pathol. 2003, 201(1): 37-45
    129. Mokuno K, Riku S, Matsuoka Y, Sobue I, Kato K. Serum carbonic anhydrase Ⅲ in progressive muscular dystrophy. J Neurol Sci. 1985, 67(2): 223-228
    130. Montgomery J C, Venta P J, Eddy R L, Fukushima Y S, Shows T B, Tashian R E. Characterization of the human gene for a newly discovered carbonic anhydrase, CA Ⅶ, and its localization to chromosome 16. Genomics. 1991, 11(4): 835-848
    131. Moran JL, Li YZ, Hill AA, Mounts WM, Miller CP. Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. Physiol Genomics. 2002, 10: 103-111
    132. Moutou K A, Canario A V M, Mamuris Z, Power D M. Molecular cloning and sequence of Sparus aurata skeletal myosin light chains expressed in white muscle: developmental expression and thyroid regulation. J Experimental Biol. 2001, 204: 3009-3018
    133. Murakami H, Sly W S. Purification and characterization of human salivary carbonic anhydrase. J Biol Chem. 1987, 262: 1382-1388
    134. Nagao Y, Batanian J R, Clemente M F, Sly W S. Genomic organization of the human gene (CAS) and pseudogene for mitochondrial carbonic anhydrase V and their localization to chromosomes 16q and 16p. Genomics. 1995, 28(3): 477-84
    135. Nakagawa Y, Uemura H, Hirao Y, Yoshida K, Saga S, Yoshikawa K. Radiation hybrid mapping of the human MN/CA9 locus to chromosome band 9p12-p13. Genomics. 1998, 53 (1): 118-119
    136. Nakai H, Byers M G, Venta P J, Tashian R E, Shows T B.The gene for human carbonic anhydrase Ⅱ (CA2) is located at chromosome 8q22. Cytogenet Cell Genet. 1987, 44(4): 234-235
    137. Neumann F, Hemmerich P, von Mikecz A, Peter H H, Krawinkel U. Human ribosomal protein L7 inhibits cell-free translation in reticulocyte lysates and affects the expression of nuclear proteins upon stable transfection into Jurk at T-lymphoma cells. Nucleic Acids Research. 1995, 23(2): 195-202
    138. Niemela O, Juvonen T, Parkkila S. Immunohistochemical demonstration of acetaldehydemodified epitopes in human liver after alcohol consumption. J Clin Invest. 1991, 87: 1367-1374
    139. Niemela O. Acetaldehyde adducts of proteins: Diagnostic and pathogenic implications in diseases caused by excessive alcohol consumption. Scand J Clin Lab Invest. 1993, 53: 45-54
    140. Nishita T, Matsuura K, Ichihara N, Asari M. Isolation and measurement of carbonic anhydrase isoenzyme Ⅲ in plasma, sera, and tissues of dogs. Am J Vet Res. 2002, 63(2): 229-235
    141. Nogales E, Wolf S G, Downing K H. Structure of the αβ- tubulin dimer by electron crystallography. Nature. 1998, 391: 199-203
    142. Nottrott S, Hartmuth K, Fabrizio P, Urlaub H, Vidovic I, Ficner R, Luhrmann R. Functional interaction of a novel 15.5kD [U4/U6·U5] tri-snRNP protein with the 5' stem-loop of U4 snRNA. EMBO J. 1999, 18: 6119-6133
    143. Oh H S, Kwon H, Sun S K, Yang C H. QM, a putative tumor suppressor, regulates proto-oncogene c-yes. J Biol Chem. 2002, 277 (39): 36489-36498
    144. Okamoto N, Fujikawa-Adachi K, Nishimori I, Taniuchi K, Onishi S. cDNA sequence of human carbonic anhydrase-related protein, CA-RP Ⅹ: mRNA expressions of CA-RP Ⅹ and Ⅺ in human brain. Biochim Biophys Acta. 2001, 1518(3): 311-316
    145. Okuyama T, Batanian J R, Sly W S. Genomic organization and localization of gene for human carbonic anhydrase Ⅳ to chromosome 17q. Genomics. 1993, 16(3): 678-684
    146. Osterman P O, Askmark H, Wistrand P J. Serum carbonic anhydrase Ⅲ in neuromuscular disorders and in healthy persons after a long-distance run. J Neurol Sci. 1985, 70(3): 347-357
    147. Paranawithana S R, Tu C K, Laipis P J, Silverman D N. Enhancement of the catalytic activity of carbonic anhydrase Ⅲ by phosphates. J Biol Chem. 1990, 265: 22270-22274
    148. Parkkila A-K, Scarim A L, Parkkila S, Waheed A, Corbett J A, Sly W S. Expression of carbonic anhydrase V in pancreatic beta cells suggests role for mitochondrial carbonic anhydrase in insulin secretion. J Biol Chem. 1998, 273: 24620-24623
    149. Parkkila S, Parkkila A-K. Carbonic anhydrase in the alimentary tract. Roles of the different isozymes and salivary factors in the maintenance of optimal conditions in the gastrointestinal canal. Scand J Gastroenterol. 1996, 31: 305-317
    150. Parkkila S, Halsted C H, Villanueva J A, Vaananen H K, Niemela O. Expression of testosterone-dependent enzyme, carbonic anhydrase Ⅲ, and oxidative stress in experimental alcoholic liver disease. Dig Dis Sci. 1999, 44: 2205-2213
    151. Parkkila S, Rajaniemi H, Parkkila A-K, Kivela J, Waheed A, Pastorekova S, Pastorek J, Sly W S. Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc Natl Acad Sci USA. 2000, 97: 2220-2224
    152. Premanandh J, George L V, Wernery U, Sasse J. Evaluation of a newly developed real-time PCR for the detection of Taylorella equigenitalis and discrimination from T asinigenitalis. Vet Microbiol. 2003, 95(4): 229-237
    153. Price D H. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase Ⅱ, Mol Cell Biol. 2000, 20: 2629-2634
    154. Raisanen S R, Lehenkari P, Tasanen M, Rahkila P, Harkonen P L, Vaananen H K. Carbonic anhydrase Ⅲ protects cells from hydrogen peroxide-induced apoptosis. FASEB J. 1999, 13: 513-522
    155. Rattink A P, De Koning D J, Faivre M, Harlizius B, van Arendonk J A, Groenen M A. Fine mapping and imprinting analysis for fatness trait QTLs in pigs. Mamm Genome. 2000, 11(8): 656-661
    156. Rehfeldt C, Ender K, Numberg K, Hackl W. Cellular aspects of the repartitioning process induced by somatotropin in pigs up to 150 kg live weight in relation to growth and carcass characteristics. Arch Anim Breed. 1996, 39: 169-184
    157. Rivera C, Voipio J, Kaila K. Two developmental switches in GABAergic signalling: the K~+-Cl~- cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol. 2004, 562: 27-36
    158. Rowlett R S, Gargiulo N J, Santoli F A, Jackson J M, Corbett A H. Activation and inhibition of bovine carbonic anhydrase Ⅲ by dianions. J Biol Chem. 1991, 266: 933-941
    159. Saarnio J, Parkkila S, Parkkila A-K, Haukipuro K, Pastorekova S, Pastorek J, Kairaluoma M I, Karttunen T J. Immunohistochemical study of colorectal tumors for expression of a novel transmembrane carbonic anhydrase, MN/CA Ⅸ, with potential value as a marker of cell proliferation. Am J Pathol. 1998, 153: 279-285
    160. Sachdev S, Raychowdhury M K, Sarkar S. Human fast skeletal myosin light chain 2 cDNA: isolation, tissue specific expression of the single copy gene, comparative sequence analysis of isoforms and evolutionary relationships. DNA Seq. 2003, 14(5): 339-350
    161. Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: Gene regulation and functional significance. Physiol Rev. 1996, 76: 371-423
    162. Scozzafava A, Mastrolorenzo A, Supuran C T. Modulation of carbonic anhydrase activity and its applications in therapy. Expert Opin Ther Pat. 2004, 14: 667-702
    163. Shah G N, Hewett-Emmett D, Grubb J H, Migas M C, Fleming R E, Waheed A, Sly W S. Mitochondrial carbonic anhydrase CA VB: differences in tissue distribution and pattern of evolution from those of CA VA suggest distinct physiological roles. Proc Natl Acad Sci USA. 2000, 97(4): 1677-1682
    164. Shelton J B, Chegwidden W R. Activation of carbonic anhydrase Ⅲ by phosphate. Biochem Soc Trans. 1988, 16: 853-854
    165. Shelton J B, Chegwidden W R. Modification of carbonic anhydrase Ⅲ by phosphate and phosphorlated metabolites. Comp biochem physiol. 1996, 114A: 283-289
    166. Shen B, Arese M, Gualandris A, Rifkin D B. Intracellular association of FGF-2 with the ribosomal protein L6/TAXREB107. Biochem Biophys Res Commun. 1998, 252 (2): 524-528
    167. Simone C, Stiegler P, Bagella L, Pucci B, Bellan C, De Falco G, De Luca A, Guanti G, Puri P L, Giordano A. Activation of MyoD-dependent transcription by cdk9/cyclin T2, Oncogene. 2002, 21: 4137-4148
    168. Sly W S, Whyte M P, Sundaram V, Tashian R E, Hewett-Emmctt D, Guibaud P, Vainsel M, Baluarte H J, Gruskin A, Al-Mosawi M. Carbonic anhydrase Ⅱ deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med. 1985, 313(3): 139-145
    169. Sly W S, Hu P Y. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem. 1995, 64: 375-401
    170. Stanton L W, Ponte P A, Coleman R T, Snyder M A. Expression of CA Ⅲ in rodent models of obesity. Mol Endocrinol. 1991, 5(6): 860-866
    171. Sterling D, Alvarez B V, Casey J R. The extracellular component of a transport metabolon. Extracellular loop 4 of the human AEl Cl=/HCO3- exchanger binds carbonic anhydrase Ⅳ. J Biol Chem. 2002, 277: 25239-25246
    172. Su L K, Burrell M, Hill D E, Gyuris J, Brent R, Wiltshire R, Trent J, Vogelstein B, Kinzler K W. APC binds to the novel protein EB1. Cancer Res. 1995, 55 (14): 2972-2977
    173. Sutherland G R, Baker E, Fernandez K E, Callen D F, Aldred P, Coghlan J P, Wright R D, Fernley R T. The gene for human carbonic anhydrase Ⅵ (CA6) is on the tip of the short arm of chromosome 1. Cytogenet Cell Genet. 1989, 50(2-3): 149-50
    174. Swatland H J. Muscle growth in the fetal and neonatal pig. J Anita Sci. 1973, 37: 536-545
    175. Sweeney H L, Bowman B F, Stull J T. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol. 1993, 264: C1085-C1095
    176. Swenson E R. Distribution and functions of carbonic anhydrase in the gastrointestinal tract. In: Dodgson S J, Tashian R E, Gros G, Carter N D (eds). The Carbonic Anhydrases. Cellular Physiology and Molecular Genetics. Plenum Press, New York, 1991, 265-287
    177. Taniuchi K, Nishimori I, Takeuchi T, Fujikawa-Adachi K, Ohtsuki Y, Onishi S. Developmental expression of carbonic anhydrase-related proteins Ⅷ, Ⅹ, and Ⅺ in the human brain. Neuroscience. 2002, 112(1): 93-99
    178. Tashian R E, Plato C C, Shows T B. Inherited variant of erythrocyte carbonic anhydrase in Micronesians from Guam and Saipan. Science. 1963, 140: 53-54
    179. Tashian R E, Hewett-Emmett D, Carter N D, Bergenhem N C H. Carbonic anhydrase (CA)-related proteins (CA-RPs), and transmembrane proteins with CA or CA-RP domains. In: Chegwidden WR, Carter N D, Edwards Y H (eds) The Carbonic Anhydrases: New Horizons. Birkhauser Verlag Basel, Switzerland, 2000, 105-120
    180. Thatcher B J, Doherty A E, Orvisky E, Martin B M, Henkin R I. Gustin from human parotid saliva is carbonic anhydrase Ⅵ. Biochem Biophys Res Commun. 1998, 250: 635-641
    181. Tirnauer J S, Bierer B E. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J Cell Biol. 2000, 149 (4): 761-766
    182. Tureci O, Sahin U, Vollmar E, Siemer S, Gottert E, Seitz G, Parkkila A-K, Shah G N, Grubb J H, Pfreundschuh M, Sly W S. Human carbonic anhydrase Ⅻ: cDNA cloning, expression, and chromosomal localization of a carbonic anhydrase gene that is overexpressed in some renal cell cancers. Proc Natl Acad Sci USA. 1998, 95: 7608-7613
    183. Turner J R, Odze R D, Crum C P, Resnick M B. MN antigen expression in normal, preneoplastic and neoplastic esophagus: a clinicopathological study of a new cancer-associated biomarker. Hum Pathol. 1997, 28: 740-744
    184. Tweedie S, Morrison K, Charlton J, Edwards Y H. CAIII a marker for early myogenesis: analysis of expression in cultured myogenic cells. Somat Cell Mol Genet. 1991, 17(3): 215-228
    185. Van Laere A S, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald A L, Haley C S, Buys N, Tally M, Andersson G, Georges M, Andersson L. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 2003, 425(6960): 832-836
    186. Vermylen P, Roufosse C, Burny A, Verhest A, Bosschaerts T, Pastorekova S, Ninane V, Sculler J-P. Carbonic anhydrase Ⅸ antigen differentiates between preneoplastic malignant lesions in non-small cell lung carcinoma. Eur Respir J. 1999, 14: 806-811
    187. Vet J A M, Majithia A R, Marras S A E, Tyagi S, Dube S, Poiesz B J, and Kramer F R. Multiplex detection of four pathogenic retroviruses using molecular beacons. Proc Natl Acad Sci USA. 1999, 96: 6394-6399
    188. Vuotikka P, Uusimaa P, Niemela M, Vaananen K, Vuori J, Peuhkurinen K. Serum myoglobin/carbonic anhydrase Ⅲ ratio as a marker of reperfusion after myocardial infarction. Int J Cardiol. 2003, 91: 137-144
    189. Wade R, Gunning P, Eddy R, Shows T, Kedes L. Nncleotide sequence, tissue-specific expression, and chromosome location of human carbonic anhydrase Ⅲ: the human CAIII gene is located on the same chromosome as the closely linked CAI and CAII genes. Proc Natl Acad Sci USA. 1986, 83(24): 9571-9575
    190. Waheed A, Zhu X L, Sly W S. Membrane-associated carbonic anhydrase from rat lung. Purification, characterization, tissue distribution, and comparison with carbonic anhydrase Ivs of other mammals. J Biol Chem. 1992, 267: 3308-3311
    191. Wang H L, Zhu Z M, Yerle M, Wu X, Wang H, Yang S L and Li K. Full-length coding sequences and mapping of porcine ATP6VOE and ATP5G1 genes. Cytogenet Genome Res. 2005, 109: 534I
    192. Wang Q, Holmes D I, Powell S M, Lu Q L, Waxman J. Analysis of stromal-epithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene. Cancer. 2002, 175: 63-69
    193. Warriss P D. Meat Science: An Introductory Text. CABI publishing. 2000.
    194. Xu D Q, Xiong Y Z, Ling X F, Lan J, Liu M, Deng C Y, Jiang S W, Lei M G. Identification of a differential gene HUMMLC2B between Fl hybrids Landrace x Yorkshire and their female parents Yorkshire. Gene. 2005, 352: 118-126
    195. Xu Y F, He J Y, Tian H L, Chan C H, Liao J, Yan T, Lam T J, Gong Z Y. Fast Skeletal muscle-specific expression of a zebrafish myosin light chain 2 gene and characterization of its promoter by direct injection into skeletal muscle. DNA Cell Biol. 1999, 18: 85-95
    196. Xu Y F, He J Y, Wang X K, Lim T M, Gong Z Y. Asynchronous activation of 10 muscle-specific protein (MSP) genes during zebrafish somitogenesis. Dev Dynam. 2000, 219: 201-215
    197. Yerle M, Echard G, Robic A, Mairal A, Dubut-Fontana C, Riquet J, Pinton P, Milan D, Lahbib-Mansais Y, Gellin J. A somatic cell hybrid panel for pig regional gene mapping characterized by molecular eytogeneties. Cytogenet Cell Genet. 1996, 73(3): 194-202
    198. Yerle M, Pinton P, Robie A, Alfonso A, Palvadeau Y, Deleros C, Hawken R, et al. Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet, 1998, 82(3-4): 182-188
    199. Young R A, Frink R, Longcope C. Serum testosterone and gonadotropins in the genetically obese male Zucker rat. Endocrinology. 1982, 111(3): 977-981
    200. Zhang Z Y, Wang Y, Wu L, Fauman E B, Stuckey J A, Schubert H L, Saper M A, Dixon J E. The Cys(X)_5Arg Catalytic Motif in Phosphoester Hydrolysis. Biochemistry. 1994, 33: 15266-15270
    201. Zhu X L, Sly W S. Carbonic anhydrase Ⅳ from human lung. Purification, charactefization, and comparison with membrane carbonic anhydrase from human kidney. J Bil Chem. 1990, 265: 8795-8801
    202. Zimmerman U J, Wang P, Zhang X, Bogdanovich S, Forster R E. Anti-oxidative response of carbonic anhydrase Ⅲ in skeletal muscle. IUBMB Life. 2004, 56: 343-347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700