用户名: 密码: 验证码:
计算机辅助设计拟除虫菊酯类农药分子印迹聚合物研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,农产品质量安全问题日益成为社会关注的焦点之一。作为食品质量安全控制和环境监测的重要手段,农药残留检测技术一直是国内外食品安全领域的一大研究热点。而分子印迹技术(MIT)为解决样品分析、产物分离过程中的选择性问题提供了一条方便、有效的途径,目前已经成为了农药残留分析与检测研究领域的热门方向之一
     自上世纪末以来,MIT的探究及其发展迅速。然而,目前真正实现分子印迹聚合物(MIP)产业化的种类很少,大部分MIP的研究仍处于实验阶段,其中一个主要原因是MIP的制备受到多种因素的影响,印迹体系的筛选十分复杂困难,尤其是对于报道较少的弱官能性模板分子而言。本研究首先采用计算机分子模拟软件Hyperchem(?) 7.5来预测模板分子与功能单体之间的非共价作用,通过分子力学(MM)方法和PM3半经验法优化,模拟了8种常用的拟除虫菊酯类农药和13种功能单体的分子最低能量构象,然后采用Amber MM方法分析了各菊酯农药与功能单体之间的相互作用并计算了相应的结合能,以期筛选出合适的模板分子和功能单体,用于辅助设计拟除虫菊酯类农药MIP的制备。结果发现,总体上就功能单体而言,甲基丙烯酸(MAA)和2-羟基乙基-甲基丙烯酸脂(HEMA)与各菊酯农药分子的结合能较高;就农药分子而言,氰戊菊酯与MAA和HEMA的分子作用力均较强,三氟氯氰菊酯分别与两种功能单体之间的作用均较弱,其他几种菊酯类农药分别与两种功能单体的作用力差异较大;各菊酯异构体之间与功能单体的分子作用力表现出不同程度的差异。
     根据上述计算机预测结果,同时考虑当前农药市场信息和残留监测要求,优先选择了与功能单体互作强度不同的三氟氯氰菊酯和氰戊菊酯为代表模板分子,采用不同的功能单体、交联剂、致孔溶剂和聚合方法,分别制备并筛选得到了能特异性结合各自模板的MIPs,确定了合适的分子识别溶剂体系,并考察了有关印迹聚合物对其他拟除虫菊酯类农药的结合选择性。试验结果发现,不同的识别溶剂体系对MIP的选择性结合有较大影响;以HEMA为功能单体、对-二乙烯苯(DVB)为交联剂、乙腈为致孔剂合成的MIP,在正己烷中对三氟氯氰菊酯的选择性识别最强,特别是沉淀聚合的MIP微球有更高的结合容量;HEMA-co-DVB三氟氯氰菊酯MIP还能对溴氰菊酯和氰戊菊酯有一定的选择性结合,这表明该类MIP能用来结合多种第二代拟除虫菊酯类农药,可望在拟除虫菊酯类农药多残留检测的样品制备方面得到应用。再则,以MAA为功能单体、DVB为交联剂,在乙腈/甲苯=3:1(v/v)的混合溶剂中沉淀聚合得到的氰戊菊酯MIP微球,能在正已烷体系中特异性识别模板分子,印迹因子可达2.16。总体而言,以氰戊菊酯为模板制备的MIP印迹效果高于三氟氯氰菊酯MIP。此外,为实现MIP在含水相中对拟除虫菊酯类农药的更高特异性结合效果,制备得到了基于环糊精包合作用的MIP,性能测试表明,该MIP适用于亲水性环境下拟除虫菊酯类农药的选择性富集和分离。试验结果能够较好地佐证计算机分子模拟的预测结果。
     通过本论文的研究,初步建立了拟除虫菊酯类农药的计算机辅助设计MIP研制体系。同时,对拟除虫菊酯类农药MIP的选择性识别机理进行了探讨,初步阐明了拟除虫菊酯类农药MIP识别位点的形成不仅取决于模板与功能单体的相互作用,还与印迹分子的立体结构紧密相关。本研究对开发切实有效的适合于拟除虫菊酯类农药残留检测的MIT及其产品具有较好的理论指导意义,还可为其他分析物特别是非极性化合物的MIP研制中模板分子、功能单体等参数的选择提供了有益借鉴。
In recent years, increasing attention has been paid to the quality and safety (QS) of farm products and foodstuffs, and this issue has already become the top priority for the sake of human being's health all over the world. As a key role for food QS control and environmental monitoring, the determination of pesticide residues becomes a hotspot in the related research field. Molecular imprinting technique (MIT) has proved to be an available and convenient alternative for solving the selectivity or specificity in sample analysis and product separation. Nowadays, it is a rising tide of study on pesticide residue analysis.
     MIT has been developed very quickly since the end of the last century. However, the efficient synthesis of molecularly imprinted polymer (MIP) is affected by lots of physical and chemical factors, and thus there are only a few kinds of MIPs which have been really developed for the commercial application. A majority of the reported MIPs were only on the laboratorial stage owing to the complexity of molecular imprinting system, especially for the poor functionalized templates. In the present study, a computational approach using Hyperchem(?) 7.5 molecular modelling software was firstly applied to predict the non-covalent interactions between pyrethroid pesticides and functional monomers. The minimum energy conformations of eight commonly used pyrethroid pesticides and thirteen functional monomers were simulated by molecular mechanics (MM) and then refined using PM3 semi-empirical mechanic methods. Afterward, the Amber MM method was used to analyse possible interactions between templates and functional monomers and to calculate their binding energies, so as to select the suitable templates and monomers and thus to design for pyrethroid-MIP development. Results indicated that, generally, in view of functional monomers, complexes of templates with methacrylic acid (MAA) and 2-hydroxyethyl methacrylate (HEMA) gave the relatively higher binding energies than these with other monomers. In terms of the eight pyrethroid pesticides, fenvalerate showed the relatively stronger interactions with MAA and HEMA, but cyhalothrin gave the opposite phenomenon; while other pyrethroids displayed the diverse intensity of interactions with the two monomers; for the same pyrethroid, the more or less variation of the interactions among different isomers was also found.
     Based on the above research and considering the current pesticide marketing information and the demand for residue monitoring, fenvalerate and cyhalothrin were selected as the typical templates which respectively showed high and low interactions with functional monomers. Using different monomers, cross-linkers, porogenic solvents and polymerization methods, various MIPs for fenvalerate and cyhalothrin were synthesized and screened. Then the appropriate solvent system for the specific rebinding of the MIPs was optimized and the selective recognition of related MIPs to other pyrethroids was also investigated. Results revealed that different rebinding solvents greatly influenced the selective absorption of MIPs to the corresponding pesticides. The cyhalothrin-MIPs prepared with HEMA (as functional monomer),p-divinylbenzene (DVB, as cross-linker) and acetonitrile (as porogen) had the better selectivity in n-hexane system than in other organic solvents, and particularly the MIP microsphere synthesized by precipitation polymerization had the much higher binding capacity. Withal, the HEMA-co-DVB cyhalothrin-MIP also had selective recognition to fenvalerate and deltamethrin, which suggested that this type of MIP could hopefully be applied to multi-residue determination of type II pyrethroids. Besides, fenvalerate-MIP prepared by precipitation polymerization in the mixture solvent of acetonitrile and toluene (3:1, v/v) using MAA (as functional monomer) and DVB (as cross-linker) could specifically recognize its template molecule in n-hexane, with imprinting factor (IF) up to 2.16. Compared with cyhalothrin-MIP, the imprinting efficiency of fenvalerate-MIP was higher. In addition, aimed at achieving higher specificity and efficient recognition of MIPs to pyrethroid pesticides in aqueous media, inclusion interaction was employed to synthesize pyrethroid MIPs withβ-cyclodextrin as functional monomer. And equilibrium rebinding test reflected that the developed MIP would be used as potential high-performance materials for the selective concentration and/or separation of trace pyrethroids from complex sample matrixes under the hydrophilic condition. Overall, it was found that, satisfactorily, the experimental results were in accord with the outcomes from computer simulation.
     In this study, an elementary research system of computer-assisted design for the preparation of MIPs for pyrethroid pesticides was established. Moreover, the mechanism of MIPs'selective binding to pyrethroid templates was also shallowly probed. It was illuminated that the formation of binding sites not only lied on the interaction between template and functional monomer, but also was tightly related to its stereostructure of template molecule. The present research could provide an academic guidance to the development of MIT for pyrethroid pesticide detection, and offered a useful reference to the preparation of MIPs for other analytes, especially the non-polar compounds.
引文
1.朱国念主编,农药残留快速检测技术.化学工业出版社:北京,2008.
    2. Hernandez, F.; Sancho, J. V.; Pozo,O. J., Critical review of the application of liquid chromatography/mass spectrometry to the determination of pesticide residues in biological samples. Analytical and Bioanalytical Chemistry 2005,382, (4),934-946.
    3. Savant, R. H.; Banerjee, K.; Utture, S. C.; Patil, S. H.; Dasgupta, S.; Ghaste, M. S.; Adsule, P. G., Multiresidue analysis of 50 pesticides in grape, pomegranate, and mango by gas chromatography-ion trap mass spectrometry. Journal of Agricultural and Food Chemistry 2010,58, (3),1447-1454.
    4. Hernandez Borges, J.; Ravelo-Perez, L.; Hernandez-Suarez, E.; Carnero, A.; Rodriguez-Delgado, M., Determination of Abamectin Residues in Avocados by Microwave-Assisted Extraction and HPLC with Fluorescence Detection. Chromatographia 2008,67, (1),69-75.
    5. Hennion, M. C.; Barcelo, D., Strengths and limitations of immunoassays for effective and efficient use for pesticide analysis in water samples:A review. Analytica Chimica Acta 1998,362, (1),3-34.
    6. Wang, S. T.; Gui, W. J.; Guo, Y. R.; Zhu, G. N., Preparation of a multi-hapten antigen and broad specificity polyclonal antibodies for a multiple pesticide immunoassay. Analytica Chimica Acta 2007, 587, (2),287-292.
    7. Morozova, V. S.; Levashova, A. I.; Eremin, S. A., Determination of pesticides by enzyme immunoassay. Journal of Analytical Chemistry 2005,60, (3),202-217.
    8.杜小粉;董全,生物传感器在食品农药残留检验中的应用.中国食物与营养2009,(6),22-24.
    9.干宁;杨欣;巫远招,基于复合磁性纳米微粒修饰的一次性有机磷农药酶传感器.分析化学2009,37,(A03),69-69.
    10. Mulchandani, A.; Chen, W.; Mulchandani, P.; Wang, J.; Rogers, K. R., Biosensors for direct determination of organophosphate pesticides. Biosensors and Bioelectronics 2001,16, (4-5),225-230.
    11.钟树明;袁东星;金晓英;许鹏翔,植物酶抑制技术用于检测蔬菜中有机磷及氨基甲酸酯类农药残留.环境化学2002,21,(2),189-193.
    12.王多加;胡祥娜;周向阳;张兵,蔬菜农药残留快速检测技术—胆碱酯酶速测卡法.食品科学2003,24,(6),109-113.
    13. Lambropoulou, D.; Albanis, T., Methods of sample preparation for determination of pesticide residues in food matrices by chromatography-mass spectrometry-based techniques:a review. Analytical and Bioanalytical Chemistry 2007,389, (6),1663-1683.
    14. Pico, Y.; Rodriguez, R.; Ma Es, J., Capillary electrophoresis for the determination of pesticide residues. TrAC Trends in Analytical Chemistry 2003,22, (3),133-151.
    15. Andreu, V.; Pico, Y., Determination of pesticides and their degradation products in soil:critical review and comparison of methods. TrAC Trends in Analytical Chemistry 2004,23, (10-11),772-789.
    16. Gilbert-L6pez, B.; Garcfa-Reyes, J. F.; Molina-Diaz, A., Sample treatment and determination of pesticide residues in fatty vegetable matrices:A review. Talanta 2009,79, (2),109-128.
    17. Font, G.; Ma Es, J.; Molto, J. C.; Pico, Y., Solid-phase extraction in multi-residue pesticide analysis of water. Journal of Chromatography A 1993,642, (1-2),135-161.
    18. Boyd-Boland, A. A.; Magdic, S.; Pawliszyn, J. B., Simultaneous determination of 60 pesticides in water using solid-phase microextraction and gas chromatography-mass spectrometry. The Analyst 1996,121, (7),929-937.
    19. Obana, H.; Kikuchi, K.; Okihashi, M.; Hori, S., Determination of organophosphorus pesticides in foods using an accelerated solvent extraction system. The Analyst 1997,122, (3),217-220.
    20. Johnson, P. D.; Rimmer, D. A.; Brown, R. H., Adaptation and application of a multi-residue method for the determination of a range of pesticides, including phenoxy acid herbicides in vegetation, ased on high-resolution gel permeation chromatographic clean-up and gas chromatographic analysis with mass-selective detection. Journal of Chromatography A 1997,765, (1),3-11.
    21. Norman, K.; Panton, S., Supercritical fluid extraction and quantitative determination of organophosphorus pesticide residues in wheat and maize using gas chromatography with flame photometric and mass spectrometric detection. Journal of Chromatography A 2001,907, (1-2), 247-255.
    22. Ferrer, C; Gomez, M. J.; Garcia-Reyes, J. F.; Ferrer, I.; Thurman, E. M.; Fernandez-Alba, A. R., Determination of pesticide residues in olives and olive oil by matrix solid-phase dispersion followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. Journal of chromatography A 2005,1069, (2),183-194.
    23. Sandra, P.; Tienpont, B.; Vercammen, J.; Tredoux, A.; Sandra, T.; David, F., Stir bar sorptive extraction applied to the determination of dicarboximide fungicides in wine. Journal of Chromatography A 2001,928, (1),117-126.
    24. Ho, W. H.; Hsieh, S. J., Solid phase microextraction associated with microwave assisted extraction of organochlorine pesticides in medicinal plants. Analytica Chimica Acta 2001,428, (1),111-120.
    25. Lawrence, J. F.; Menard, C.; Hennion, M. C.; Pichon, V.; Le Goffic, F.; Durand, N., Use of immunoaffinity chromatography as a simplified cleanup technique for the liquid chromatographic determination of phenylurea herbicides in plant material. Journal of Chromatography A 1996,732, (2),277-281.
    26. Lehotay, S. J.; Kok, A.; Hiemstra, M.; Bodegraven, P., Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. Journal ofAOACInternational 2005,88, (2), 595-614.
    27. Asensio-Ramos, M.; Hernandez-Borges, J.; Ravelo-Perez, L.; Rodriguez-Delgado, M., Evaluation of a modified QuEChERS method for the extraction of pesticides from agricultural, ornamental and forestal soils. Analytical and Bioanalytical Chemistry 2010,396, (6),2307-2319.
    28. Gui, W.; Liang, C.; Guo, Y.; Zhu, G., An improved rapid on-Site immunoassay for triazophos in environmental samples. Analytical Letters 2010,43, (3),487-498.
    29. Mak, S. K.; Shan, G.; Lee, H. J.; Watanabe, T.; Stoutamire, D. W.; Gee, S.J.; Hammock, B. D., Development of a class selective immunoassay for the type II pyrethroid insecticides. Analytica Chimica Acta 2005,534, (1),109-120.
    30. Guo, Y. R.; Liu, S. Y.; Gui, W. J.; Zhu, G. N., Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Analytical Biochemistry 2009,389, (1), 32-39.
    31. Wang, S.; Zhang, C.; Wang, J. P.; Zhang, Y., Development of colloidal gold-based flow-through and lateral-flow immunoassays for the rapid detection of the insecticide carbaryl. Analytica Chimica Acta 2005,546, (2),161-166.
    32. Koshland, D. E., The key-lock theory and the induced fit theory. Angewandte Chemie International Edition in English 1995,33, (2324),2375-2378.
    33. Eschenmoser, A., One hundred years lock-and-key principle. Angewandte Chemie International Edition in English 2003,33, (23-24),2363.
    34. Marty, J. D.; Mauzac, M., Molecular imprinting:state of the art and perspectives. In Microlithography-Molecular Imprinting, Springer:Berlin,2005; Vol.172, pp 1-35.
    35.姜忠义;吴洪,分子印迹技术.化学工业出版社:北京,2003.
    36. Haupt, K.; Mosbach, K., Plastic antibodies:developments and applications. Trends in Biotechnology 1998,16, (11),468-475.
    37. Pauling, L., A Theory of the Structure and Process of Formation of Antibodies. Journal of the American Chemical Society 1940,62, (10),2643-2657.
    38. Ye, L.; Mosbach, K., Molecular imprinting:synthetic materials as substitutes for biological antibodies and receptors. Chemisty of Materials 2008,20, (3),859-868.
    39. Dickey, F. H., The preparation of specific adsorbents. Proceedings of the National Academy of Sciences of the United States of America 1949,35, (5),227-229.
    40. Dickey, F. H., Specific adsorption. The Journal of Physical Chemistry 1955,59, (8),695-707.
    41. Wulff, G.; Sarhan, A., The use of polymers with enzyme-analogous structures for the resolution of racemates. Angewandte Chemie International Edition in English 1972,11,341-344.
    42. Arshady, R.; Mosbach, K., Synthesis of substrate-selective polymers by host-guest polymerization. Die Makromolekulare Chemie 1981,182, (2),687-692.
    43. Norrlow, O.; Glad, M.; Mosbach, K., Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates. Journal of Chromatography A 1984,299,29-41.
    44. Vlatakis, G.; Andersson, L. I.; Muller, R.; Mosbach, K., Drug assay using antibody mimics made by molecular imprinting. Nature 1993,361, (6413),645-647.
    45. Allender, C.; Mosbach, K., MIP2008 Kobe, Japan, September 2008. Biosensors and Bioelectronics 2009,25,(3),539-542.
    46. Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch,N.; Nicholls, I. A.; O'Mahony, J.; Whitcombe, M. J., Molecular imprinting science and technology:a survey of the literature for the years up to and including 2003. Journal of molecular recognition 2006,19, (2), 106-180.
    47.王荣艳;王荣艳;王培龙;王静;王锡昌;钟耀广,分子印迹技术的研究的新进展及应用.现代科学仪器2008,,(1),11-16.
    48. Mayes, A. G.; Whitcombe, M. J., Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews 2005,57, (12),1742-1778.
    49.武庆利.分子印迹聚合物亲和性和选择性的理论预测与调控(博士学位论文).北京大学,北京,2005.
    50. Wulff, G., Selective binding to polymers via covalent bonds. The construction of chiral cavities as specific receptor sites. Pure Applied Chemistry 1982,54, (11),2093-2102.
    51.小宫山真等编著,分子印迹学——从基础到应用.吴世康;汪鹏飞译,科学出版社:北京,2006.
    52. Wulff, G., The role of binding-site interactions in the molecular imprinting of polymers. Trends in Biotechnology 1993,11, (3),85-87.
    53. Shea, K. J.; Dougherty, T. K., Molecular recognition on synthetic amorphous surfaces——The influence of functional group positioning on the effectiveness of molecular recognition. Journal of the American Chemical Society 1986,108, (5),1091-1093.
    54. Mosbach, K.; Ramstrom, O., The emerging technique of molecular imprinting and its future impact on biotechnology. Nature Biotechnology 1996,14, (2),163-170.
    55. Vallano, P. T.; Remcho, V. T., Highly selective separations by capillary electrochromatography: molecular imprint polymer sorbents. Journal of Chromatography A 2000,887, (1-2),125-135.
    56. Zhang, H.; Ye, L.; Mosbach, K., Non-covalent molecular imprinting with emphasis on its application in separation and drug development. Journal of Molecular Recognition 2006,19, (4),248-259.
    57. Priego-Capote, F.; Ye, L.; Shakil, S.; Shamsi, S. A.; Nilsson, S., Monoclonal behavior of molecularly imprinted polymer nanoparticles in capillary electrochromatography. Analytical Chemistry 2008,80, (8),2881-2887.
    58. Matsui, J.; Miyoshi, Y.; Doblhoff-Dier, O.; Takeuchi, T., A molecularly imprinted synthetic polymer receptor selective for atrazine. Analytical Chemistry 1995,67, (23),4404-4408.
    59. Carabias-Martinez, R.; Rodriguez-Gonzalo, E.; Herrero-Hernandez, E., Behaviour of triazine herbicides and their hydroxylated and dealkylated metabolites on a propazine-imprinted polymer: Comparative study in organic and aqueous media. Analytica Chimica Acta 2006,559, (2),186-194.
    60. O'Mahony, J.; Molinelli, A.; Nolan, K.; Smyth, M. R.; Mizaikoff, B., Towards the rational development of molecularly imprinted polymers:1HNMR studies on hydrophobicity and ion-pair interactions as driving forces for selectivity. Biosensors and Bioelectronics 2005,20, (9),1884-1893.
    61. Sellergren, B.; Andersson, L., Molecular recognition in macroporous polymers prepared by a substrate analog imprinting strategy. The Journal of Organic Chemistry 1990,55, (10),3381-3383.
    62. Cheong, S. H.; McNiven, S.; Rachkov, A.; Levi, R.; Yano, K.; Karube, I., Testosterone receptor binding mimic constructed using molecular imprinting. Macromolecules 1997,30, (5),1317-1322.
    63. Caro, E.; Masque, N.; Marce, R M.; Borrull, F.; Cormack, P. A. G.; Sherrington, D. C., Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples. Journal of Chromatography A 2002,963, (1-2),169-178.
    64. Ikegami, T.; Mukawa, T.; Nariai, H.; Takeuchi, T., Bisphenol A-recognition polymers prepared by covalent molecular imprinting. Analytica Chimica Acta 2004,504, (1),131-135.
    65. Whitcombe, M. J.; Rodriguez, M. E.; Villar, P.; Vulfson, E. N., A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting:synthesis and characterization of polymeric receptors for cholesterol. Journal of the American Chemical Society 1995,117, (27),7105-7111.
    66. Lubke, M.; Whitcombe, M. J.; Vulfson, E. N., A novel approach to the molecular imprinting of polychlorinated aromatic compounds. Journal of the American Chemical Society 1998,120, (51), 13342-13348.
    67. Kirsch, N.; Alexander, C.; Liibke, M.; Whitcombe, M. J.; Vulfson, E. N., Enhancement of selectivity of imprinted polymers via post-imprinting modification of recognition sites. Polymer 2000,41, (15), 5583-5590.
    68. Kirsch, N.; Alexander, C.; Davies, S.; Whitcombe, M. J., Sacrificial spacer and non-covalent routes toward the molecular imprinting of "poorly-functionalized" N-heterocycles. Analytica Chimica Acta 2004,504,(1),63-71.
    69. Mukawa, T.; Goto, T.; Nariai, H.;Aoki, Y.; Imamura, A.; Takeuchi, T., Novel strategy for molecular imprinting of phenolic compounds utilizing disulfide templates. Journal of pharmaceutical and biomedical analysis 2003,30, (6),1943-1947.
    70. Mukawa, T.; Goto, T.; Takeuchi, T., Post-oxidative conversion of thiol residue to sulfonic acid in the binding sites of molecularly imprinted polymers:Disulfide based covalent molecular imprinting for basic compounds. The Analyst 2002,127, (11),1407-1409.
    71. Khasawneh, M. A.; Vallano, P. T.; Remcho, V. T., Affinity screening by packed capillary high performance liquid chromatography using molecular imprinted sorbents:Ⅱ. Covalent imprinted polymers. Journal of Chromatography A 2001,922, (1-2),87-97.
    72.胡玉龙,金属配位化合物在分子印迹技术中的应用.广东化工2008,35,(12),61-64.
    73. Nishide, H.; Deguchi, J.; Tsuchida, E., Adsorption of metal ions on crosslinked poly(4-vinylpyridine) resins prepared with a metal ion as template. Journal of Polymer Science:Polymer Chemistry Edition 1977,15, (12),3023-3029.
    74. Rao, T. P.; Kala, R.; Daniel, S., Metal ion-imprinted polymers-Novel materials for selective recognition of inorganics. Analytica Chimica Acta 2006,578, (2),105-116.
    75. Zhai, Y.; Liu, Y.; Chang, X.; Chen, S.; Huang, X., Selective solid-phase extraction of trace cadmium(II) with an ionic imprinted polymer prepared from a dual-ligand monomer. Analytica Chimica Acta 2007,593, (1),123-128.
    76. Singh, D. K.; Mishra, S., Synthesis, characterization and removal of Cd(II) using Cd(Ⅱ)-ion imprinted polymer. Journal of Hazardous Materials 2009,164, (2-3),1547-1551.
    77. Fujii, Y.; Matsutani, K.; Kikuchi, K., Formation of a specific co-ordination cavity for a chiral amino acid by template synthesis of a polymer Schiff base cobalt (Ⅲ) complex. Journal of the Chemical Society, Chemical Communications 1985,1985, (7),415-417.
    78. Matsui, J.; Nicholls, I. A.; Takeuchi, T.; Mosbach, K.; Karube,I., Metal ion mediated recognition in molecularly imprinted polymers. Analytica ChimicaActa 1996,335, (1-2),71-77.
    79. Chen, G.; Guan, Z.; Chen, C. T.; Fu, L.; Sundaresan, V.; Arnold, F. H., A glucose-sensing polymer. Nature Biotechnology 1997,15, (4),354-357.
    80. Subat, M.; Borovik, A. S.; Konig, B., Synthetic creatinine receptor:imprinting of a Lewis acidic zinc (Ⅱ) cyclen binding site to shape its molecular recognition selectivity. Journal of the American Chemical Society 2004,126, (10),3185-3190.
    81. Hart, B. R.; Shea, K. J., Molecular imprinting for the recognition of N-terminal histidine peptides in aqueous solution. Macromolecules 2002,35, (16),6192-6201.
    82. Li, S. H.; Wang, J.; Zhao, M. P., Cupric ion enhanced molecular imprinting of bovine serum albumin in hydrogel. Journal of Separation Science 2009,32, (19),3359-3363.
    83. Chou, S. K.; Syu, M. J., Via zinc(II) protoporphyrin to the synthesis of poly(ZnPP-MAA-EGDMA) for the imprinting and selective binding of bilirubin. Biomaterials 2009,30, (7),1255-1262.
    84. Papaioannou, E. H.; Liakopoulou-Kyriakides, M.; Papi, R. M.; Kyriakidis, D. A., Artificial receptor for peptide recognition in protic media:The role of metal ion coordination. Materials Science and Engineering B:Solid-State Materials for Advanced Technology 2008,152, (1-3),28-32.
    85. Plunkett, S. D.; Arnold, F. H., Molecularly imprinted polymers on silica:Selective supports for high-performance ligand-exchange chromatography. Journal of Chromatography A 1995,708, (1), 19-29.
    86. Liu, J. Q.; Wulff, G., Functional mimicry of the active site of carboxypeptidase A by a molecular imprinting strategy:Cooperativity of an amidinium and a copper ion in a transition-state imprinted
    cavity giving rise to high catalytic activity. Journal of the American Chemical Society 2004,126, (24), 7452-7453.
    87. Striegler, S., Designing selective sites in templated polymers utilizing coordinative bonds. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences 2004,804, (1), 183-195.
    88. Ers Z, A.; Denizli, A.; Zcan, A.; Say, R. I., Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance. Biosensors and Bioelectronics 2005,20, (11),2197-2202.
    89. Terry, T. J.; Daniel, T.; Stack, P., Covalent heterogenization of a discrete Mn(II) Bis-Phen complex by a metal-template/metal-exchange method:An epoxidation catalyst with enhanced reactivity. Journal of the American Chemical Society 2008,130, (14),4945-4953.
    90.孙宝维;杨敏莉;李元宗;常文保,模板结构与分子印迹效果间关系的研究.化学学报2003,61,(6),878-884.
    91. Cormack, P. A. G.; Elorza, A. Z., Molecularly imprinted polymers:synthesis and characterisation. Journal of Chromatography B 2004,804, (1),173-182.
    92. Andersson, L.; Paprica, A.; Arvidsson, T., A highly selective solid phase extraction sorbent for pre-concentration of sameridine made by molecular imprinting. Chromatographia 1997,46, (1), 57-62.
    93. Andersson, L. I., Efficient sample pre-concentration of bupivacaine from human plasma by solid-phase extraction on molecularly imprinted polymers. The Analyst 2000,125, (9),1515-1517.
    94. Lanza, F.; Sellergren, B., Molecularly imprinted polymers via high-throughput and combinatorial techniques. Macromolecular Rapid Communications 2004,25, (1),59-68.
    95. Matsui, J.; Fujiwara, K.; Takeuchi, T., Atrazine-selective polymers prepared by molecular imprinting of trialkylmelamines as dummy template species of atrazine. Analytical Chemistry 2000,72, (8), 1810-1813.
    96. Matsui, J.; Doblhoff-Dier, O.; Takeuchi, T.,2-(Trifluoromethyl) acrylic acid:a novel functional monomer in non-covalent molecular imprinting. Analytica ChimicaActa 1997,343, (1-2),1-4.
    97.Lanza, F.; Hall, A. J.; Sellergren, B.; Bereczki, A.; Horvai, G.; Bayoudh, S.; Cormack, P.; Sherrington, D. C., Development of a semiautomated procedure for the synthesis and evaluation of molecularly imprinted polymers applied to the search for functional monomers for phenytoin and nifedipine. Analytica Chimica Acta 2001,435, (1),91-106.
    98. Meng, Z.; Wang, J.; Zhou, L.; Wang, Q.; Zhu, D., High performance cocktail functional monomer for making molecule imprinting polymer. Analytical Sciences 1999,15, (2),141-144.
    99. Asanuma, H.; Kakazu, M.; Shibata, M.; Hishiya, T.; Komiyama, M., Molecularly imprinted polymer of P-cyclodextrin for the efficient recognition of cholesterol. Chemical Communications 1997,, (20), 1971-1972.
    100. Kanekiyo, Y.; Naganawa, R.; Tao, H., Molecular imprinting of bisphenol A and alkylphenols using amylose as a host matrix. Chemical Communications 2002, (22),2698-2699.
    101. Tanabe, K.; Takeuchi, T.; Matsui, J.; Ikebukuro, K.; Yano, K.; Karube, I., Recognition of barbiturates in molecularly imprinted copolymers using multiple hydrogen bonding. Journal of the Chemical Society, Chemical Communications 1995,1995, (22),2303-2304.
    102. Kugimiya, A.; Mukawa, T.; Takeuchi, T., Synthesis of 5-fluorouracil-imprinted polymers with multiple hydrogen bonding interactions. Analyst 2001,126, (6),772-774.
    103. Glad, M.; Reinholdsson, P.; Mosbach, K., Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate (TRIM) particles for efficient enantiomeric separations. Reactive Polymers 1995,25, (1),47-54.
    104. Sibrian-Vazquez, M.; Spivak, D. A., Enhanced enantioselectivity of molecularly imprinted polymers formulated with novel cross-linking monomers. Macromolecules 2003,36, (14),5105-5113.
    105. Sibrian-Vazquez, M.; Spivak, D. A., Characterization of molecularly imprinted polymers employing crosslinkers with nonsymmetric polymerizable groups. Journal of Polymer Science, Part A:Polymer Chemistry 2004,42, (15),3668-3675.
    106. Sibrian-Vazquez, M.; Spivak, D. A., Molecular imprinting made easy. Journal of the American Chemical Society 2004,126, (25),7827-7833.
    107. Lejeune, J.; Spivak, D. A., Chiral effects of alkyl-substituted derivatives of N,O-bismethacryloyl ethanolamine on the performance of one monomer molecularly imprinted polymers (OMNiMIPs). Analytical and Bioanalytical Chemistry 2007,389, (2),433-440.
    108. Villar, P.; Whitcombe, M. J.; Vulfson, E. N., Matrix effects on the selectivity of a cholesterol-imprinted polymer. Polymer 2007,48, (6),1483-1489.
    109. Yilmaz, E.; Mosbach, K.; Haupt, K., Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays. Analytical Communications 1999,36, (5),167-170.
    110. Villamena, F. A.; De La Cruz, A. A., Caffeine selectivity of divinylbenzene crosslinked polymers in aqueous media. Journal of Applied Polymer Science 2001,82, (1),195-205.
    111.李国良.丙溴磷和氯菊酯分子印迹压电传感技术研究(硕士学位论文).中国人民解放军军事医学科学院,天津,2009.
    112. Turner, N. W.; Holdsworth, C. I.; Donne, S. W.; McCluskey, A.; Bowyer, M. C., Microwave induced MIP synthesis:Comparative analysis of thermal and microwave induced polymerisation of caffeine imprinted polymers. New Journal of Chemistry 2010,34, (4),686-692.
    113.张航航;黄小波;杨春华,分子印迹聚合物制备新进展.湖南农业科学2007,(6),59-60.
    114.蒋旭红;涂伟萍,分子印迹聚合物微球制备方法研究进展.材料导报2007,21,(12),52-55.
    115. Castell, O. K.; Allender, C. J.; Barrow, D. A., Novel biphasic separations utilising highly selective molecularly imprinted polymers as biorecognition solvent extraction agents. Biosensors and Bioelectronics 2006,73, (2),179-184.
    116. Ye, L.; Weiss, R.; Mosbach, K., Synthesis and characterization of molecularly imprinted microspheres. Macromolecules 2000,33, (22),8239-8245.
    117. Wang, J. F.; Cormack, P. A. G.; Sherrington, D. C.; Khoshdel, E.,.Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angewandte Chemie-International Edition 2003,42, (43),5336-5338.
    118. Yoshimatsu, K.; Reimhult, K.; Krozer, A.; Mosbach, K.; Sode, K.; Ye, L., Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization:The control of particle size suitable for different analytical applications. Analytica ChimicaActa 2007,584, (1), 112-121.
    119. Cacho, C.; Turiel, E.; Martin-Esteban, A.; Perez-Conde, C.; Camara, C., Characterisation and quality assessment of binding sites on a propazine-imprinted polymer prepared by precipitation polymerisation. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences 2004,802, (2),347-353.
    120.吴鹏举;杨俊;苏庆德;高芸;朱晓兰;蔡继宝,加速溶剂萃取快速洗脱印迹聚合物中的模板分子.分析化学2007,7,(4).
    121.张慧婷;叶贵标;李文明;潘灿平,分子印迹传感器技术在农药检测中的应用.农药学学报2006,8,(1),8-13.
    122.严守雷;高志贤;程义勇;房彦军;王红勇;周焕英,用于农药残留检测的分子印迹技术研究进 展.卫生研究2005,34,(2),227-230.
    123. Turiel, E.; Tadeo, J. L.; Martin-Esteban, A., Molecularly imprinted polymeric fibers for solid-phase microextraction. Analytical Chemistry 2007,79, (8),3099-3104.
    124. Muldoon, M. T.; Stanker, L. H., Molecularly imprinted solid phase extraction of atrazine from beef liver extracts. Analytical Chemistry 1997,69, (5),803-808.
    125. Pap, T.; Horvath, V.; Tolokan, A.; Horvai, G.; Sellergren, B., Effect of solvents on the selectivity of terbutylazine imprinted polymer sorbents used in solid-phase extraction. Journal ofChromatography A 2002,973, (1-2),1-12.
    126. Cacho, C.; Turiel, E.; Martin-Esteban, A.; Ayala, D.; Perez-Conde, C., Semi-covalent imprinted polymer using propazine methacrylate as template molecule for the clean-up of triazines in soil and vegetable samples. Journal of Chromatography A 2006,1114, (2),255-262.
    127. Djozan, D.; Ebrahimi, B., Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer:Application for GC and GC/MS screening of triazine herbicides in water, rice and onion. Analytica Chimica Acta 2008,616, (2),152-159.
    128. Hu, X.; Hu, Y.; Li, G., Preparation and characterization of prometryn molecularly imprinted solid-phase microextraction fibers. Analytical Letters 2007,40, (4),645-660.
    129. Hu, X.; Hu, Y.; Li, G., Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography. Journal of Chromatography A 2007,1147, (1),1-9.
    130. Zhang, Y.; Liu, R.; Hu, Y.; Li, G., Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples. Analytical Chemistry 2009,81, (3),967-976.
    131. Zhu, X.; Cai, J.; Yang, J.; Su, Q.; Gao, Y., Films coated with molecular imprinted polymers for the selective stir bar sorption extraction of monocrotophos. Journal of Chromatography A 2006,1131, (1), 37-44.
    132. Zhu, X.; Yang, J.; Su, Q.; Cai, J.; Gao, Y., Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples. Journal of Chromatography A 2005,1092, (2),161-169.
    133. Alizadeh, T.; Ganjali, M. R.; Nourozi, P.; Zare, M., Multivariate optimization of molecularly imprinted polymer solid-phase extraction applied to parathion determination in different water
    samples. Analytica Chimica Acta 2009,638, (2),154-161.
    134. Pereira, L.; Rath, S., Molecularly imprinted solid-phase extraction for the determination of fenitrothion in tomatoes. Analytical and Bioanalytical Chemistry 2009,393, (3),1063-1072.
    135. Lu, Q.; Chen, X.; Nie, L.; Luo, J.; Jiang, H.; Chen, L.; Hu, Q.; Du, S.; Zhang, Z., Tuning of the vinyl groups'spacing at surface of modified silica in preparation of high density imprinted layer-coated silica nanoparticles:A dispersive solid-phase extraction materials for chlorpyrifos. Talanta 2010,81, (3),959-966.
    136. Jenkins, A. L.; Yin, R.; Jensen, J. L., Molecularly imprinted polymer sensors for pesticide and insecticide detection in-water. The Analyst 2001,126, (6),798-802.
    137. Marx, S.; Zaltsman, A.; Turyan, I.; Mandler, D., Parathion Sensor Based on Molecularly Imprinted Sol-Gel Films. Analytical Chemistry 2004,76, (1),120-126.
    138. Xie, C.; Li, H.; Li, S.; Wu, J.; Zhang, Z., Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode. Analytical Chemistry 2010,82, (1),241-249.
    139. Eremin, S. A.; Smith, D. S., Fluorescence polarization immunoassays for pesticides. Combinatorial Chemistry & High Throughput Screening 2003,6, (3),257-266.
    140. Tang, K.; Chen, S.; Gu, X.;Wang, H.; Dai, J.; Tang, J., Preparation of molecularly imprinted solid phase extraction using bensulfuron-methyl imprinted polymer and clean-up for the sulfonylurea-herbicides in soybean. Analytica Chimica Acta 2008,614, (1),112-118.
    141. Tamayo, F. G.; Casillas, J. L.; Martin-Esteban, A., Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerisation and its application to the clean-up of fenuron in plant samples. Analytica ChimicaActa 2003,482, (2),165-173.
    142. Hantash, J.; Bartlett, A.; Oldfield, P.; Denes, G.; O'Rielly, R.; David, F., Application of an in-line imprinted polymer column in a potentiometric flow-injection chemical sensor to the determination of the carbamate pesticide carbaryl in complex biological matrices. Analytical and Bioanalytical Chemistry 2007,387, (1),351-357.
    143. Cacho, C.; Turiel, E.; Perez-Conde, C., Molecularly imprinted polymers:An analytical tool for the determination of benzimidazole compounds in water samples. Talanta 2009,78, (3),1029-1035.
    144. Anfossi, L.; Baggiani, C.; Baravalle, P.; Giovannoli, C.; Guzzella, L.; Pozzoni, F., Molecular recognition of the fungicide carbendazim by a molecular imprinted polymer obtained through a mimic template approach. Analytical Letters 2009,42, (5),807-820.
    145. Gong, J. L.; Gong, F. C.; Kuang, Y.; Zeng, G. M.; Shen, G. L.; Yu, R. Q., Capacitive chemical sensor for fenvalerate assay based on electropolymerized molecularly imprinted polymer as the sensitive layer. Analytical and Bioanalytical Chemistry 2004,379, (2),302-307.
    146. Vonderheide, A. P.; Boyd, B.; Ryberg, A.; Yilmaz, E.; Hieber, T. E.; Kauffman, P. E.; Garris, S. T.; Morgan, J. N., Analysis of permethrin isomers in composite diet samples by molecularly imprinted solid-phase extraction and isotope dilution gas chromatography-ion trap mass spectrometry. Journal of Chromatography A 2009,4, (1),45-71.
    147. Li, H.; Li, Y.; Cheng, J., Molecularly Imprinted Silica Nanospheres Embedded CdSe Quantum Dots for Highly Selective and Sensitive Optosensing of Pyrethroids. Chemistry of Materials 2010,22, (8), 2451-2457.
    148.杨挺;皇甫伟国;谢显传,农药氯氰菊酯的分子印迹聚合物的合成及其结合性能研究.食品科学2009,(9),85-88.
    149.刘英;王芳;谭天伟,分子模拟在分子印迹技术中的应用.化工学报2006,57,(10),2257-2262.
    150. Nicholls, I. A.; Andersson, H. S.; Charlton, C.; Henschel, H.; Karlsson, B. C. G.; Karlsson, J. G.; O'Mahony, J.; Rosengren, A. M.; Rosengren, K. J.; Wikman, S., Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosensors and Bioelectronics 2009,25, (3),543-552.
    151. Sanchez-Barragan, I.; Karim, K.; Costa-Fernandez, J. M.; Piletsky, S. A.; Sanz-Medel, A., A molecularly imprinted polymer for carbaryl determination in water. Sensors and Actuators B-Chemical 2007,123, (2),798-804.
    152. Sergeyeva, T. A.; Piletsky, S. A.; Brovko, A. A.; Slinchenko, E. A.; Sergeeva, L. M.; El'Skaya, A. V., Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection. Analytica ChimicaActa 1999,392, (2-3),105-111.
    153. Chapuis, F.; Pichon, V.; Lanza, F.; Sellergren, B.; Hennion, M. C., Retention mechanism of analytes in the solid-phase extraction process using molecularly imprinted polymers:Application to the extraction of triazines from complex matrices. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences 2004,804, (1),93-101.
    154. Chianella, I.; Lotierzo, M.; Piletsky, S. A.; Tothill, I. E.; Chen, B.; Karim, K.; Turner, A. P. F., Rational design of a polymer specific for microcystin-LR using a computational approach. Analytical
    Chemistry 2002,74, (6),1288-1293.
    155. Breton, F.; Rouillon, R.; Piletska, E. V.; Karim, K.; Guerreiro, A.; Chianella, I.; Piletsky, S. A., Virtual imprinting as a tool to design efficient MIPs for photosynthesis-inhibiting herbicides. Biosensors and Bioelectronics 2007,22, (9-10),1948-1954.
    156.徐汉虹主编,植物化学保护.中国农业出版社:北京,2007.
    157.陈海燕;王心如;肖继皋;胡刚;宋玲;王守林;何凤生,有机磷与拟除虫菊酯农药的拟雌激素活性研究.中华劳动卫生职业病杂志2001,19,(4),274-277.
    158. Perry, M. J.; Venners, S. A.; Barr, D. B.; Xu, X., Environmental pyrethroid and organophosphorus insecticide exposures and sperm concentration. Reproductive Toxicology 2007,23, (1),113-118.
    159.姚克文;王介东,拟除虫菊酯类农药的男(雄)性生殖毒性研究进展.中华男科学杂志2008,14,(3),268-271.
    160. Go, V.; Garey, J.; Wolff, M. S.; Pogo, B. G., Estrogenic potential of certain pyrethroid compounds in the MCF-7 human breast carcinoma cell line. Environmental Health Perspectives 1999,107, (3), 173-177.
    161. Karim, K.; Breton, F.; Rouillon, R.; Piletska, E. V.; Guerreiro, A.; Chianella, I.; Piletsky, S. A., How to find effective functional monomers for effective molecularly imprinted polymers? Advanced Drug Delivery Reviews 2005,57, (12),1795-1808.
    162. Farrington, K.; Magner, E.; Regan, F., Predicting the performance of molecularly imprinted polymers: Selective extraction of caffeine by molecularly imprinted solid phase extraction. Analytica Chimica Acta 2006,566,(1),60-68.
    163. Subrahmanyam, S.; Piletsky, S. A., Computational Design of Molecularly Imprinted Polymers. In Combinatorial Methods for Chemical and Biological Sensors, Potyrailo, R. A.; Mirsky, V. M., (Eds.) Springer Science+Business Media:2009, pp 135-172.
    164. Piletsky, S. A.; Karim, K.; Piletska, E. V.; Turner, A. P. F.; Day, C. J.; Freebairn, K. W.; Legge, C., Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach. The Analyst 2001,126,(10),1826-1830.
    165. Piletsky, S.; Piletska, E.; Karim, K.; Foster, G.; Legge, C.; Turner, A., Custom synthesis of molecular imprinted polymers for biotechnological application:Preparation of a polymer selective for tylosin. Analytica Chimica Acta 2004,504, (1), 123-130.
    166. Piletska, E. V.; Romero-Guerra, M.; Chianella, I.; Karim, K.; Turner, A. P. F.; Piletsky, S. A., Towards the development of multisensor for drugs of abuse based on molecular imprinted polymers. Analytica Chimica Acta 2005,542, (1),111-117.
    167. Khodadadian, M.; Ahmadi, F., Computer-assisted design and synthesis of molecularly imprinted polymers for selective extraction of acetazolamide from human plasma prior to its voltammetric determination. Talanta 2010,81, (4-5),1446-1453.
    168.王鸣华主编,拟除虫菊酯化学.中国农业科技出版社:北京,2004.
    169.刘长令,含氟农药的开发.有机氟工业1997,(4),10-21.
    170.夏平;梁诚,重要含氟农药及其中间体合成技术进展.有机氟工业2009,(2),16-23.
    171.蔡德玲;陈九星;欧晓明;黄明智;司士辉,含氟拟除虫菊酯类农药残留检测分析研究进展.农药研究与应用2008,12,(3),9-15.
    172. Ratnasooriya, W. D.; Ratnayake, S.; Jayatunga, Y., Effects of pyrethroid insecticide ICON (lambda cyhalothrin) on reproductive competence of male rats. Asian Journal ofAndrology 2002,4, (1), 35-42.
    173. Ratnasooriya, W. D.; Ratnayake, S.; Jayatunga, Y., Effects of IconOd, a pyrethroid insecticide on early pregnancy of rats. Human & Experimental Toxicology 2003,22, (10),523.
    174. Askin, A.; Comelekoglu, U.; Coskun Yilmaz, B.; Yalin, S.; Aktas, S.; Mazmanci, B.; Camlica, Y.; Celik, A., Neurotoxic actions of lambda-cyhalothrin on rat sciatic nerve. Fresenius Environmental Bulletin 2010,19, (1),100-107.
    175.胡静熠;王守林;赵人;杨俊;陈景衡;宋玲;王心如,氰戊菊酯对雄性大鼠生殖内分泌系统的影响.中华男科学杂志2002,8,(1),18-21.
    176. Xia, Y.; Bian, Q.; Xu, L.; Cheng, S.; Song, L.; Liu, J.; Wu, W.; Wang, S.; Wang, X., Genotoxic effects on human spermatozoa among pesticide factory workers exposed to fenvalerate. Toxicology 2004,203, (1-3),49-60.
    177.陈宗懋,我国茶叶生产中应尽快停止使用氰戊菊酯.中国茶叶1999,21,(6),6-7.
    178. Nicholls, I. A.; Adbo, K.; Andersson, H. S.; Andersson, P. O.; Ankarloo, J.; Hedin-Dahlstrom, J.; Jokela, P.; Karlsson, J. G.; Olofsson, L.; Rosengren, J.; Shoravi, S.; Svenson, J.; Wikman, S., Can we rationally design molecularly imprinted polymers?. Analytica Chimica Acta 2001,435, (1),9-18.
    179. Spivak, D. A., Optimization, evaluation, and characterization of molecularly imprinted polymers. Advanced Drug Delivery Reviews 2005,57, (12),1779-1794.
    180.Potyrailo, R. A.; Mirsky, V. M., Combinatorial and high-throughput development of sensing materials:
    The first 10 years. Chemical Reviews 2008,108, (2),770-813.
    181. Takeuchi, T.; Fukuma, D.; Matsui, J., Combinatorial molecular imprinting:An approach to synthetic polymer receptors. Analytical Chemistry 1999,71, (2),285-290.
    182. Lanza, F., Method for synthesis and screening of large groups of molecularly imprinted polymers. Analytical Chemistry 1999,71, (11),2092-2096.
    183. Sellergren, B.; Shea, K. J., Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers. Journal of Chromatography A 1993,635, (1),31-49.
    184. Cederfur, J.; Pei, Y.; Zihui, M.; Kempe, M., Synthesis and screening of a molecularly imprinted polymer library yargeted for penicillin G. Journal of Combinatorial Chemistry 2003,5, (1),67-72.
    185. Lai, J. P.; Niessner, R.; Knopp, D., Benzo[a]pyrene imprinted polymers:Synthesis, characterization and SPE application in water and coffee samples. Analytica Chimica Acta 2004,522, (2),137-144.
    186. Petcu, M.; Karlsson, J. G.; Whitcombe, M. J.; Nicholls, I. A., Probing the limits of molecular imprinting:Strategies with a template of limited size and functionality. Journal of Molecular Recognition 2009,22, (1),18-25.
    187. Lanza, F.; Hall, A. J.; Sellergren, B.; Bereczki, A.; Horvai, G.; Bayoudh, S.; Cormack, P. A. G.; Sherrington, D. C., Development of a semiautomated procedure for the synthesis and evaluation of molecularly imprinted polymers applied to the search for functional monomers for phenytoin and nifedipine. Analytica Chimica Acta 2001,804, (1),43-51.
    188. Ye, L.; Cormack, P. A. G.; Mosbach, K., Molecularly imprinted monodisperse microspheres for competitive radioassay. Analytical Communications 1999,36, (2),35-38.
    189. Feng, Q. Z.; Zhao, L. X.; Chu, B. L.; Yan, W.; Lin, J. M., Synthesis and binding site characteristics of 2,4,6-trichlorophenol-imprinted polymers. Analytical and Bioanalytical Chemistry 2008,392, (7-8), 1419-1429.
    190. Ye, L.; Mosbach, K., Molecularly imprinted microspheres as antibody binding mimics. Reactive and Functional Polymers 2001,48, (1-3),149-157.
    191. Li, W. H.; Stover, H. D. H., Porous monodisperse poly(divinylbenzene) microspheres by precipitation polymerization. Journal of Polymer Science, Part A:Polymer Chemistry 1998,36, (10),1543-1551.
    192. Wang, J.; Cormack, P. A. G.; Sherrington, D. C.; Khoshdel, E., Synthesis and characterization of micrometer-sized molecularly imprinted spherical polymer particulates prepared via precipitation polymerization. Pure and Applied Chemistry 2007,79, (9),1505-1519.
    193. Vendamme, R.; Eevers, W.; Kaneto, M.; Mlnamizaki, Y., Influence of polymer morphology on the capacity of molecularly imprinted resins to release or to retain their template. Polymer Journal 2009, 41,(12),1055-1066.
    194. Ellwanger, A.; Karlsson, L.; Owens, P. K.; Berggren, C.; Crecenzi, C.; Ensing, K.; Bayoudh, S.; Cormack, P.; Sherrington, D.; Sellergren, B., Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers. The Analyst 2001,126, (6),784-792.
    195. Venn, R.; Goody, R., Synthesis and properties of molecular imprints of darifenacin:The potential of molecular imprinting for bioanalysis. Chromatographia 1999,50, (7),407-414.
    196. Rashid, B. A.; Briggs, R. J.; Hay, J. N.; Stevenson, D., Preliminary evaluation of a molecular imprinted polymer for solid-phase extraction of tamoxifen. Analytical communications 1997,34, (10), 303-306.
    197.熊振湖;于万禄,分子印迹聚合物选择性识别水中痕量有毒有机污染物的研究进展.天津城市建设学院学报2009,15,(003),184-190.
    198. Stevenson, D., Molecular imprinted polymers for solid-phase extraction. TrAC Trends in Analytical Chemistry 1999,18, (3),154-158.
    199. Zander, A.; Findlay, P.; Renner, T.; Sellergren, B.; Swietlow, A., Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid-phase extraction. Anal. Chem 1998,70, (15),3304-3314.
    200. Kueh, A., Molecular imprinting of small, poorly functionalised organic compounds. University of Waikato, Hamilton, New Zealand, MSc 2008.
    201. Malitesta, C.; Picca, R. A.; Ciccarella, G.; Sgobba, V.; Brattoli, M., Synthesis of a molecularly imprinted polymer for dioxin. Sensors 2006,6, (8),915-924.
    202.唐波;马骊;王洪鉴,新型主体化合物在生物活性分子分析中的应用新进展.分析化学2002,30,(4),482-490.
    203.杨郁;郭良宏,超分子主体化合物环糊精应用于环境污染物分离分析的研究进展.科学通报2009,54,(2),128-137.
    204.肖学文;廖双泉;廖建和;杨晓红,环糊精聚合物的结构与应用.热带农业科学2004,24,(2),73-77.
    205. Orgovanyi, J.; Olah, E.; H-Otta, K.; Fenyvesi, E. V., Dissolution properties of cypermethrin/cyclodextrin complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry
    2009,63,(1-2),53-59.
    206.王洪波.具有农药活性的有机小分子与β-环糊精相互作用研究(硕士论文).华中师范大学,上海,2006.
    207.胡倩;刘维锦,氯菊酯-β-环糊精包合物的制备及表征.应用化工2009,38,(5),666-668.
    208.赵桦萍;肖忠峰;李松梅,羟丙基β-环糊精与三氟氯氰菊酯的包合作用研究.安徽农业群学2009,37,(20),9340-9340.
    209. Sreenivasan, K., Synthesis and evaluation of a beta cyclodextrin-based molecularly imprinted copolymer. Journal of Applied Polymer Science 1998,70, (1),15-18.
    210. Liu, H.; Liu, C.; Yang, X.; Zeng, S.; Xiong, Y.; Xu, W., Uniformly sized β-cyclodextrin molecularly imprinted microspheres prepared by a novel surface imprinting technique for ursolic acid. Analytica Chimica Acta 2008,628, (1),87-94.
    211. Xu, Z.; Xu, L.; Kuang, D.; Zhang, F.; Wang, J., Exploiting β-cyclodextrin as functional monomer in molecular imprinting for achieving recognition in aqueous media. Materials Science and Engineering C 2008,28, (8),1516-1521.
    212. Piletsky, S. A.; Andersson, H. S.; Nicholls, I. A., On.the role of electrostatic interactions in the enantioselective recognition of phenylalanine in molecularly imprinted polymers incorporating β-cyclodextrin. Polymer Journal 2005,37, (10),793-796.
    213. Hishiya, T.; Shibata, M.; Kakazu, M.; Asanuma, H.; Komiyama, M., Molecularly imprinted cyclodextrins as selective receptors for steroids. Macromolecules 1999,32, (7),2265-2269.
    214. Yang, Y.; Long, Y.; Cao, Q.; Li, K.; Liu, F., Molecularly imprinted polymer using β-cyclodextrin as functional monomer for the efficient recognition of bilirubin. Analytica Chimica Acta 2008,606, (1), 92-97.
    215.彭光怀;张小联;胡珊玲;邱承洲;赖华,聚环糊精对对硝基苯酚的吸附和脱附性能研究.昆明理工大学学报:理工版2007,32,(1),15-18.
    216.王永健;张政朴,环糊精聚合物的高分子效应.化学进展2000,12,(3),318-324.
    217. Ng, S. M.; Narayanaswamy, R., Molecularly imprinted β-cyclodextrin polymer as potential optical receptor for the detection of organic compound. Sensors and Actuators, B:Chemical 2009,139, (1), 156-165.
    218. Xu, Z.; Kuang, D.; Feng, Y.; Zhang, F., Combination of hydrophobic effect and electrostatic interaction in imprinting for achieving efficient recognition in aqueous media. Carbohydrate Polymers 2010,79, (3),642-647.
    219. Piletsky, S. A.; Andersson, H. S.; Nicholls, I. A., The rational use of hydrophobic effect-based recognition in molecularly imprinted polymers. Journal of Molecular Recognition 1998,11, (1-6), 94-97.
    220. Hsieh, R. Y.; Tsai, H. A.; Syu, M. J., Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums. Biomaterials 2006,27, (9),2083-2089.
    221. Tsai, H. A.; Syu, M. J., Synthesis of creatinine-imprinted poly (β-cyclodextrin) for the specific binding of creatinine. Biomaterials 2005,26, (15),2759-2766.
    222. Asanuma, H.; Kakazu, M.; Shibata, M.; Hishiya, T.; Komiyama, M., Synthesis of molecularly imprinted polymer of P-cyclodextrin for the efficient recognition of cholesterol. Supramolecular Science 1998,5, (3-4),417-421.
    223. Hishiya, T.; Asanuma, H.; Komiyama, M., Spectroscopic anatomy of molecular-imprinting of cyclodextrin. Evidence for preferential formation of ordered cyclodextrin assemblies. Journal of the American Chemical Society 2002,124, (4),570-575.
    224. Hall, A. J.; Lanza-Sellergren, F.; Manesiotis, P.; Sellergren, B., Non-covalent imprinting of phosphorous esters. Analytica Chimica Acta 2005,538, (1-2),9-14.
    225.史瑞雪;郭成海,分子印迹聚合物选择性机理的研究.化学传感器2002,22,(3),49-57.
    226. Simon, R.; Collins, M. E.; Spivak, D. A., Shape selectivity versus functional group pre-organization in molecularly imprinted polymers. Analytica Chimica Acta Papers presented at the 4th International Workshop on Molecularly Imprinted polymers-MIP 2006 2007,591, (1),7-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700