用户名: 密码: 验证码:
炭材料担载的银、铂基催化剂上一氧化碳选择氧化反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)以纯氢或由甲醇、天然气等碳氢化合物重整得到的氢为燃料,操作温度低(60-80oC)而受到了广泛的关注。但是Pt电极很容易被重整气中微量的CO所毒化,因此低温选择氧化消除富氢中的CO对PEMFC的应用十分重要。
     本论文重点研究了炭材料担载的Ag、PtAg以及PtFeNi催化剂上CO选择氧化反应的性能,主要研究内容和实验结果包括:(1)系统考察了椰壳基活性炭(AC)载体的孔结构、表面化学性质以及氢气活化对Ag/AC催化剂上反应性能的影响。结果表明高的中孔比表面积有利于提高Ag粒子的分散度,低温达到较高的CO最高转化率;高的微孔比表面积使生成的Ag粒子很大,高温达到较低的CO最高转化率。丰富的表面含氧基团一方面使Ag粒子尺寸呈双峰分布,另一方面又有利于小粒子的生成,催化剂在低温达到较低的CO最高转化率。氢气处理后,AC上可以形成超氧物种;银的存在促进了超氧物种的形成;银存在时超氧物种可以与CO反应,高温活化提高了AC生成超氧物种的能力,从而提高了Ag/AC催化剂的催化性能。(2)研究了碳黑担载的PtAg双金属催化剂的催化性能和结构,并将二者进行关联。结果表明Pt、Ag没有形成明显的合金相,但是二者具有一定的相互作用,从而显示出明显的协同效应。(3)详细的研究了不同炭材料担载的PtFeNi催化剂的催化性能以及Fe和/或Ni对Pt催化剂的促进作用。研究发现含有铁、镍的多壁碳纳米管担载的铂催化剂具有高活性、高选择性、高稳定性并且在室温可以完全消除CO。Fe和/或Ni对Pt催化剂有明显的促进作用;炭材料的电阻率越小则其对应催化剂的催化性能越好。
Proton exchange membrane fuel cells (PEMFC), operating at relatively low temperatures (e.g. 60-80oC) with pure hydrogen or reformed gas as fuels, have attracted much attention as a potential power source of electric vehicles. However, the Pt anode catalysts can be seriously poisoned by traces of CO in the reformed gas, which has motivated the search of high efficient catalysts for the CO preferential oxidation in excess H2 at low temperature.
     The present work was focused on the catalytic properties of carbon materials supported Ag, PtAg, PtFeNi catalysts for CO selective oxidation in H2 feed gas and three parts were included: (1) The effects of textural properties, surface chemistry of activated carbon supports and the roles of hydrogen activation on the activities of Ag/AC catalysts were investigated. The following conclusions can be drawn (a) large amounts of mesopore tend to increase the dispersions of Ag particles, thus, giving higher maximum CO conversion at low temperature; (b) there is maybe negative effect of microporous structure on the dispersions of Ag particles and catalytic performance; (c) rich surface functional groups on one hand make size distribution of Ag particles bimodal, but on the other hand promote the formation of very fine Ag particles, leading to low maximum CO conversion at low temperature; (d) after pretreatment with H2, AC can form superoxide species, O2-; the existence of Ag promotes the formation of superoxide species. With silver, superoxide species can react with CO, the higher pre-treatment temperaturesenhance the formation ability of superoxide species over AC support, leading to better catalytic performance. (2) The catalytic properties and catalyst structure of carbon black supported PtAg bimetal catalysts were investigated. It is found that no obvious PtAg alloy has been observed; however, there maybe exists some interaction between Pt and Ag, leading to evidently synergistic effects for PtAg bimetal catalysts. (3) The Fe and/or Ni promotion and catalytic properties of different carbon materials supported PtFeNi catalysts have been studied in details. It is found that the multiwall carbon nanotubes with Fe and Ni catalyst residues supported Pt catalyst is able to remove all CO at room temperature, with high activity, high selectivity and high stability. The promotion effects of Fe and/or Ni were observed, and the good electron-conductivity of carbon supports played an important role for the good catalytic properties.
引文
[1] 衣宝廉,《燃料电池——原理·技术·应用》. 化学工业出版社, 2003.
    [2] 李瑛, 王林山,《燃料电池》. 冶金工业出版社, 2000.
    [3] K.V. Kordesch, J.C.T. Oliveira, Fuel Cells, Ulmann’s Encyclopedia of Industrial Chemistry, Fifth Edition, VCH Weinheim, Germany, 1996, A12: 55
    [4] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources, 2003, 114: 32-53.
    [5] J.H. Wee, Applications of proton exchange membrane fuel cell systems. Renewable and Sustainable Energy Reviews.
    [6] 戴贵平, 刘敏, 王茂章, 成会明, 纳米碳管电化学储氢的研究进展. 新型炭材料, 2002, 17(3): 70-74.
    [7] 朱申敏, 燃料电池储氢材料的研究进展. 上海氯碱化工, 2004, 4: 31-33.
    [8] K. Atkinson, S. Roth, M. Hirscher, W. Grünwald, Carbon nanostructures: An efficient hydrogen storage medium for fuel cells? Fuel Cells Bulletin, 38:9-12.
    [9] 亓爱笃, 甲醇氧化重整制氢过程的研究. 博士论文, 中国科学院大连化学物理研究所, 1999.
    [10] A.F. Ghenciu, Current opinion in solid and material science. 2002, 6: 389-399.
    [11] S. Ahmed, R. Kumar, M. Krumpelt, Fuel processing for fuel cell power systems. Fuel Cells Bulletin, 12: 4-7.
    [12] Liwei Pan, Shudong Wang, Methanol steam reforming in a compact plate-finreformer for fuel-cell systems. International Journal of Hydrogen Energy, 2005, 30: 937-979.
    [13] R.A. Lemons. Fuel cells for transportation. J Power Source 1990, 29: 251-264.
    [14] M.S.Wilson, T.E. Springer, Recent Achievements in Polymer Electrolyte Fuel Cell (PEFC) Research at Los Alamos National Laboratory, IECEC 1991-26th Intersociety Energy Conversion Engineering Conference, Bosteon, Aug.4-9 ,1991.
    [15] M.Waidhas, Research and Development of Low Temperature Fuel Cell at Siemens, 1994- Fuel Cell Seminar, San Diego, Nov./Dev., 1994.
    [16] S.H. Chan, S.K. Goh and S.P. Jiang. A mathematical model of polymer electrolyte fuel cell with anode CO kinetics. Electrochimica Acta, 2003, 48: 1905-1919.
    [17] S. Gottesfeld, J. Pafford, A new approach to the problem of carbon monoxide poisoning in fuel cell operating at low temperatures. J. Electrochemical Society, 1980, 135: 2651-2652.
    [18] H.A. Gasteiger, N. Markovic, P.N. Ross Jr, E.J. Cairns, CO electrooxidation on well-characterized Pt-Ru alloys. Journal of Physical Chemistry, 1994, 98: 617-625.
    [19] B.N. Grgur, G. Zhuang, N.M. Markovic, P.N. Ross Jr, Electrooxidation of
    H_2/CO mixtures on a well-characterized Pt75Mo25 alloy surface. Journal of Physical Chemistry B, 1997, 101: 3910-3913.
    [20] K.L. Ley, R. Liu, C. Pu, Q.B. Fan, N. Leyarovska, C. Segre, E.S. Smotkin, Methanol oxidation on single-phase Pt-Ru-Os ternary alloys. Journal of Electrochemical Society, 1997, 144(5): 1543-1548.
    [21] K. Wang, H..A. Gasteriger, N.M. Markovic, P.N. Ross Jr, On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn carbon alloy versus Pt-Ru alloy surfaces. Electrochimica Acta., 1996, 41(16): 2587-2593.
    [22] S. Aricò, P. Cretì, N. Gioradano, V. Antonucci, Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt-Ru-Sn-W/C anode. Journal of Applied Electrochemistry, 1996, 26: 959-967.
    [23] Lima, C. Coutanceau, J.M. Léger, C. Lamy, Investigation of ternary catalysts for methanol electrooxidation. Journal of Applied Electrochemistry, 2001, 31: 379-386.
    [24] M. Goetz, H. Wendt, Composite electrocatalysts for anodic methanol and methanol-reformate oxidation. Journal of Applied Electrochemistry, 2001, 31: 811-817.
    [25] H.M. Yu, Zh.J. Hou, B.L. Yi, Zh.Y. Lin, Composite anode for CO tolerance proton exchange membrane fuel cells. Journal of Power Sources, 2002, 105: 52-57.
    [26] W.H.J. Hogarth , J.C. Diniz da Costa, G.Q. Lu (MAX), Solid acid membranes for high temperature(>140oC) proton exchange membrane fuel cells. Journal of Power Sources, 2005, 142: 223-237.
    [27] S. Uemiya, Y. Kude, K. Sugino, N. Sato, T. Matsuda, E. Kikuchi. A Palladium/Porous-Glass Composite Membrane for Hydrogen Separation. Chem. Lett. 1988, 17: 1687-1690.
    [28] K.Sekizawa, S. Yano, K.Eguchi, H.Arai. Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides. Appl.Catal. A: General 1998, 169: 291-297. [29] K. Eguchi, S. Yano, T. Utake, K. Sekizawa, and H. Arai. Removal of CO from methanol reforming gas by low temperature shift reaction. Stud. Surf. Catal., 1999, 121: 445-448. [30] V. Ponec, New trends in CO activation. Amsterdam: Elsevier. Stud. Surf. Sci. Catal. 1991, 64: 118 [31] M. J. Kahlich, H. A. Gasteiger, R. J. Behm, Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3. J. Catal. 1997, 171: 93-105. [32] M. Brown, A. Green. Treatment of gases. US Patent 3088919, 1963. [33] J.G.E. Cohn. Process for selectively removing carbon monoxide from hydrogen-containing gases. U.S. Patent 3216783, 1965. [34] J.C. Bonacci. Ammonia manufacturing process. U.S. Patent 4238468, 1980. [35] N.E. Vanderborgh, C.A. Spirio, and J.R. Huff, Extended Abstracts of the international Seminar on Fuel Cell Technology and Applications, The Hague, The Netherlands, Oct. 1987 P.253 [36] C. Plog, W. Maunz, T. Stengel, R. Andorf, EU Patent, 0650923 A1 (issured 3/5/1995) [37] S. Aoyama, EU Patent, 0743694 A1 (issured 20/11/1996) [38] S.H. Oh, R.M. Sinkevitch, Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation. J. Catal. 1993, 142: 254-262. [39] C. Plog, W. Maunz, T. Stengel, R. Andorf, European Patent 0650923, A1, May 3 (1995) [40] A. Manasilp, E.E. Gulari. Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Appl. Catal. B 2002, 37: 17-25. [41] D.H. Kim, M. S. Lim. Kinetics of selective CO oxidation in hydrogen-richmixtures on Pt/alumina catalysts. Appl. Catal. A: General 2002, 224: 27-38.
    [42] M.M. Schubert, H.A. Gasteiger, R.J. Behm. Surface formates as side products in the selective CO oxidation on Pt/γ-Al2O3. J. Catal. 1997, 172: 256-258.
    [43] I.H. Son, M. Shamsuzzoha, A.M. Lane. Promotion of Pt/γ-Al2O3 by new pretreatment for low-temperature preferential oxidation of CO in H2 for PEM fuel cells. J. Catal. 2002, 210: 460-465.
    [44] M. Echigo, T. Tabata. A study of CO removal on an activated Ru catalyst for polymer electrolyte fuel cell applications. Appl. Catal. A 2003, 251: 157-166.
    [45] M. Haruta. Catalysis of gold nanoparticles deposited on metal oxides. Cattech 2002, 6 (3): 102-115.
    [46] M. Haruta, A. Ueda, S. Tsubota, R.M. Torres Sanchez. Low-temperature catalytic combustion of methanol and its decomposed derivatives over supported gold catalysts. Catal. Today, 1996, 29: 443-447.
    [47] S.D. Gardner, G.B. Hoflund, B.T. Upchurch, D.R. Schryer, E.J. Kielin, J. Schryer. Comparison of the performance characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation. J. Catal. 1991, 129: 114-120.
    [48] W. Epling, G.B. Hoflund, J.F. Weaver. Surface characterization study of Au/-Fe2O3 and Au/Co3O4 low-temperature CO oxidation catalysts. J. Phys. Chem. 1996, 100: 9929-9934.
    [49] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115: 301-309.
    [50] A. Wolf, F. Schuth. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl. Catal. A 2002, 226: 1-13.
    [51] H.-S. Oh, J.H. Yang, C.K. Costello, Y.M. Wang, S.R. Bare, H.H. Kung and M.C. Kung. Selective catalytic oxidation of CO: effect of chloride onsupported Au catalysts. J. Catal., 2002, 210: 375-386.
    [52] M. Haruta. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36: 153-166.
    [53] Y.J. Chen and Chuin-tih Yeh. Deposition of highly dispersed gold on alumina support. J. Catal., 2001, 200: 59-68.
    [54] M. Haruta., S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet and B. Delmon. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal., 1993, 144: 175-192.
    [55] M. Valden, X. Lai, and D.W. Goodman. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281: 1647-1650.
    [56] M. Mavrikakis, P. Stoltze, J.K. N?rskov. Making gold less noble. Catal. Lett., 2000, 64: 101-106.
    [57] C.K. Costello, M.C. Kung, H.-S. Oh, Y. Wang and H.H. Kung. Nature of the active site for CO oxidation on highly active Au/γ-Al2O3. Appl. Catal. A, 2002, 232: 159-168.
    [58] F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa and M. Haruta. Au/TiO2 nanosized samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. J. Catal., 2001, 202: 256-267.
    [59] J.L. Margitfalvi, A. Fási, M. Heged s, F. Lónyi, S. G b?l?s and N. Bogdanchikova. Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation. Catal. Today, 2002, 72: 157-169.
    [60] H.H. Kung, M.C. Kung and C.K. Costello. Supported Au catalysts for low temperature CO oxidation. J. Catal. 2003, 216: 425-432.
    [61] M.M. Schubert, V.Plzak, J. Garche, R. J.Behm. Different oxides supported Au catalysts for low-temperature CO oxidation. Catal. Lett. 2001, 76: 143-150.
    [62] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet and B. Delmon. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal., 1993, 144: 175-192.
    [63] J.D. Grunwaldt, M. Maciejewski, O.S. Becker, P. Fabrizioli and A. Baiker. Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation. J. Catal., 1999, 186: 458-469.
    [64] E.D. Park and J.S. Lee. Effects of pretreatment conditions on CO oxidation over supported Au catalysts. J. Catal., 1999, 186: 1-11.
    [65] A.M. Visco, A. Donato, C. Milone. Catalytic oxidation of carbon monoxide over Au/Fe2O3 preparations. Reac. Kinet. Catal. Lett., 1997, 61: 219-226.
    [66] Y.S. Su, M.Y. Lee, S.D. Lin. XPS and DRS of Au/TiO2 catalysts: effect of pretreatment. Catal. Lett., 1999, 57: 49-53.
    [67] N.M. Gupta and A.K. Tripathi. Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO+O2 over Fe2O3, Au/Fe2O3, and polycrystalline gold catalysts as a function of reduction treatment. J. Catal., 1999, 187: 343-347.
    [68] 郝郑平,安立敦,王宏立。负载型金催化剂催化 CO 氧化的性能(II)。分子催化,1998, 12:63-66.
    [69] M. Haruta., S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet and B. Delmon. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal., 1993, 144: 175-192.
    [70] S.K. Tanielyan and R.L. Augustine. Effect of catalyst pretreatment on the oxidation of carbon monoxide over coprecipitated gold catalysts. Appl. Catal. A, 1992, 85: 73-87.
    [71] D.A.H. Cunningham, W. Vogel, M. Haruta. Negative activation energies in CO oxidation over an icosahedral Au / Mg(OH)2 catalyst. Catal. Lett., 1999, 63: 43-47.
    [72] H. Liu, A.I. Kozlov, A.P. Kozlova, T. Shido and Y. Iwasawa. Active oxygenspecies and reaction mechanism for low-temperature CO oxidation on an Fe_2O_3-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated iron hydroxide. Phys. Chem. Chem. Phys., 1999, 1: 2851-2561.
    [73] W-H. Cheng. Selective CO oxidation in presence of H_2 over Cu/Cr/Ba catalysts. React. Kinet. Catal. Lett. 1996, 58: 329-334.
    [74] W. Liu, M. Flytzani-Stefanopoulos. Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts : I. catalyst composition and activity. J. Catal. 1995, 153: 304-316.
    [75] W.P. Dow, T.J. Huang. Yttria-stabilized zirconia supported copper oxide catalyst: II. Effect of oxygen vacancy of support on catalytic activity for CO oxidation. J. Catal. 1996, 160: 171-182.
    [76] J.B. Wang, W.H. Shih, T.J. Huang. Study of Sm_2O_3-doped CeO_2/Al_2O_3-supported copper catalyst for CO oxidation. Appl. Catal. A 2000, 203: 191-199.
    [77] G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H. K. Matralis. A comparative study of Pt/γ-Al_2O_3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catal. Today 2002, 75: 157-167.
    [78] S. Hocevar, J. Batista, H. Matralis, T. Ioannides, G. Avgouropoulos, Slovenian Patent Application SI P-200000032/16-02-2000, PCT Application No. PCT/SI01/00005,09-02-2001
    [79] M. Luo, Y. Zhong, X. Yuan, X. Zheng. TPR and TPD studies of CuO/CeO_2 catalysts for low temperature CO oxidation. Appl. Catal. A: General 1997, 162: 121-131.
    [80] A. Martinez-Arias, J. Soria, R. Cataluna, J.C. Conesa, V. Cortes Corberan. Influence of ceria dispersion on the catalytic performance of Cu/(CeO2)/Al_2O_3 catalysts for the CO oxidation reaction. Stud. Surf. Sci.Catal. 1998, 116: 591-600.
    [81] C.B. Choudhary, H.S. Maiti, E.C. Subbarao, Solid Electrolytes and Their Applications, Plenum Press, New York, 1980, P.47
    [82] J.E. Kubsh, J.S. Pieck, N.D. Spencer, Catalysis and Automotive Pollution Control II, Elsevier, Amsterdam, 1991, P.125
    [83] T.H. Etsell, S.N. Flengas. Electrical properties of solid oxide electrolytes. Chem. Rev. 1970, 70: 339-376.
    [84] T. Teng, H. Sakurai, A. Ueda, T. Kobayashi. Oxidative removal of CO contained in hydrogen by using metal oxide catalysts. Inter. J. of hydrogen energy 1999, 24: 355-358.
    [85] E. Gulari, C. Güldür, S. Srivannavit, S. Osuwan. CO oxidation by silver cobalt composite oxide. Appl. Catal. A, 1999, 182: 147-163.
    [86] C. Güldür, F. Balikci. Selective carbon monoxide oxidation over Ag-based composite oxides. Inter. J of hydrogen energy 2002, 27: 219-224.
    [87] 曲振平,程谟杰,石川,包信和。银负载量及反应气预处理对银催化剂上氢气中 CO 选择氧化反应的影响。催化学报,2002,23:460-464。
    [88] Z.P. Qu., W.X. Huang, S.T. Zhou, H. Zheng, X.M. Liu, M.J. Cheng, X.H. Bao. Enhancement of the catalytic performance of supported-metal catalysts by pretreatment of the support. J. Catal. 2005, 234: 33-36.
    [89] Z.P. Qu, M.J. Cheng, X.L. Dong, X.H. Bao. CO selective oxidation in H2-rich gas over Ag nanoparticles—effect of oxygen treatment temperature on the activity of silver particles mechanically mixed with SiO2. Catal. Today 2004, 93-95: 247-255.
    [90] Z.P. Qu., W.X. Huang, M.J. Cheng, X.H. Bao. Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation. J. Phys. Chem. B 2005, 109: 15842-15848.
    [91] Z.P. Qu, M.J. Cheng, W. X. Huang, X. H. Bao. Formation of subsurface oxygen species and its high activity toward CO oxidation over silvercatalysts. J. Catal. 2005, 229: 446-458.
    [92] M. Watanabe, H. Uchida, H. Igarashi, M. Suzuki. Pt catalyst supported on zeolite for selective oxidation of CO in reformed gases. Chem. Lett. 1995, 24: 21-23.
    [93] H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, M. Watanabe. Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite. Appl. Catal. A:General 1997, 159: 159-169.
    [94] K.I. Sotowa, Y. Hasegawa, K. Kusakabe, S. Morooka. Enhancement of CO oxidation by use of H2-selective membranes impregnated with noble-metal catalysts. Inter. J of hydrogen energy 2002, 27: 339-346.
    [95] Y. Hasegawa, A. Ueda, K. Kusakabe, S. Morooka. Oxidation of CO in hydrogen-rich gas using a novel membrane combined with a microporous SiO2 layer and a metal-loaded γ-Al_2O_3 layer. Appl. Catal. A 2002, 225: 109-115.
    [96] P.V. Snytnikov, V.A. Sobyanin, V.D. Belyaev, P.G. Tsyrulnikov, N.B. Shitova, D.A. Shlyapin. Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd-supported catalysts. App. Catal. A : General 2003, 239: 149-156.
    [97] S. ?zkara, A.E. Aksoylu. Selective low temperature carbon monoxide oxidation in H2-rich gas streams over activated carbon supported catalysts. Appl. Catal. A 2003, 251: 75-83.
    [98] H.A. Gasteiger, N.M. Markovic, P.N. Ross. Structural effects in electrocatalysis: Electrooxidation of carbon monoxide on Pt3Sn single-crystal alloy surfaces. Catal. Lett. 1996, 36: 1-8.
    [99] M.M. Schubert, M.J. Kahlich, G. Feldmeyer, M. Hüttner, S. Hackenberg, H.A Gasteiger, R.J. Behm. Bimetallic PtSn catalyst for selective CO oxidation in H2-rich gases at low temperature. Phys. Chem. Chem. Phys. 2001, 3:1123-1131.
    [100] E.D. Park, J.S. Lee, Effect of surface treatment of the support on CO oxidation over carbon-supported Wacker-type catalysts. J Catal 2000, 193: 5-15.
    [101] D.A. Bulushev, I. Yuranov, E.I. Suvorova, P.A. Buffat, L. Kiwi-Minsker, Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation. J Catal 2004, 224: 8-17.
    [102] D.A. Bulushev, L. Kiwi-Minsker, I. Yuranov, E.I. Suvorova, P.A. Buffat, A. Renken, Structured Au/FeOχ/C catalysts for low-temperature CO oxidation. J Catal 2002, 210: 149-159.
    [103] A.G. Whittaker, G.M. Wolten. Carbon: A suggested new hexagonal crystal form. Science, 1972, 178: 54-56.
    [104] 成会明,纳米碳管制备、结构、物性及应用,化学工业出版社,2002。
    [105] A. Linares-Solano, F. Rodriguez Reinoso, C. Salinas-Martinez de Lecea O. P. Mahajan, P. L. Walker, Jr. Platinum catalysts supported on graphitized carbon black - I : Characterization of the platinum by titrations and differential calorimetry. Carbon, 1982, 20: 177-184.
    [106] A. Martín-Gullón, C. Prado-Burguete, F. Rodríguez-Reinoso. Effect of carbon properties on the preparation and activity of carbon-supported molybdenum sulfide catalysts. Carbon, 1993, 31: 1099-1105.
    [107] I. Rodríguez-Ramos, A. Guerrero-Ruiz. Sulfur-resistant carbon-supported iridium catalysts: Cyclohexane dehydrogenation and benzene hydrogenation. J. Catal., 1992, 135: 458-466.
    [108] V.K. Jones, L.R. Neubauer, C.H. Bartholomew. Effects of crystallite size and support on the carbon monoxide hydrogenation activity/selectivity properties of iron/carbon. J Phys. Chem., 1986, 90: 4832-4839.
    [109] L.R. Radovic, F. Rodriguez-Reinoso. Chemistry and physics of carbon, Vol. 25, ed. P. A. Thrower. Marcel Dekker, New York, 1997. p243.
    [110] F. Rodriguez-Reinoso. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36: 159-175.
    [111] C.A. Leon, L.R. Radovic. Chemistry and physics of carbon, ed. P. A. Thrower. Marcel Dekker, New York, 1994. p213.
    [112] V. Machek, J. Hanika, K. Sporka, V. Ruzicka, J. Kunz. Relation between the distribution of platinum, its dispersion, and activity of catalysis prepared by impregnation of activated carbon with chloroplatinic acid solutions. Coll. Czech. Chem. Commu., 1981, 46: 3270-3274.
    [113] F. J. Derbyshire, V. H. J. de Beer, G. M. K. Abotsi, A. W. Scaroni, J. M. Solar and D. J. Skrovanek. The influence of surface functionality on the activity of carbon-supported catalysts. Appl. Catal., 1986, 27: 117-131.
    [114] C. Prado-Burguete, A. Linares-Solano, F. Rodríguez-Reinoso, C. Salinas-Martínez de Lecea. The effect of oxygen surface groups of the support on platinum dispersion in Pt/carbon catalysts. J. Catal., 1989, 115: 98-106.
    [115] C. Prado-Burguete, A. Linares-Solano, F. Rodriguez-Reinoso, C. Salinas-Martinez De Lecea. Effect of carbon support and mean Pt particle size on hydrogen chemisorption by carbon-supported Pt catalysts. J. Catal., 1991, 128: 397-404.
    [116] K.T. Kim, J.S. Chung, K.H. Lee, Y.G. Kim, J.Y. Sung. Preparation of carbon-supported platinum catalysts: Adsorption mechanism of anionic platinum precursor onto carbon support. Carbon, 1992, 30: 467-475.
    [117] F. Coloma, A. Sepulveda-Escribano, J.L.G. Fierro, F. Rodriguez-Reinoso. Preparation of platinum supported on pregraphitized carbon blacks. Langmuire, 1994, 10: 750-755.
    [118] H.E. Van Dam, H. Van Bekkum. Preparation of platinum on activated carbon. J. Catal., 1991, 131: 335-349.
    [119] J.V. Zoval, J. Lee, S. Gorer, R.M. Penner. Electrochemical preparation ofplatinum nano crystallites with selectively on basal plane of oriented graphite surfaces. J. Phys. Chem. B, 1998, 102: 1166-1175.
    [120] M.A. Fraga, E. Jordao, M.J. Mendes, M.M.A. Freitas, J.L. Faria, J.L. Figueiredo. Properties of carbon-supported platinum catalysts: Role of carbon surface sites. J. Catal., 2002, 209: 355-364.
    [121] S.R. de Miguel, O.A. Scelza, M.C. Roman-Martinez, C. Salinas-Martinez de Lecea, D. Cazorla-Amoros, A. Linares-Solano. States of Pt in Pt/C caralyst precursors after impregnation, drying and reduction steps. Appl. Catal. A, 1998, 170: 93-103.
    [122] A. Sepúlveda-Escribano, F. Coloma, F. Rodríguez-Reinoso. Platinum catalysts supported on carbon blacks with different surface chemical properties. Appl. Catal. A, 1998, 173: 247-257.
    [123] Y. Yamamoto, T. Matsuzaki, K. Ohdan, Y. Okamoto. Structure and electronic state of PdCl2-CuCl2 catalysts supported on activated carbon. J. Catal., 1996, 161: 577-586.
    [124] A. Dekanski, J. Stevanovic, R. Stevanovic, V.M. Jovanovic. Glassy carbon electrodes II Modification by immersion in AgNO3. Carbon, 2001, 39: 1207-1213.
    [125] S.X. Chen, H.M. Zeng. Improvement of the reduction capacity of activated carbon fiber. Carbon, 2003, 41: 1265-1271.
    [126] H.J. Jung, P. L. Walker, Jr., A. Vannice. CO hydrogenation over well-dispersed carbon-supported iron catalysts. J. Catal., 1982, 75: 416-422.
    [127] K.Y. Choo, M.T. Leu. Determination of molecular oxygen and molecular oxygen yields in atomic chlorine + molecular oxygen and atomic chlorine ozone reactions. J. Phys. Chem., 1986, 89: 4832-4837.
    [128] A. Guerrero-Ruiz, A. Sepúlveda-Escribano, I. Rodríguez-Ramos. Carbon monoxide hydrogenation over carbon supported cobalt or ruthenium catalysts. Promoting effects of magnesium, vanadium and cerium oxides. Appl. Catal.A, 1994, 120: 71-83.
    [129] S.M. da Silva, J. Phillips. Hydroisomerization probe of the catalytic and structural behavior of iron—rhodium particles supported on refractory oxide supports. J. Mol. Catal., 1994, 94: 97-116.
    [130] W.C. Lu, H. Chang, J. Phillips. Novel multimetallic hydroisomerization catalysts. J. Catal., 1994, 146: 608-612.
    [131] A.W. Scaroni, R.G. Jenkins, P.L. Walker, Jr. Coke deposition on Co-Mo/Al2O3 and Co-Mo/C catalysts. Appl. Catal., 1985, 14: 173-183.
    [1] 李文震,直接甲醇燃料电池阴极碳载铂基催化剂的研究,中国科学院大连化学物理研究所博士论文,2003。
    [2] 马丁,甲烷芳构化催化剂的构效关系,中国科学院大连化学物理研究所博士论文,2001。
    [1] P.A.Wright, S. Natarajan, J.M. Thomas, P.L. Gai-Boyes. Mixed-metal amporphous and spinel phase oxidation catalysts: Characterization by X-ray absorption, electron microscopy, and catalytic studies of systems containing copper, cobalt, and manganese. Chem. Mater., 1992, 4: 1053-1065.
    [2] S.D. Gardner, G.B. Hoflund, B.T. Upchurch, D.R. Schryer, E.J. Kielin, J. Schryer. Comparison of the performance characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation. J. Catal., 1991, 129: 114-120.
    [3] S.D.Gardner, G..B. Hoflund, D.R. Schryer, J. Schryer, B.T. Upchurch, E.J. Kielin. Catalytic behaviour of noble metal/reducible oxide materials for low-temperature carbon monoxide oxidation. 1.Comparison of catalyst performance. Langmuir, 1991, 7: 2135-2139.
    [4] J.P. Breen, J.R.H. Ross. Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts. Catal. Today, 1999, 51: 521-533.
    [5] B. Rohland, V. Plzak. The PEMFC-integrated CO oxidation - a novel method of simplifying the fuel cell plant. J. Power Sources, 1999, 84: 183-186.
    [6] S.H. Oh, R.M. Sinkevitch. Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation. J. Catal., 1993, 142: 254-262.
    [7] M. Watanabe, H. Uchida, H. Igarashi, M. Suzuki. Pt catalyst supported on zeolite for selective oxidation of CO in reformed gases. Chem. Lett., 1995, 1: 21-22.
    [8] M.J. Kahlich, H.A. Gasteiger, R.J. Behm. Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3. J. Catal., 1997, 171: 93-105.
    [9] M.M. Schubert, M.J. Kahlich, H.A. Gasteiger, R.J. Behm. Correlation between CO surface coverage and selectivity/kinetics for the preferential CO oxidation over Pt/γ-Al2O3 and Au/α-Fe2O3: an in-situ DRIFTS study. J. Power Sources, 1999, 84: 175-182.
    [10] A. Manasilp, E. Gulari. Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Appl. Catal., B 2002, 37: 17-25.
    [11] H. Igarashi, T. Fujino, and M. Watanabe. Hydrogen electrooxidation on platinum catalysts in the presence of trace carbon-monoxide. J. Electroanal. Chem. 391 (1995) 119-123.
    [12] A. Nagy, G. Mestl, T. Rühle, G. Weinberg, R. Schl?gl. The dynamic restructuring of electrolytic silver during the formaldehyde synthesis reaction. J. Catal., 1998, 179: 548-559.
    [13] V.I. Bukhtiyarov, I.P. Prosvirin, R.I. Kvon, S.N. Goncharova, B.S. Bal’zhinimaev. XPS study of the size effect in ethene epoxidation on supported silver catalysts. J. Chem. Soc. Faraday Trans., 1997, 93: 2323-2329.
    [14] S.J. Miao, Y. Wang, D. Ma, Q.J. Zhu, S.T. Zhou, L.L. Su, D.L. Tan, and X.H. Bao. Effect of Ag+ cations on nonoxidative activation of methane to C2-hydrocarbons. J. Phys. Chem. B 2004, 108: 17866-17871.
    [15] Z.P. Qu, W.X. Huang, S.T. Zhou, H. Zheng, X.M. Liu, M.J. Cheng, and X.H. Bao. Enhancement of the catalytic performance of supported-metal catalysts by pretreatment of the support. J. Catal., 2005, 234: 33-36.
    [16] M. Vaarkamp, J.T. Miller, F.S. Modica, and D.C. Koningsberger. On the relation between particle morphology, structure of the metal-support interface, and catalytic properties of Pt/γ-Al2O3. J. Catal., 1996, 163: 294-305.
    [17] P.V. Menacherry, M. Fernandez-Garcia, and G.L. Haller. An X-Ray absorption spectroscopy determination of the morphology of palladium particles in K L-zeolite. J. Catal., 1997, 166: 75-88.
    [18] F. Rodríguez-Reinoso. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36: 159-175.
    [19] E.D. Park, and J.S. Lee. Effect of surface treatment of the support on CO oxidation over carbon-supported Wacker-type catalysts. J. Catal., 2000, 193: 5-15.
    [20] D.A. Bulushev, I. Yuranov, E.I. Suvorova, P.A. Buffat, and L. Kiwi-Minsker. Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation. J. Catal., 2004, 224: 8-17.
    [21]Ph. Serp, M. Corrias, and Ph. Kalck. Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A, 2003, 253: 337-358.
    [22] E. Auer, A. Freund, J. Pietsch, and T. Tacke. Carbons as supports for industrial precious metal catalysts. Appl. Catal. A, 1998, 173: 259-271.
    [23] Z.X. Jiang, Y. Liu, X.P. Sun, F.P. Tian, F.X. Sun, C.H. Liang, W.S. You, C.R. Han, and C. Li. Activated carbons chemically modified by concentrated H2SO4 for the adsorption of the pollutants from wastewater and the dibenzothiophene from fuel oils. Langmuir, 2003, 19: 731-736.
    [24] H. Teng, Y.T. Tu, Y.C. Lai, and C.C. Lin. Reduction of NO with NH3 overcarbon catalysts: The effects of treating carbon with H2SO4 and HNO3. Carbon, 2001, 39: 575-582.
    [25] E. Aksoylu, M.M.A. Freitas, M.F.R. Pereira, and J.L. Figueiredo. The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon, 2001, 39: 175-185.
    [26] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, and J.J.M. órf?o. Modification of the surface chemistry of activated carbons. Carbon, 1999, 37:1379-1389.
    [27] Z.X. Jiang, Y. Liu, X.P. Sun, Z.Q. Shen, C.R. Han, and C. Li. Adsorption of dibenzothiophene on modified activated carbons for ultra-deep desulfurization of fuel oils. Chin. J. Catal., 2003, 24: 649-650.
    [28] F. Rodriguez-Reinoso, J.M. Martin-Martinez, C. Prado-Burguete, and B.A. McEnaney. A standard adsorption isotherm for the characterization of activated carbons. J. Phys. Chem., 1987, 91: 515-516.
    [29] S. Haydar, C. Moreno-Castilla, M.A. Ferro-García, F. Carrasco-Marín, J. Rivera-Utrilla, A. Perrard, and J.P. Joly. Regularities in the temperature-programmed desorption spectra of CO2 and CO from activated carbons. Carbon, 2000, 38: 1297-1308.
    [30] U. Zielke, K.J. Huttinger, and W.P. Hoffman. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon, 1996, 34: 983-998.
    [31] Y.F. Jia, and K.M. Thomas. Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir, 2000, 16: 1114-1122.
    [32] J.V. Zoval, J. Lee, S. Gorer, R.M. Penner. Electrochemical preparation of platinum nanocrystallites with size selectivity on basal plane oriented graphite surfaces. J. Phys. Chem. B, 1998, 102: 1166-1175.
    [33] C. Prado-Burguete, A. Linares-Solano, F. Rodríguez-Reinoso, and C. Salians-Martínez De Lecea. Effect of carbon support and mean Pt particle size on hydrogen chemisorption by carbon-supported Pt catalysts. J. Catal., 1991, 128: 397-404.
    [34] Z.P. Qu, M.J. Cheng, W.X. Huang, and X.H. Bao. Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts. J. Catal., 2005, 229: 446-458.
    [35] Z.P. Qu., W.X. Huang, S.T. Zhou, H. Zheng, X.M. Liu, M.J. Cheng, X.H. Bao. Enhancement of the catalytic performance of supported-metal catalysts by pretreatment of the support. J. Catal. 2005, 234: 33-36.
    [36] Z.P. Qu, M.J. Cheng, W. X. Huang, X. H. Bao. Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts. J. Catal. 2005, 229: 446-458.
    [37] Z.P. Qu, M.J. Cheng, X.L. Dong, X.H. Bao. CO selective oxidation in H2-rich gas over Ag nanoparticles—effect of oxygen treatment temperature on the activity of silver particles mechanically mixed with SiO2. Catal. Today 2004, 93-95: 247-255.
    [38] 曲振平,程谟杰,石川,包信和。银负载量及反应气预处理对银催化剂上氢气中 CO 选择氧化反应的影响。催化学报,2002,23:460-464。
    [39] Z.P. Qu., W.X. Huang, M.J. Cheng, X.H. Bao. Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation. J. Phys. Chem. B 2005, 109: 15842-15848.
    [40] Z.P. Qu., S.T. Zhou, W.C. Wu, C. Li, X.H. Bao. CO adsorption and correlation between CO surface coverage and activity/selectivity of preferential CO oxidation over supported Ag catalyst: An in situ FTIR study. Catal. Lett., 2005, 101: 21-25.
    [41] Z.P. Qu, M.J. Cheng, C. Shi, X.H. Bao. Low temperature selective oxidation of CO in H2-rich gases over Ag/SiO2 catalysts. J. Molecular Catal. A: Chem., 2005, 239: 22-31.
    [42] E. Gulari, ?. Güldür, S. Srivannavit, S. Osuwan. CO oxidation by silver and cobalt composite oxide. Appl. Catal. A, 1999, 182: 147-163.
    [43] U. Burghaus, H. Conrad. Oxidation of CO by molecular oxygen adsorbed on Ag(110). Surf. Sci., 1996, 352-354: 253-257.
    [44] U. Burghaus, H. Conrad. Evidence for the oxidation of CO by molecular oxygen adsorbed on Ag(110). Surf. Sci., 1996, 364: 109-121.
    [45] U. Burghaus, H. Conrad. HREELS study of CO oxidation on Ag(001) by O2 or O. Surf. Sci., 1997, 374: 1-8.
    [46] U. Burghaus, H. Conrad. Evidence for two kinetically distinct atomic oxygen species on Ag(110): a molecular beam study of the CO oxidation reaction. Surf. Sci., 1995, 338: L869-L874.
    [47] U. Burghaus, H. Conrad. The influence of surface reconstructions on the CO oxidation reaction rate for the O/Ag(110) surface. Surf. Sci., 1996, 352-354: 201-205.
    [48] U. Burghaus, H. Conrad. CO oxidation by atomically adsorbed oxygen on Ag(110) in the temperature range 100–300 K. Surf. Sci., 1997, 370: 17-31.
    [49] J. V. Barth, T. Zambelli. Oxidation of CO by molecular oxygen on a Ag(1 1 0) surface studied by scanning tunneling microscopy. Surf. Sci., 2002, 513: 359-366.
    [50] A.Q. Wang, J.H. Liu, S.D. Lin, T.S. Lin, C.Y. Mou. A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. J. Catal., 2005, 233: 186-197.
    [51] A.Q. Wang, Y.P. Hsieh, Y.F. Chen, C.Y. Mou. Au–Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support. J. Catal., 2006, 237: 197-206.
    [52] J. Matos, J.L. Brito, J. Laine. Activated carbon supported Ni---Mo: effects of pretreatment and composition on catalyst reducibility and on ethylene conversion. Appl. Catal. A 1997, 152: 27-42.
    [53] B. St(?)hr, H.P. Boehm, R. Schl?gl. Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate. Carbon, 1991, 29: 707-720.
    [54] L.C.A. Oliveira, C.N. Silva, M.I. Yoshida, R.M. Lago. The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition. Carbon, 2004, 42: 2279-2284.
    [55] H. Marsh, A.D. Foord. Mechanisms of oxidation of carbon by molecular oxygen. Carbon, 1973, 11: 421-424.
    [56] 任丽萍,戴维林,董义,乔明华,曹勇,李和兴,范康年. 氧在银/二氧化硅催化剂上的超高真空程序升温脱附。催化学报,2003,24:669-674。
    [57] J.A. Menéndez, L.R. Radovic, B. Xia, J. Phillips. Low-temperature generation of basic carbon surfaces by hydrogen spillover. J. Phys. Chem, 1996, 100: 17243-17248.
    [58] J.A. Menéndez, J. Phillips, B. Xia, L.R. Radovic. On the modification and characterization of chemical surface properties of activated carbon: In the search of carbons with stable basic properties. Langmuir, 1996, 12: 4404-4410.
    [59] A. Bielanski, J. Harber. Oxygen in catalysis on transition-metal oxides. Catal. Rev. Sci Eng. 1979, 19: 1-5.
    [1] E. Antolini. Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Mater. Chem. Phys., 2003, 78:563-573.
    [2] S. Wasmus, A. Kuver. Methanol oxidation and direct methanol fuel cells: a selective review. J. Electroanal. Chem., 1999, 461: 14-31.
    [3] R.A. Lemons. Fuel cells for transportation. J Power Source 1990, 29: 251-264.
    [4] M.S.Wilson, T.E. Springer, Recent Achievements in Polymer Electrolyte Fuel Cell (PEFC) Research at Los Alamos National Laboratory, IECEC 1991-26th Intersociety Energy Conversion Engineering Conference, Bosteon, Aug.4-9 ,1991.
    [5] M. J. Kahlich, H. A. Gasteiger, R. J. Behm, Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3. J. Catal. 1997, 171: 93-105.
    [6] A. Manasilp, E.E. Gulari. Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Appl. Catal. B 2002, 37: 17-25.
    [7] I.H. Son, M. Shamsuzzoha, A.M. Lane. Promotion of Pt/γ-Al2O3 by new pretreatment for low-temperature preferential oxidation of CO in H2 for PEM fuel cells. J. Catal. 2002, 210: 460-465.
    [8] H.A. Gasteiger, N.M. Markovic, P.N. Ross. Structural effects in electrocatalysis: Electrooxidation of carbon monoxide on Pt3Sn single-crystal alloy surfaces. Catal. Lett. 1996, 36: 1-8.
    [9] M.M. Schubert, M.J. Kahlich, G. Feldmeyer, M. Hüttner, S. Hackenberg, H.A Gasteiger, R.J. Behm. Bimetallic PtSn catalyst for selective CO oxidation in H2-rich gases at low temperature. Phys. Chem. Chem. Phys. 2001, 3: 1123-1131.
    [10] C.D. Dudfield, R. Chen, P.L. Adcock. A compact CO selective oxidation reactor for solid polymer fuel cell powered vehicle application. J. Powder Sources 2000, 86: 214-222.
    [11] C.D. Dudfield, R. Chen, P.L. Adcock. Evaluation and modelling of a COselective oxidation reactor for solid polymer fuel cell automotive applications. J. Powder Sources 2000, 85: 237-244
    [12] A. Sirijaruphan, J.G. Goodwin, Jr. and R.W. Rice. Effect of Fe promotion on the surface reaction parameters of Pt/γ-Al2O3 for the selective oxidation of CO. J. Catal. 2004, 224: 304-313.
    [13] M. Kotobuki, A. Watanabe, H. Uchida, H.Yamashita and M. Watanabe. Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe, and Pt–Fe/mordenite catalysts. J. Catal. 2005, 236: 262-269.
    [14] M. Watanabe, H. Uchida, K. Ohkubo and H. Igarashi. Hydrogen purification for fuel cells: selective oxidation of carbon monoxide on Pt–Fe/zeolite catalysts. Appl. Catal. B 2003, 46: 595-600.
    [15] B. Rohland, V. Plzak. The PEMFC-integrated CO oxidation — a novel method of simplifying the fuel cell plant. J. Power Sources, 1999, 84:183-186.
    [16] W.X. Huang, X.H. Bao, On the propagation rate of the chemical waves observed during the course of CO oxidation on a Ag/Pt(110) composite surface. J. Phys. Chem. B, 2004, 108: 8390-8396.
    [17] W.X. Huang, X.H. Bao, H.H. Rotermund, G. Ertl, CO adsorption on the O-saturated Ag/Pt(110) composite surface: direct observation of the diffusion of adsorbed CO from strongly bound Pt sites to weakly bound Ag sites. J. Phys. Chem. B, 2002, 106: 5645-5647.
    [18] C.P. Hwang, C.T. Yeh. Platinum-oxide species formed on progressive oxidation of platinum. crystallites supported on silica and silica–alumina. J. Catal., 1999, 182: 48–55.
    [19] S.R. de Miguel, O.A. Scelza, M.C. Roman-Martinez, C. Salinas-Martinez de Lecea, D. Cazorla-Amoros, A. Linares-Solano. States of Pt in Pt/C catalyst precursors after impregnation, drying and reduction step. Appl. Catal. A 1998, 170: 93-103.
    [20] D.A. Bulushev, I. Yuranov, E.I. Suvorova, P.A. Buffat, and L. Kiwi-Minsker.Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation. J. Catal., 2004, 224: 8-17.
    [21] J.L. Zubimendi, L. Vazquez, P. Ocon, J.M. Vara, W.E. Triaca, R.C. Salvarezza, A.J. Arvia. Early stages of platinum electrodeposition on highly oriented pyrolitic graphite: Scanning tunneling microscopy imaging and reaction pathway. J. Phys. Chem. 1993, 97, 5095-5102.
    [22] J.M. Rynkowski, T. Paryjczak, M. Lenik, M. Farbotko, J. Goralski. Temperautre-programmed reduction of alumina-supported Ni-Pt systems. J. Chem. Soc. Faraday Trans., 1995, 91: 3481-3484.
    [23] A.E. Aksoylu, M.M.A. Freitas, M.F.R. Pereira, J.L. Figueiredo. The effects of different activated carbon supports and supported modifications on the properties of Pt/AC catalysts. Carbon, 2001, 39: 175-185.
    [24] M.A. Fraga, E. Jordao, M.J. Mendes, M.M.A. Freitas, J.L. Faria, J.L. Figueiredo. Properties of carbon-supported platinum catalysts: Role of carbon surface sites. J. Catal., 2002, 209: 355-364.
    [25] C.M. Yang, P.H. Liu, Y.F. Ho, C.Y. Chiu, K.J. Chao. Highly dispersed metal nanoparticles in functionalized SBA-15. Chem. Mater., 2003, 15: 275-280.
    [26] A.Q. Wang, J.H. Liu, S.D. Lin, T.S. Lin, C.Y. Mou, A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. J. Catal., 2005, 233: 186-197.
    [27] A.Q. Wang, Y.P. Hsieh, Y.F. Chen, C.Y. Mou, Au–Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support. J. Catal., 2006, 237: 197-206.
    [28] H.-S. Oh, J.H. Yang, C.K. Costello, Y.M. Wang, S.R. Bare, H.H. Kung and M.C. Kung. Selective catalytic oxidation of CO: effect of chloride on supported Au catalysts. J. Catal., 2002, 210: 375-386.
    [1] H.M. Yu, Z.J. Hou, B.L. Yi, and Z.Y. Lin. Composite anode for CO tolerance proton exchange membrane fuel cells. J. Power Sources, 2002, 105: 52-57.
    [2] E. Auer, A. Freund, J. Pietsch, T. Tacke. Carbon as supports for industrial precious metal catalysts. Appl. Catal. A, 1998, 173: 259-271.
    [3] S. Iijima. Helical microtubules of graphitic carbon. Nature 1991, 354: 56-58.
    [4] T.W. Ebbesen, P.M. Ajayan. Large-scale synthesis of carbon nanotubes.Nature, 1992, 358: 220-222.
    [5] W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao,G. Wang. Large-scale synthesis of aligned carbon nanotubes. Science, 1996, 274:1701-1703.
    [6] J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc., 1994, 116: 7935-7936.
    [7] Marjolein L. Toebes, Frans F. Prinsloo, Johannes H. Bitter, A. Jos van Dillen and Krijn P. de Jong. Influence of oxygen-containing surface groups on the activity and selectivity of carbon nanofiber-supported ruthenium catalysts in the hydrogenation of cinnamaldehyde. J. Catal., 2003, 214: 78–87
    [8] C. Park, P.E. Anderson, A. Chambers, C. D. Tan, R. Hidalgo, N.M. Rodriguez. Further studies of the interaction of hydrogen with graphite nanofibers. J. Phys. Chem. B, 1999, 103: 10572-10581.
    [9] C. Park, R.T.K. Baker. Catalytic behavior of graphite nanofiber supported nickel Particles. 2. The influence of the nanofiber Structure. J. Phys. Chem., 1998, 102: 5168-5177.
    [10] F. Salman, C. Park, R.T.K. Baker. Hydrogenation of crotonaldehyde over graphite nanofiber supported nickel. Catal. Today, 1999, 53: 385-394.
    [11] Th. Braun, M. Wohlers, T. Belz and R. Schl?gl. Fullerene-based ruthenium catalysts: a novel approach for anchoring metal to carbonaceous support. II Hydrogenation activity. Catal. Lett., 1997, 43: 175-180.
    [12] J.Z. Luo, L.Z. Gao, Y.L. Leung, C.T. Au. The decomposition of NO on CNTs and 1 wt% Rh/CNTs. Catal. Lett., 2000, 66: 91-97.
    [13] Y.Y. Mu, H.P. Liang, J.S. Hu, L. Jiang, L.J. Wan. Controllable Pt nanoparticles on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J. Phys. Chem. B, 2005, 109: 22212-22216.
    [14] 于作龙,刘宝春,唐水花,梁奇,瞿美臻,高利珍, 张伯兰, 熊贵志。 一种制备碳纳米管的方法。申请号 00112788,2000。
    [15] M. Kotobuki, A. Watanabe, H. Uchida, H.Yamashita and M. Watanabe. Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe, and Pt–Fe/mordenite catalysts. J. Catal. 2005, 236: 262-269.
    [16] M. Watanabe, H. Uchida, K. Ohkubo and H. Igarashi. Hydrogen purification for fuel cells: selective oxidation of carbon monoxide on Pt–Fe/zeolite catalysts. Appl. Catal. B 2003, 46: 595-600.
    [17] X.S. Liu, O. Korotkikh, R.J. Farrauto. Selective catalytic oxidation of CO in H2: Structural study of Fe oxide-promoted Pt/alumina catalyst. Appl. Catal. A, 2002, 226: 293-303.
    [18] O. Korotkikh, R.J. Farrauto. Selective catalytic oxidation of CO in H2: fuel cell applications. Catal. Today, 2000, 62: 249-254.
    [19] A. Sirijaruphan, J.G. Goodwin, Jr. and R.W. Rice. Effect of Fe promotion on the surface reaction parameters of Pt/γ-Al2O3 for the selective oxidation of CO. J. Catal. 2004, 224: 304-313.
    [20] A. Siani, B. Captain, O.S. Alexeev, E. Stafyla, A.B. Hungria, P.A. Midgley, J.M. Thomas, R D. Adams, M.D. Amiridis. Improved CO oxidation activity in the presence and absence of hydrogen over cluster-derived PtFe/SiO2 Catalysts. Langmuir 2006, 22: 5160-5167.
    [21] N. Travitsky, T. Ripenbein, D. Golodnitsky, Y. Rosenberg, L. Burshtein, E. Peled. Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEMfuel cells. J. Power Sources, in press.
    [22] T. Toda, H. Igarashi, H. Uchida, M. Wantanabe. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc., 1999, 146: 3750-3756.
    [23] L. Xiong, A. Manthiram. Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs. J. Electrochem. Soc., 2005, 152: A697-A703.
    [24] U. Zielke, K.J. Huttinger, and W.P. Hoffman. Surface-oxidized carbon fibers: I. Surface structure and chemistry. Carbon, 1996, 34: 983-998.
    [25] Y.F. Jia, and K.M. Thomas. Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir, 2000, 16: 1114-1122.
    [26] C. Prado-Burguete, A. Linares-Solano, F. Rodríguez-Reinoso, and C. Salians- Martínez De Lecea. Effect of carbon support and mean Pt particle size on hydrogen chemisorption by carbon-supported Pt catalysts. J. Catal., 1991, 128: 397-404.
    [27] C. Prado-Burguete, A. Linares-Solano, F. Rodriguez-Reinoso, C. Salinas-Martinez de Lecea. Effect of carbon support and mean Pt particle size on hydrogne chemisorption by carbon-supported Pt catalysts. J. Catal., 1991, 128: 397-404.
    [28] D.A. Bulushev, I. Yuranov, E.I. Suvorova, P.A. Buffat, and L. Kiwi-Minsker. Highly dispersed gold on activated carbon fibers for low-temperature CO oxidation. J. Catal., 2004, 224: 8-17.
    [29] L.M. Chen, D. Ma, B. Pietruszka, and X.H. Bao. Carbon supported silver catalysts for CO selective oxidation in excess hydrogen. J. Nat. Gas Chem., in press.
    [30] F. Rodríguez-Reinoso. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36: 159-175.
    [31] J. Matos, J.L. Brito, J. Laine. Activated carbon supported Ni-Mo: Effects of pretreatment and composition on catalyst reducibility and on ethylene conversion. Appl. Catal. A, 1997, 152: 27-42.
    [32] A. Calafat, J. Laine, A. Lopez-Agudo, J.M. Palaciosy. Effect of surface oxidation of the support on the thilphene hydrodesulfurization activity of Mo, Ni, and NiMo catalyts supported on activated carbon. J. Catal. 1996, 162: 20-30.
    [33] L.M.S. Silva, J.J.M. Orfao, J.L. Figueiredo. Formation of two metal phases in the preparation of activated carbon-supported nickel catalysts. Appl. Catal. A, 2001, 209: 145-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700