用户名: 密码: 验证码:
掺杂纳米二氧化钛光催化抑杀蓝藻生长的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化,导致滇池蓝藻生长泛滥,恶化了滇池水域,严重影响了滇池的旅游景观。迄今为止,为治理滇池蓝藻,国家已投入大量资金,使用过物理、化学、生物等方法进行治理或抑制滇池蓝藻生长;从应用的效果看,这些方法都有一定的作用,但尚不能彻底解决滇池的蓝藻问题。
     近年来,大量文献对以纳米二氧化钛作为光催化剂矿化有机污染物为CO_2和H_2O、杀灭细菌和病毒等进行了报道。纳米二氧化钛作为光催化剂,除了有较高的光催化活性、微粒简便易得、成本低廉、原料丰富外,其化学稳定性好、无毒、使用后不会产生有害的化学物质。目前,纳米二氧化钛应用于治理或抑制滇池蓝藻(又名蓝细菌)生长的实验尚未见报道。
     本文尝试用改性纳米二氧化钛进行抑杀滇池蓝藻的生长。首先采用溶胶-凝胶法,通过水解钛酸正丁酯制备纳米二氧化钛;用合成的纳米二氧化钛分别在高压汞灯、紫外灯和太阳光照射下,对取自滇池的蓝藻进行了各种条件下的抑杀试验研究,为合成改性纳米二氧化钛及其应用奠定了基础。此外,在水解钛酸正丁酯过程中,根据实验的要求,分别加入不同比例的掺杂组分的前驱体:Fe(NO_3)_3·6H_2O、Zn(NO)_3·9H_2O、(NH_4)_2WO_4、Mn(NO_3)·2H_2O、Ce(NO_3)_3·6H_2O、活性炭、AgNO_3和RuCl_3溶液,并进一步处理制得不同比例复合氧化物Fe_2O_3,ZnO和WO_3,稀土3.3%MnO_2/6.7%CeO_2,活性炭和贵金属Ag或Ru各自掺杂的纳米二氧化钛。用NaBH_4还原含有PdCl_2(或H_2PtCl_6)的纳米TiO_2的乙醇的悬浊液,制备Pd(或Pt)掺杂的纳米TiO_2。利用IR、UV-Vis、XRD、TEM、XPS、ICP等现代仪器对合成的改性材料的结构进行了分析和表征。
     论文用稀土Mn、Ce改性的纳米TiO_2、纳米TiO_2凹扣于活性炭表面的粉体材料、不同比例Fe_2O_3,ZnO和WO_3各自掺杂的纳米二氧化钛复合半导体催化剂在太阳光照射下,对取自滇池的蓝藻进行了各种条件下的抑杀试验研究;用不同比例贵金属掺杂的改性纳米二氧化钛分别在太阳光和暗室条件下对取自滇池的蓝藻进行了各种条件下的抑杀试验研究;通过暗室条件下的实验结果,排除了贵金属离子的杀藻作用对光催化剂的干扰;论文还分析并比较了各类催化剂的相对活性,讨论了催化剂用量对抑杀蓝藻的活性的大小;选用1%Pt/TiO_2光催化剂进行模拟滇池的小试实验;提出了改性纳米TiO_2抑制蓝藻的机理。
     经过研究,得到以下结论:
     1、纳米二氧化钛在太阳光照射下,对蓝藻生长的抑制效果较小,在紫外光和高压汞灯照射下具有较好的抑杀效果。经过改性的纳米二氧化钛中,贵金属掺杂、5%ZnO复合半导体掺杂、40%活性炭掺杂、稀土改性的纳米二氧化钛光催化剂在太阳光照射下都能有效地抑杀蓝藻的生长。
     2、通过选择各种类型掺杂的、活性相对较高的改性纳米TiO_2,在同一条件下进行抑杀蓝藻的实验得出,光催化剂的相对活性为:1%Ag/TiO_2>1%Pt/TiO_2>40%活性炭/TiO_2>3.3%MnO_2/6.7%CeO_2/TiO_2>5%ZnO/TiO_2;
     3、通过不同用量的光催化剂抑杀蓝藻的实验得出,催化剂的用量应控制在一定的范围,量太少,吸附蓝藻不充分,光催化剂抑制蓝藻的效果会受到影响,而用量太多,成本增大。在抑制蓝藻的实验中,叶绿素含量在4.2mg·L~(-1)以内的蓝藻(250mL),催化剂用量选择0.1g就能取得满意的效果。
     4、提出了改性纳米二氧化钛抑杀蓝藻的机理。
     本论文的创新之处在于,首次分别用Fe_2O_3,ZnO和WO_3各自掺杂的纳米TiO_2复合半导体材料抑制、杀灭取自滇池蓝藻的研究;首次将稀土Mn、Ce改性的纳米TiO_2用于抑制、杀灭取自滇池蓝藻的研究;首次分别将贵金属铂、钯、钌、银改性的纳米TiO_2用于抑制、杀灭取自滇池蓝藻的研究;首次将纳米TiO_2凹扣于活性炭表面的粉体材料用于抑制、杀灭取自滇池蓝藻的研究。其次,为了检测掺杂贵金属在纳米二氧化钛中的量和存在形式,最新合成了4-(2-羟基萘酚-1-亚甲烯)-若丹宁(HNMTD)试剂,通过IR、~1HNMR、MS、碳、氢分析等确定了化合物的结构,并用它为柱前衍生试剂,用ZORBAX Stable Bound(4.6×50mm,1.8μm)快速分离柱为固定相,结合微波消化样品和二极管矩阵检测器检测建立了一种高效液相色谱测定铂、钯、钌含量的方法,该法用于纳米二氧化钛材料中铂、钯、钌的测定和检测催化剂抑杀蓝藻后水样中的贵金属离子的含量,取得了较好的效果。
The eutrophication of natural waters in Dianchi Lake has led to an increase in the incidence of cyanobacteria or blue-green algae, which subsequently causes the deterioration of water resources and seriously affects the scenery of Lake Dianchi. So far, Physical, chemical and biological approaches to curb cyanobacteria in Dianchi Lake there have been used, and some of them have made positive effects, however, these methods were also limited in practical use. Over the recent years, there has been an extensive literature on the application of TiO_2 as photocatalyst in destroying bacteria, degrading or mineralizing organic compounds, such as aromatic and haloaromatic, to CO_2 and H_2O. Nano-TiO_2 has been widely employed as photocatalyst due to its high activity of photocatalysis, its availability at a reasonable cost, in addition to its nontoxic nature, its chemical stability, and its capability of being used repeatedly without substantial loss of catalytic activity. Furthermore, TiO_2 photo-catalyst does not produce hazardous waste byproducts in the process of photocatalysis. Up to now, the application of nano-TiO_2 photocatalysts to curb cyanobacteria or blue bacteria from Dianchi Lake has not been reported.
     This thesis was aimed to study the possibility for the application of modified nano-TiO_2 photocatalysts inhibiting the growth of cyanobacteria from Lake Dianchi under the irradiation of sunlight. Firstly, nano-TiO_2 was prepared by Sol-Gel method with hydrolysis of Ti(OC_4H_9) _4.Secondly, Pd (or Pt) doped nano-TiO_2 was prepared by means of using NaBH_4 to reduce the mixture of PdCl_2 (or H_2PtCl_6) and nano-TiO_2 in the ethanol. Moreover, according to the requirements of experiment, different proportion of Fe_2O_3, ZnO, WO_3, rare-earth element, active carbon, noble metal Ag and Ru doped respectively on nano-TiO_2 were made, during the process of hydrolysis of Ti(OC_4H_9) _4, by treating Ti(OC_4H_9) _4 which served as precursor to prepare homogeneous and transparent solution, and the different content of compounds which were introduced from Fe(NO_3) _3·6H_2O, Zn(NO)_3·9H_2O, (NH_4) _2WO_4, Mn(NO_3) _2·2H_2O, Ce(NO_3) _3·6H_2O, actived carbon, AgNO_3 and RuCl_3 solution. The structure of modifi-ed nano-TiO_2 were measured and determined by means of IR, UV-Vis , XRD, TEM, XPS, ICP and HPLC.
     Then, the experiments on nano-TiO_2 inhibitory effect on the growth of cyanobacteria taken from Dianchi Lake were conducted under the irradiation of the high pressure mercury lamp、ultraviolet light lamp and the sunlight, respectively, which lay foundation for the preparation and application of modified nano-TiO_2.In the experiments, different proportion of Fe_2O_3, ZnO, WO_3, rare-earth element, and active carbon doped, respectively, on nano-TiO_2 were used to curb the growth of cyanobacteria taken from Dianchi Lake under the irradiation of sunlight. And different proportion of Ru、Ag、Pd and Pt doped nano-TiO_2 were used to study their inhibitory effects on growth of cyanobacteria from Dianchi Lake under the irradiation of sunlight and in dark room. The case in dark room eliminated the capability of noble metal ions to destroy cyanobacteria. Finally, the relatively high active of modified nano-TiO_2 photocatalysts selected from different types of photocatalysts were used in the study on the inhibitory effect on the growth of cyanobacteria from Dianchi Lake under the irradiation of sunlight. 1%Pt doped on nano-TiO_2 was used in small-scaled experiment in imitation of Dianchi Lake.
     From above experiments, we could come to the following conclusions:
     1.Using nano-TiO_2 under the irradiation of sunlight exerted little effect on curbing the growth of cyanobacteria from Dianchi Lake. However, it has exhibited better inhibitory effects under irradiation of the high pressure mercury lamp and ultraviolet light lamp. In the experiments of differently modified nano-TiO_2 photocatalysts, the noble metal doped nano-TiO_2, 5%ZnO doped nano-TiO_2, 40% actived carbon doped nano-TiO_2 and rare-earth element 3.3%MnO_2/6.7%CeO_2 doped nano-TiO_2 could effectively curb the growth of cyanobacteria from the Dianchi Lake exposed to the sunlight.
     2.After the experiments of the modified nano-TiO_2 photocatalysts on the studies of inhibitory effects on the growth of cyanobacteria under the same condition, we got the activity sequence of the modified nano-TiO_2, which was 1%Ag/TiO_2 > 1% Pt/ TiO_2 > 40%active carbon/TiO_2 > 3.3%MnO_2/6.7% CeO_2 / TiO_2 >5%ZnO/ TiO_2.
     3.It was found that the amount of photocatalyst had effect on the growth of Cyanobacteria .If the amount was too small, the adsorption of Cyanobacteria would be incompleted, where as too high amount would result in high cost.The suitable amount was found to be 0.1g photocalyst when the chlorophyll is 4.2g·L~(-1) in 25mL liqual.
     4.The mechanism how modified nano-TiO_2 photocatalysts exert inhibitory effect on the growth of Cyanobacteria was studied.
     To summary in this thesis, it is for the first time to apply different proportion of Fe_2O_3, ZnO, WO_3 doped respectively on nano-TiO_2 complex semiconductor to the studies on inhibitory effects on growth of cyanobacteria taken from Dianchi Lake, to use modified nano-TiO_2 by rare-earth element to the studies on inhibitory effects on growth of cyanobacteria taken from Dianchi Lake, to employ the noble metal Ru, Ag, Pd and Pt doped respectively on nano-TiO_2 to the studies on inhibitory effects on growth of cyanobacteria from Dianchi Lake, and to use TiO_2-mounted activated carbon to the studies on inhibitory effects on the growth of cyanobacteria. Finally, a new reagent, 4-(2-hydroxy-naphthalene-1-ylmefhylene)-thiazolidine-2, 5-dithione (HNMTD) was synthesized during the process of determination of the content and form of noble metal existing in the photocatalyst. A new method for the simultaneous determination of palladium, platinum and rutium ions as metal-HNMTD chelates was developed using high performance liquid chromatography equipped with an on-line enrichment technique, and the method was applied with good results to the determination of the content and form of Ru, Ag, Pd and Pt in the photocatalyst.
引文
[1] 刘忠范,朱涛,张锦.纳米化学[J].大学化学,2001,16(5):1~10.
    [2] 高濂,郑珊,张青红著.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2003:13~14.
    [3] 吴越著.催化化学[M].北京:科学出版社,1998:1324~1329.
    [4] 孙锦宇,林西平编著.环保催化材料与应用[M].北京:化学工业出版社,307.
    [5] 王尚弟,孙俊全编著.催化剂工程导论.[M].北京:化学工业出版社,15~36.
    [6] Fox M A. Nouv J Chem, 1987, 11: 129
    [7] 高濂,郑珊,张青红著.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2003:40.
    [8] Hagfeldt A, Gratzel M. Light-Induced redox reaction in nanocrystalline systems [J]. Chem Rev, 1995, 95(1): 49~68.
    [9] Linsebiger A L, Lu G, Yates J T. Chem. Rev, 1995, 95(3): 735~758.
    [10] Hagfeldt A, Gratzel M. Light-Induce redox reaction in nanocrystalline Systems [J]. Chem. Rev, 1995(1): 49~68.
    [11] Kamat P V, Dimitrijevic N M. Colloidal semiconductors as photocatalyst for solar energy conversion[J]. Solar Energy, 1990, 44(2): 83~89.
    [12] Fujii M, Kawai S. Photoocatalytic activty and the energy levels of electrons in a semiconductor particle under irradition[J]. Chem. Phys. Lett, 1984, 106(6): 517~522.
    [13] 吴兴惠,赵景畅,柳清菊.光催化剂可见光化研究进展.云南大学学报,2003,25(3):232~239.
    [14] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev, 1995, 95(1): 69~96.
    [15] 施尔畏.水热法的应用与发展[J].无机材料学报,1996,11(2):193~206.
    [16] Juan Yang-yang, Sen Mei, F Fereria. Hydrothermal synthesis of TiO_2 nanopowder from tetraalkyammonium hydroxide petized sols[J]. Material Science and Engineering, 2001, 15: 183~185.
    [17] Ravathi R. Rutile formation in hydrothermally crystallized titania[J]. J. Am. ceram. Soc, 1996, 79(8): 2185~2189.
    [18] Zhou Y C, Rahaman M N. Hydrothermal synthesis sintering of ultrafine CrO_2 powder[J]. J. Mater. Res. 1993, 8(70): 1680~1686.
    [19] Yangqing Zheng, Erwei Shi, Suxia Cui, et al. Hydrothermal preparation of nanosized brockite powders[J]. J Am. Ceram. Soc. 2000, 83(10): 2634~2636.
    [20] Sun-JAE K, Soon-dong Ping. Homogeneous precipitation of TiO_2 ultrafine powders from aqueous TiOCl_2 solution[J]. J Am Ceram Soc, 1999, 82(4): 927~932.
    [21] Soon Dong P, CHO Y H, Kim W. Understanding of homogeneous spontaneous for monodispersed TiO_2 ultrafine powders with rutile phase around room termperature[J]. J Solide State Chemistry, 1999, 146: 230~238.
    [22] 张庆今,胡晓法,杨敏.液相沉淀法制备超微TiO_2粉末的影响因素分析[J].华南理工大学学报,1996,24(7):52~56.
    [23] 李静,张培新,周晓明等.纳米二氧化钛制备技术进展及表征[J].材料导报,2004,18(4):70~72.
    [24] 唐波,葛介超.金属氧化物纳米材料的制备新进展[J].化工进展,2002,21(10):707.
    [25] Li G L, Mang G H. Synthesis of nanometer sized TiO_2 particles by microemulsion method[J]. Nano Struct Mater, 1999, 11(5): 663
    [26] Vorkapic D, Matsoukas T. Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides[J]. J Am Ceram Soc, 1998, 81(11): 2815~2819.
    [27] Fujishiam A, Honda K. Electrochemical photolysis of water at a semicroconductor electrode[J]. Nature, 1972, 238(5358): 37~38.
    [28] Cary J H et al. Bull of Environ Contam Toxical. 1976, 16: 697~701.
    [29] Goswami. A review of engineering development of aqueous phase solar photocataltic detoxification and disinfection processes[J]. Journal of Solar Energy Engineering, 1997, 119(3): 101~107.
    [30] Djeghri N, Formenti M, Juillet F, et al. Chem. Soc, 1974, 60(3): 369~377.
    [31] Herrmann J M, Disdier J, Mozzanega M N. J. Catal, 1979, 60(3): 369~377.
    [32] Gratzel M, Thampi K R, Kiwi J. J. Phys. Chem, 1989, 93(10): 4128~4132.
    [33] Alberici R M, Jardim W F. Appl. Catal. B: Environ, 1997, 14(1): 55~68.
    [34] Peral J, Ollis D F. J. Catal, 1992, 136(2): 554~565.
    [35] Sopyan I, Murasawa S, Hashimot K, Fujishima. A. Chem. Lett. 1992, 77(3): 297~311.
    [36] Raupp G B, Junio C T. Appl. Surf. Sci, 1993, 2(4): 321~327.
    [37] Sauer M L, Ollis D F. J. et al, 1994, 149(1): 81~91.
    [38] Sauer M L, Hale M A, Ollis D F. J. Photochem. Photobiol A.. Chem, 1995, 88(2~3): 169~178.
    [39] Augugliaro V, Coluccia S, Lodd V, Marchese L, et al. Appl. Catal. B: Environ. 1999, 20(1): 15~27.
    [40] Dibble LA, Raupp G B, Catal. Lett, 1991, 4: 345~354.
    [41] Dibble LA, Raupp G B. Environ Sci Technol. 1992, 26(3): 492~495.
    [42] Phillips LA, Raupp G B. J. Mol Catal. 1992, 77(3): 297~311.
    [43] Nimlos M R, Jacoby W A, Blake D M, et al. Environ Sci Technol. 1993, 27(4): 732~740.
    [44] Yamazake-Nishida s, Nagan K J, Phillips L, et al. J. Photochem. Photobiol. A: Chem, 1993, 70(1): 95~99.
    [45] Jacoby W A, Nirnlos M R, Blake D M. Environ Sci Technol. 1994, 28(9): 1661~1668.
    [46] Wang L H, Tsai H, Hsieh Y H. Appl Catal. B.. Environ, 1998, 17(4): 313~320.
    [47] Takita Yamada H, Hashida M , et al. Conversion of 1, 1, 2-Trichloro-1, 2, 2 Trifluoroethane over TiO_2 Supported metal and Metaloxide Catalysts[J]. Chem. Lett, 1990(5): 715~718.
    [48] Kanno S, Arato T, Kato A, et al. Bull Chem Soc Jpn. 1977, 50(6): 56~63.
    [49] 杨阳,涂学炎.紫外光催化降解空气中甲醛的纳米二氧化钛复合涂料的研究[J].涂料工业,2003,33(8):6~8.
    [50] 邱星林,徐安武.中国涂料.2000,(4):30~32.
    [51] 谭欣,何振雄,霍爱群.天津大学学报.2003,33(3):360~362.
    [52] KuY, Lo KC. Water Rearch, 1996, 30(11): 2 569~2 578.
    [53] 王文保,岳水德.农村环境生态,1999,15(3):58~60.
    [54] 余家国.太阳能学报,2000,2(2):165~170.
    [55] 颜秀茹,李晓红,感光科学与光化学,1999,17(4);330~333.
    [56] Klopffer W. TiO_2-assisted photocatalysis of Lead. Sci. Total. Environ, 1992, 122/123: 145~159.
    [57] 赵文宽,覃榆森,方佑龄.催化学报,1999,20(3):368~372.
    [58] Miyake M, Yoneyama H, Tamura H. The correlation between photoelemro chemical cell reaell O11S and pholocatalvlic reactions on illuminated ruffle[J]. Bull. Chem. Soc. Jpn, 1977, 50(6): 1492~1496.
    [59] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous at TiO_2 powder[J]. J Am. Chem. Soc, 1977, 99(1): 303~304.
    [60] Serpone N, Borgarello E, Barden M, et al. A decade of heterogeneous photocatalysis in our laboratory: pure and applied studies in procution and environmental detoxification[J]. Photochem, 1987, 36(3): 373~388.
    [61] Malouki M A, Sehili T, Boule P. Toxicological and Environmental Chemistry, 1996, 55(1): 235~246.
    [62] Tadashi Matsunga, Ryozo Tomoda, Toshiaki Nakajima, Hitoshi Wake. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters[J], 1985, 29: 211~214.
    [63] TashiMatsunga, RyozoTomoda, ToshiakiNakajima, NoriyukiNakamura, TamotsuKomine. Continuous-sterilization system that uses photosemiconductor powders[J]. Applied and Environmental Microbiology, 1998, 54(6): 1330~1333.
    [64] Willian A, Jacoby Pin Vhing Maness, Edward J, et al. Mineralization of bacterial cell mass on a photocatalytic surface in air[J]. Environmental science and technology, 1998, 32(17): 2650~2653.
    [65] Jon C, Sjogren, Raymond A, Sierka. Inactivation of phage MS2 byiron-acided titanium dioxide photocatalysis[J]. Applied and Environmental Microbiology, 1994, 60(1): 344~347.
    [66] 李孟军、赵建成.蓝藻的起源与演化[J].生物学通报.2001,35(1);19~21.
    [67] Carr N. G, Whitton B. A. The Biology of Cyanobacteria[M]. Blak Wall Scientific Publications, Oxford, 1982: 1~20.
    [68] Wilmotte A. Molecular evolution and taxonomy of the cyanobacteria. In: D. Bryant. The Molecular Biology of Cyanobacteria. Kluwer Academic, Netherlands. 1994. 1~25.
    [69] 施定基,汤佩松.光合固氮和氢代谢在蓝藻中的整合[J].光合作用研究进展 1984,3:172~193.
    [70] 施定基,钟泽璞.蓝藻中光合固氮的整合及其生物工程控制[M].《植物生理补充教材—纪念56年教学讨论会40周年》.吴相钰等主编,1996:78~85.
    [71] Anderson D M. Turning back the harmful red tide[J]. Nature. 1997, 388: 513~514。
    [72] 赵元章.我国江河湖海除藻的治标与治本浅析[J].生态与自然保护.2000,(8):29~30.
    [73] 郝红伟,陈以方,吴敏生等.低功率高频超声抑制蓝藻生长的研究.生理物理学报[J].2003,19(1):101~104.
    [74] 邱荷香.超声技术抑制蓝藻的生长[J].安庆师范学院学报,2002,8(2):70~73.
    [75] 周明,董金荣,赵开弘.浸没式UV-C技术对铜绿微囊藻生长的抑制效应[J].华中师范大学学报,2003,37(4):549~557.
    [76] 沈银武,刘永定,吴国樵等.富营养湖泊滇池水华蓝藻的机械清除[J].生生物学报,2004,28(2):132~136.
    [77] 李建宏,邵子厚.Cu~(2+)对蓝藻Spirulinamaxima光合作用的抑制机理[J].植物生理学报,1997,23(1):77~82.
    [78] MooyoungHan, Wontaekim. Atheoretical consideration algae removal with clays [J]. Microchemical Journal, 2001, 68: 157~161.
    [79] 陈静,谷慧光.滇池草海蓝藻清除应急药剂筛选现场试验研究[J].云南环境研究,1996,18(2):30~33.
    [80] 宁平,徐晓军,朱易.混凝法在滇池蓝藻爆发期净水除藻的可行性研究[J].上海环境科学,2002,21(3):160~162.
    [81] 裴海燕,胡文容.臭氧杀藻特性试验研究[J].工业水处理,2003,23(9):55~57.
    [82] 刘春光,金相灿,孙凌等.pH值对淡水藻类生长和种类变化的影响[J].农业环境科学学报,2005,24(2):294~298.
    [83] 况琪军,夏宜罫,吴紫元.一种新型消毒剂的杀藻研究[J].重庆环境科学,2001,6:42~44
    [84] Lee S O, Kato J, Takiguchi N, et al. Appl Environ Microbiol, 2000, 66(10): 4334~4339.
    [85] Dakhama A, Noue J D, Lavoie M C. J Appl Phycol, 1993, 5(9): 297~306.
    [86] Baker K H, Herson D S. Appl Environ Microbiol, 1978, 35(6): 791~796.
    [87] Lovejoy C, Browman J P, HallegraeffG M. Appl Environ Microbiol, 1998, 64(8): 2806~2813.
    [88] Starling F L. Control of eutrophication by sliver carp (Hypophthal michthy smolitrix) in the tropical Paranoa Resevoir(Brasilia, Brazil): amesocom experiment[J]. Hydrobiologia. 1993, 257: 143~152.
    [89] Bowen S H. Feeding, digestion and growth, qualitative consideration sin Pullin RSSV. Lowen-McConnell 1RH[J]. The Biology and Culture of Tilappias. 1983: 141~156.
    [90] 赵文,董双林.罗非鱼放养量对盐碱水微型生态系统浮游生物群落的影响[J].青岛海洋大学学报(自然科学版),2000,7,30(3):435~440.
    [91] 穆丽娜、俞顺章.消除水中蓝绿藻肝毒素研究进展[J].环境与健康杂志,2000,17(1):55~577.
    [92] Proctor L M, Fuhrman J A. Viral mortality of marine bacteria and cynaobacteria [J]. Nature, 1989, 340: 60~62.
    [93] 李文朝.东太湖水生植物的促淤效应与磷的沉积[J].环境科学,1997,5:9~12.
    [94] 孙文浩.凤眼莲无菌苗培养及其克藻效应[J].植物生理学报,990,6:301~305.
    [95] 柯元蒙.滇池富营养化现状、趋势及其综合防治对策[J].云南环境科学,2002,21(1):35~38.
    [96] 李原,张梅,王若南.滇池水华蓝藻的时空变化[J].云南大学学报,2005,27(3):272~276.
    [97] 何家莞,何振荣,俞家禄.有毒铜禄微囊藻对鱼和蚤的毒性[J].湖泊科学,1997,9:49~57.
    [98] Bell S G, Codd G A. Cyanobactrial toxins and human health[J]. Mecrobiol. 1994, 5: 256~264.
    [99] Tadashi Matsunga, Ryozo Yomoda, Toshiaki Nakajima, Hitoshi Wake. photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS[J]. Microbiology Letters. 1985, 29: 211~214.
    [100] Willian A. Jacoby, Pin Vhing Maness, Edward J, Wolfrum, et al. Mineralization of bacterial cell mass on a photocatalytic surface in air[J]. Environmental Science and Technology, 1998, 32(17): 2650~2653.
    [101] 马文漪,杨柳燕主编.环境微生物工程[M].南京:南京大学出版社.2000:19.
    [102] Samuneva B. Sol-gel processing of titanium-containing thin coatings. part Ⅰ preparationandstructure[J]. J. Mater. Sci, 1993, 28: 2352~2360.
    [103] 刘平,林华香,付贤智等.掺杂TiO_2催化膜材料的制备及其火菌机理[J].催化学报,1999,20(3):325.
    [104] 万海保,育立新,曾广赋等.TiO_2纳米粉体的热处理过程研究[J].化学物理学报,1999,12(4):469.
    [105] 刘河洲,胡文彬,顾明元,等.纳米TiO_2晶粒生长动力学研究[J].无机材料学报,2002,17(3):429.
    [106] 孙奉玉,吴鸣,李文钊等.二氧化钛的尺寸与光催化活性的关系[J].催化学报, 1998, 19(3): 229.
    [107] Suarez-Papa R, Hernandez-Perez L, Rincon M E, et al.[J]. Solar Energy Mater Solar Cells, 2003, 76(2): 189~199.
    [108] Bessekhouad Y, Robert D, Weber J V.[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 569~580.
    [109] Li X Z, Yang C L, et al. Journal of Photochemistry and Photobiology A: Chemistry. 2001, 141(2-3): 209~217.
    [110] Hua Yang, Dong Zhang, Li Wang. Synthesis and characterization of tungsten oxide-doped titania nanocrystallites[J]. Materials Letters. 2002, 57: 674~678.
    [111] 魏少红,石蔚云,牛新书.TiO_2-WO_3纳米粉体的制备及氨敏性能研究[J].电子元件与材料.2003,22(10):26~28.
    [112] 柳清菊,吴兴惠,刘强等.TiO_2/Fe_2O_3复合光催化超亲水性薄膜的研究[J].功能材料,2003,34(2):224~228.
    [113] 陈晓青,杨娟玉,蒋新宇等.掺铁纳米TiO_2微粒的制备及光催化性能[J].应用化学,2003,20(1):73~76.
    [114] F J P Holgado, F Yubero, A R Gonzalez-Elipe. Phase mixing in Fe/TiO_2 thin films prepared by ion beam-induced chemical vapour deposition: optical and structural properties[J]. Surface and Coatings Technology. 2002, 158-159: 552~557.
    [115] Claudius Kormann, Detlef W, Bahnemann. Environmental photochemistry: Is iron oxide(hematte) an active photocatalyst? A comparative study: α-Fe_2O_3、ZnO and TiO_2[J]. Journal of Photochemistry and Photobiology. A: Chemistry, 1989, 48: 161~169.
    [116] Duprez D, Delano F, Barbier J. J. Catal Today, 1996, 29: 317~322.
    [1t7] Beziat J C, Besson M, Gallezot P, Durecu S. J Catal[J], 1999, 182: 129~135.
    [118] Hamoudi S, Larachi F, Adnot A, Sayari A. J Catal[J], 1999, 185: 333~344.
    [119] Khaled B, Faical L, Safia H, Ginette T. Ind Eng. Chem. Res.[J], 1999, 38: 2268~2274.
    [120] Tryba B, Morawski A W, Inagaki M. Application of TiO_2-mounted activated carbon to the removal of phenol from water[J]. Applied catalysis: Environmental, 2002, 1274: 1~7.
    [121] Hidalgo M C, Gol G, Navio J A. A novel preparation of high surface area TiO_2 nanopartiles from alkoxide precursor and using active carbon as additive[J]. Catalysis Today. 2002, 76: 91~101.
    [122] J. Arana, J. M. Dona-Rodr'yguez, E. Tello Renddn et al. TiO_2 activation by using activated carbon as a support. Part Ⅰ Surface characterisation and decantability study[J]. Applied Catalysis B: Environmental, 2003: 1~11.
    [123] J. Arana, J. M. Dona-Rodr'yguez, E. Tello Rendon et al. TiO_2 activation by using activated carbon as a support Part Ⅱ. Photoreactivity and FTIR study[J]. Applied Catalysis B: Environmental, 2003: 1~8.
    [124] 周瑛,庄惠生.TiO_2光催化膜的改性及其催化性能的研究[J].工业用水与健康2004,35(5):35~37.
    [125] 信欣,汤亚飞等.用活性炭负载TiO_2光降解水中敌敌畏的研究[J].工业用水与健康.2004,35(1):30~33.
    [126] Sato S, White J M. Chem. Phys. Lett. 1980, 72: 83.
    [127] Harada K, Hisanaga T, tanaka k. Photocatalytic degradation of organo-phosphorous in secticide in aqueous semiconductor suspension[J]. Water Res. 1990, 24(11): 1415~1417.
    [128] 孙振世,陈英旭,杨晔.Pt/TiO_2膜光催化氧化降解高聚物的研究[J].太阳能学报.2001,22(1):87
    [129] 魏宏斌,徐迪民,徐建伟.水溶性腐殖酸的二氧化钛膜光催化氧化研究[J].环境科学学报,1998,18(20):161~166.
    [130] Michael Bowker, David James, Peter Stone, et al. Catalysis at the metal support interface: exemplified by the photocatalytic reforming of methanol on Pd/TiO_2[J]. Journal of Catalysis, 2003, 217: 427~433.
    [131] Haichuan Yin, Qiufen Hu, Qiang Lin. Simultaneous determination of Pallad-ium and Platinum by on-line enrichment and HPLC with 4-(2-Hydroxynaphthalene-1-ylmethylene)-thiazolidine-2, 5-dithione as pre-column derivatization reagent[J]. S. Afr. J. Chem. 2005, 58: 53~56.
    [132] 金相灿,屠清英.湖泊环境调查规范[M].北京:中国环境科学出版社,1990,77~80.
    [133] 美国公共卫生协会.美国自来水协会,水污染控制联合会编.水和废水标准检验法(第十三版),1971,526~527.
    [134] 李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001:151~155.
    [135] 李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001:167~169.
    [136] 李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001:184~185.
    [137] 中国科学院上海植物生理研究所,上海市植物生理学会编,现代植物生理学试验指南[M].北京:科学出版社,1999,12:308~309.
    [138] 王爱国,罗广平.植物体内氧自由基与羟胺的定量关系[J].植物生理学通讯,1990(6):55~57.
    [139] 刘进帮,曾辉,刘欣茹.分光广度法测定过氧化氢的含量[J].吉林师范学院学报,1997,18(1):69~70.
    [140] Patterson B D, Macrae E A, Ferguson I B. Estimation of hydrogen peroxide inpplant extracts using titanium(Ⅳ)[J]. Analytic Biochemistry, 1984, 139(3): 187~492.
    [141] Lawton L A, Edwards CCodd G A. Extration and high-perfomance liquid chromatographic method for the determina-tion of micro cystin in raw and treated waters. Analyst, 1994, 119: 1525~1530.
    [142] 谢冰,章少华,李丽.二氧化钛光催化中的测试表征技术[J].江西化工,2004,4:38~40.
    [143] 杜荣骞编.生物统计学[M].北京:高等教育出版社,2002:78~90.
    [144] S X Liu, Z P Qu, X W Han, C L Suna. A mechanism for enhanced photo-catalytic activity of silver-loaded titanium dioxide[J]. Catalysis Today, 2004, 93-95: 877~884.
    [145] Papp J. Tianium (Ⅳ) oxide photocatalysts with palladium[J]. Chem Matter. 1993, 1(5): 284~288.
    [146] 徐瑞芬,许秀艳,付国柱.纳米二氧化钛在抗菌塑料中的应用性能研究[J].塑料.2002,31(3):26~29.
    [147] Montogomery J. M. Engineering, Inc. Water treatment principles and design[M]. New York: John Wiley, 1985, 262~283.
    [148] S Lee, K Nishida, Motaki, S Ohgaki. Photocatalytic inactivation of phage Q by immomilized titanium dioxide mediated photocatalyst[J]. Wat Sci Tech. 1997, 35(11-12): 101~106.
    [149] 刘平,林香华,付贤智等.掺杂二氧化钛光催化膜材料的制备及其灭菌机理[J]. 催化学报,1999,20(3):325-328.
    [150] Tadashi Matsunga, Ryozo Tomoda, Toshiaki Nakajima, Hitoshi Wake. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS[J]. Microbiology Letters, 1985, 29: 211~214.
    [151] Bard A J. Photoelectrochemistry and heterogeneous photocatalysis at semiconductor[J]. J Photochem, 1979, 10(1): 59~76.
    [152] Rothenberger G, Moser J, Gratzel M, et al. Charge carrier trapping and recombination dynamics in small semiconductor particles[J]. J Am Soc Chem, 1985, 107(26): 8054~8057.
    [153] 罗哈吉.光化学基础[M].北京:科学出版社,1991:234.
    [154] S A Naman, Z A A Khammas, F. M. Hussein. Photo-oxidative degradation of insecticide dichlorovos by a combined semiconductors and organic sensitizers in aqueous media[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002(153): 229~236.
    [155] G. S. SHEPHARD, S. STOCKENSTROE M, D. DE VILLIERS, et al. Photocatalytic degradation of cyanobacterial microcystin toxins in water[J]. Toxicon 1998, 36, 12: 1895±1901.
    [156] C. Srinivasan, N. Somasundaram. Bactericidal and detoxification effects of irradiated semiconductor catalyst, TiO_2[J]. Current Science, 2003, 85(10): 1431.
    [157] Gordon S. Shepharda, Sonja Stockenstr, et al . Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst[J]. Water Research. 2002, 36: 140~146.
    [158] lain Liu a, Linda A. Lawton, Ben Cornish, et al. Mechanistic and toxicity studies of the photocatalytic oxidation of microcystin-LR[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148: 349~354.
    [159] 宋心琦,周福添,刘剑波.光化学原理技术应用[M].北京:高等教育出版社,2001,256~262.
    [160] 尹海川,林强,涂学炎等.纳米二氧化钛复合半导体光催化抑制蓝藻生长[J].昆明理工大学学报,2005,30(1):52~56.
    [161] 周云龙主编.植物生理学[M].北京:高等教育出版社,2002:186~202
    [162] 李合生主编,现代植物生理学[M].北京:高等教育出版社,2002:419~420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700