用户名: 密码: 验证码:
稀土镧(III)在富营养化水体中若干生物学作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:浮萍是一种小型水生漂浮植物,生长迅速且容易获得,对生长条件要求低,吸收N、P的能力强,可以作为一种比较理想的治理水体富营养化的选材。
     本文以紫背浮萍(Spirodela polyphiza)为试材,分别采用N、P、La3+单因素培养,复合培养及四因素、三水平正交设计[L27(34)]水培体系,研究浮萍生长和繁殖过程中通过其吸收N、P而达到净化富营养化水体的若干未知机制以及La3+在其中的作用,为发展新型的水体富营养化治理技术提供理论和实践依据。主要研究结果如下:
     1.浮萍生长和繁殖过程中能够吸收水体中的N、P从而起到净化富营养化水体的作用;当培养液的N浓度为10~50mg/L、P浓度为0.5~8mg/L范围内,浮萍吸收N、P的能力随N、P浓度增加而提高;在N浓度为50mg/L、P浓度为15mg/L条件下培养,浮萍生长及净化水体的效果最佳。
     2.浮萍净化水体的能力与浮萍生长状况有密切关系,而培养时间是决定浮萍生长状况的最主要因素,本实验体系中培养6d时的浮萍生长状况最好。
     3.浮萍叶绿素b含量对体内La3+含量变化敏感,培养液中La3+浓度为1.0mg/L时,浮萍体内La3+含量达到181μg/g FW,此时叶绿素b含量显著增加,达0.2mg/g FW,比对照组(CK,0.14mg/g FW)提高42.9%,暗示La3+可能通过促进合成天线色素而上调植物光合功能;但浮萍体内La3+含量对叶绿素a及类胡萝卜素含量的影响不显著。
     当浮萍体内La3+含量达到181μg/g FW时,浮萍SOD比活性[18.16U/(min·mgPr.)]则显著下降,比CK组[26.29U/(min·mg Pr.)]降低30.9%,O2-产生速率显著上升,达16.03μg/(min·g FW),比CK组[12.68μg/(min·g FW)]增加26.4%;同时,浮萍NR活性[39.23μg/(h·g FW)]显著下降,比CK组[42.1μg/(h·g FW)]下降6.8%。表明随着水体中La3+浓度的提高,浮萍体内的La3+逐渐积累,浮萍体内活性氧代谢和氮代谢出现紊乱,导致其可能受到潜在的过氧化伤害。
     综上结果表明,水体中一定浓度的La3+能够促进浮萍的生长和代谢,从而有利于利用浮萍生长和繁殖净化富营养化水体,但La3+浓度超过1.0mg/L时,La3+对浮萍生长和代谢的抑制作用显现,存在强化水体富营养化的潜在可能性。
Abstract:Ducekweed(Spirodela polyphiza) is a kind of aquatic plant. It grows rapidly and is easy to get. It has high capability to absorb nitrogen and phosphorus in water. Duckweed is a good target to control water eutrophication.
     The studies tried to understand the mechanism of La3+ in medium for cultivating duckweed on affacting absorb N, P from the medium. The experimental system contained (1)differnt N, P and La3+ concentration respectively, (2) complex of differnt N, P and La3+ concentration, (3) orthogonal design of three factors and four levels for differnt N, P and La3+ concentration. The main results were as follows:
     1. Eutrophia water can be cleaned through duckweed's growth. Duckweed's capability to absorbing N and P increased within 10-50mg/L for N concentration and 0.5-8mg/L for P concentration. Deckweed grew best when concentration of N and P were 50g/L and 15mg/L respectively, N and P concentration in medium declined fast at the same condition.
     2. Duckweed's capability to absorbing N and P associated with duckweed's growth. Duckweed grew best for 6 days cultivation.
     3. Chl b concents in duckweed can be highly influented by La3+ which translated into duckweed as well. La3+ contents in duckweed reached to 181μg/g FW when La3+ concentration was lmg/L in medium. Chl b contents in duekweed (0.2mg/g FW) significantly increased for 42.9% comparing to CK (0.14mg/g FW). It suggested that photosynthesis can be up-regulated by La3+ in duckweed. Chl a and Car contents.had little changes as following La3+contents in duckweed.
     SOD specific activities [18.16U/(min-mg Pr.)] in duckweed significantly declined for 30.9% comparing to CK [26.29U/(min-mg Pr.)] and O2- production rate [16.03μg/(min-g FW)] significantly increased for 26.4% comparing to CK [12.68μg /(min-g FW)] and NR activities [39.23μg/(h-g FW)] in duckweed significantly declined for 6.8% comparing to CK[42.1μg/(h-g FW)] when La3+ contents in duckweed reached to 181μg/g FW. It had negative influence to ROS (reactive oxygen system) and nitrogen metabolism when La3+ contents increased in duckweed. Duckweed's growth may be harmed by peroxidation.
     It is suggested that adequate La3+ concentration is good for duckweed's growth and metabolism and also has benefit for water eutrophication controlling. But it may promote water eutrophication when La3+ concentration over 1.0mg/L.
引文
[1]殷宏章,夏镇澳.我国植物生理学五十年[J].植物生理学通迅,1984,20(1):68~72.
    [2]季宏兵,王立军,董云社.稀土元素的环境生物地球化学循环研究现状[J].地理科学进展,2004,23(1):51~61.
    [3]陈小秋,刘迎湖,安民等.植物自毒物质剂量与效应的机理模型研究[J].生态科学,2008,27(4):193~196.
    [4]许航,陈焕壮,熊启权等.水生植物脱氮除磷的效能及机理研究[J].哈尔滨建筑大学学报,1999,32(4):69~73.
    [5]唐萍,吴国荣,陆长梅等.太湖水域几种高等水生植物的克藻效应[J].农村生态环境,2001,17(3):42~44,47.
    [6]李锋民,胡洪营.大型水生植物浸出液对藻类的化感抑制作用[J].中国给水排水,2004,20(11):18~21.
    [7]刘佳,刘永立,叶庆富.水生植物对水体中氮、磷的吸收与抑藻效应的研究[J].核农学报,2007,21(4):393~396.
    [8]林俊,李韬,沈宏等.镧对微囊藻的生长效应及被富集的动力学研究[J].环境化学,2003,22(1):75~79.
    [9]刘志伟,张晨,郭勇.镧对转基因鱼腥藻生长和外源基因表达的影响[J].稀土,2004,25(5):30~32.
    [10]李发荣,王江涛,陈云进等.应用稀土元素治理滇池蓝藻爆发的实验研究[J].云南环境科学,2004,23(增刊):101~103.
    [11]刘佩,廖洋,赵仕林等.稀土元素Ce对水体富营养化的影响[J].四川师范大学学报(自然科学版),2007,30(3):384~386.
    [12]洪法水,魏正贵,赵贵文等.叶绿素稀土配微结构的EXAFS研究-镧叶绿素a双层夹心分子结构的确认[J].化学学报,2000,58(5):559~562.
    [13]杨燕生,刘德,龙白娟等.镧对小麦幼苗素质、蛋白质及钙调素水平的影响[J].稀土,1997,2:63~65.
    [14]张自立,常江,汪成胜等.混合稀土对作物生长量的影响[J].中国稀土学报,2001,19(1):85~87.
    [15]沈志强,康琳,金承志.轻稀土钕离子可以被纤细裸藻(Euglena gracilis)-227摄入细胞内部[J].科学通报,1999,44(15):1590~1596.
    [16]洪法水,魏正贵,赵贵文.镧元素与菠菜体内叶绿素的作用关系[J].中国科学(C辑),2001,31(5):392~400.
    [17]洪法水,刘超.Ce3+处理诱导菠菜Rubisco与Rubisco活化酶复合体的形成[J].中国科学B辑化学,2004,34(4):346~352.
    [18]彭倩,周青.La3+对UV-B辐射胁迫下大豆叶绿素合成与讲解影响的机理[J].中国农业气象,2007,28(3):285~288.
    [19]Qi Peng, Qing Zhou. Antioxidant capacity of flavonoid in soybean seedlings under the joint actions of rare earth element La(Ⅲ) and ultraviolet-B stress[J]. Biol Trace Elem Res, 2009,127:69~80.
    [20]薛隽,王瑞研,周青等.La3+对UV-B辐射下大豆幼苗氨同化活性的影响[J].农业环境科学学报,2007,26(1):146~149.
    [21]申治国,雷衡,毅项辉等.金属离子对钙调素生物功能影响的研究进展[J].生命科学,1999,6(增刊):74~77.
    [22]安宜.铕对小麦根细胞钙调素及NAD激酶的影响研究[J].中国稀土学报,2005,23(6):757~761.
    [23]张保林,王文清.稀土离子与牛血清蛋白的相互作用[J].无机化学学报,1993,12(4):369~373.
    [24]朱永懿,陈景坚.春小麦对147Nd的吸收和分布[J].核农学通报,1990,11(5):219~221.
    [25]徐星凯.稀土元素在土壤-植物系统中行为与归宿的研究[J].农业环境科学学报,2005,z1:315~319.
    [26]曾福礼,邓汝温.荧光光谱法研究稀土元素铕在小麦细胞内的分布[J].环境科学学报,1999,19(3):332~335.
    [27]魏正贵,宛寿康,洪法水等.感耦等离子体发射光谱法研究土壤-铁芒萁系统中稀土元素的分布、累积和迁移特征[J].应用生态学报,2001,12(6):863~866.
    [28]周世恭,刘敏.镧在小麦不同部位组织细胞中X-射线能谱分析[J].植物学报,1998,2:91~94.
    [29]周世恭.小麦不同部位组织中镧和其它元素分布的X-射线能谱分析[J].植物学报, 1995,11:58~63.
    [30]邓兆活,徐声杰,邝炎华.稀土处理对甘蔗离体叶绿体光化学反应的影响[J].华南农业大学学报(自然科学版),1988,4:52~57.
    [31]乔庆东.稀土叶绿素的形成及吸收光谱[J].抚顺石油学院学报,1995,15(4):39~41.
    [32]洪法水,魏正贵,赵贵文.镧元素与菠菜体内叶绿素的作用关系[J].中国科学(C辑),2001,31(5):392~400.
    [33]Liu Xiao-qing, Su Ming-yu, Liu Chao, et al. Effects of CeCl3 on Energy Transfer and Oxygen Evolution in Spinach PhotosystemⅡ[J]. Journal of Rare Earths,2007,25:624~630.
    [34]Hong Fa-shui, Liu Chao, Zheng Lei, et al. Formation of complexes of Rubisco-Rubisco activase from La3+, Ce3+ treatment spinach[J]. Science in China Ser. B Chemistry,2005, 48(1):67~74.
    [35]Patra M, Bhowmik N, Bandopadhyay B, et al. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance[J]. Environ. Exp. Bot.,2004,52(3):199~204.
    [36]倪嘉缵.稀土生物无机化学[M].北京:科学出版社,1995:22~23.
    [37]廖铁军,黄云,苏彬彦等.稀土对菠菜产量、品质的作用及生理效应研究[J].稀土,1994,15(5):26~29.
    [38]雷少琼,赵秉熙,孙鹏年.用141Ce,147Nd研究稀土元素在小麦体内的分布及其存在状态[J].安徽农学院学报,1986,S1:6~10.
    [39]魏幼璋.稀土元素钕对油菜光合作用的影响及作用机制[J].浙江大学学报(农业与生命科学版),2000,26(3):271~273.
    [40]陈靠山,张举仁,彭正华等.NdCl3对油菜离体子叶生长和IPA水平的影响[J].中国稀土学报,1996,4:92~94.
    [41]郭春绒,潘登魁.PrCl3对油松种子萌发及幼苗生长的生理生化效应[J].稀土,1997,18(1):58~60.
    [42]陈为钧,顾月华.LaCl3水培对烟草生长的影响[J].稀土,1999,20(1):58~60.
    [43]陈为钧.Effect of La3+ on Inhibition of Tobacco RuBPcase[J].中国稀土学报(英文版),2002,20(1):71~74.
    [44]魏正贵,洪法水,赵贵文等.叶绿素稀土配位结构的EXAFS研究-镧叶绿素a双层夹心 分子结构的确认[J].化学学报,2000,58(5):559~562.
    [45]潘廷国,柯玉琴.稀土元素对甘蔗生量效应的影响[J].福建农学院学报,1990,19(2):144~147.
    [46]Zheng Hai-lei, Zhao Zhong-qiu, Zhang Chun-guang, et al. Changes in lipid peroxidation, the redox system and ATPase activities in plasma membranes of rice seedling roots caused by lanthanum chloride[J]. BioMetals,2000,13:157~163.
    [47]Ge Zhi-qiang, Yang Song, Cheng Jing-sheng, et al. Signal role for activation of, caspase-3-like protease and burst of superoxide anions during Ce4+-induced apoptosis of cultured Taxus cuspidata cells[J]. BioMetals,2005,18:221~232.
    [48]Yu C, Rahmani M, Dent P, Grant S. The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor bortezomib. Exp Cell Res 2004,295:555~566.
    [49]刘德龙,孙大业,杨燕生等.植物细胞外钙调素的稀土发光探针研究[J].高等学校化学学报,2000,6:860~864.
    [50]肖强,茹巧美,吴飞华等.一氧化氮对水稻叶片中由镧引起的氧化胁迫的缓解作用[J].中国稀土学报,2007,25(6):745~750.
    [51]郭晓珊,周青,朱旭东等.Ce(Ⅲ)在辣根体中的迁移[J].化学学报,2007,65(17):1922~1924.
    [52]张春光,郑海雷,赵中秋等.氯化镧对水稻幼根质膜标准氧化还原系统的影响[J].中国稀土学报,2001,19(5):83~84.
    [53]冯纪南,杨德俊,王彬稀等.稀土离子对α-淀粉酶纤维素酶胰蛋白酶活性的影响[J].湖南学院学报,2007,28(2):66~68.
    [54]曹睿,周青.稀土细胞毒理效应研究进展[J].中国生态农业学报,2007,15(4):180~184.
    [55]胡勤海,叶畅,叶兆杰.稀土元素镧对金鱼藻生长生理及细胞叶绿体结构的影响[J].环境科学学报,1997,17(1),82~86.
    [56]王麟仁.稀土元素对植物的生理效应综述[J].海南农垦科技,1991,3:19.
    [57]李卫芳,王秀海,王忠.小麦旗叶Rubisco和Rubisco活化酶与光合作用日变化的关系[J].安徽农业大学学报,2006,(33)1:30~34.
    [58]Robbert Leonard, Gerald Nagahashi and William W. Thomson. Effect of Lanthanum on Ion Absorption in Corn Roots[J]. Plant Physiology,1975,55:542~546.
    [59]Hong Fa-shui, Wang Ling, Liu Chao. Prevention of La3+ on DNA damage caused by Hg2+ from fish intestines[J]. Rare Earths,2007,25:243~248.
    [60]洪法水,蔡曙明,刘超等.Pb2+对鱼肠DNA光谱特性的影响[J].光谱学与光谱分析,2005,5(3):424~427.
    [61]Liu Xiao-qing, Su Ming-yu, Liu Chao, et al. Effects of 4f Electron Characteristics and Alternation Valence of Rare Earths on Photosynthesis:Regulating Distribution of Energy and Activities of Spinach Chloroplast[J]. Journal of Rare Earths,2007,25:495-501.
    [62]Liu Xiao-qing, Ze Yu-guan, Liu Chao, et al. Effects of Ce3+ on improvement of spectral characteristics and function of chloroplasts damaged by linolenic acid in spinach[J]. Journal of Rare Earths,2009,27(2):288~293.
    [63]Zhou Min, Ze Yu-guan, Li Na, et al. Cerium relieving the inhibition of photosynthesis and growth of spinach caused by lead[J]. Journal of Rare Earths,2009,27(5):864~869.
    [64]许航,陈焕壮,熊启权等.水生植物脱氮除磷的效能及机理研究[J].哈尔滨建筑大学学报,1999,32(4):69~73.
    [65]唐萍,吴国荣,陆长梅等.太湖水域几种高等水生植物的克藻效应[J].农村生态环境,2001,17(3):42~44,47.
    [66]李锋民,胡洪营.大型水生植物浸出液对藻类的化感抑制作用[J].中国给水排水,2004,20(11):18~21.
    [67]刘佳,刘永立,叶庆富.水生植物对水体中氮、磷的吸收与抑藻效应的研究[J].核农学报,2007,21(4):393~396.
    [68]Gideon Oron. Duckweed culture for waste water renovation and biomass production[J]. A gricultural Water Management,1994,26:27~40.
    [69]张正光.浮萍的培养及利用[J].内陆水产,1994,72(9):15.
    [70]印万芬.开发浮萍植物促进贫困地区综合发展[J].农牧产品开发,1998,52(5):16~17.
    [71]胡勤海,胡晓明,陈林茜等.外源性稀土对淡水藻类种群生物多样性的影响研究[J].农业环境科学学报,2003,22(3):315~317.
    [72]鞠宝,陈永珉,温少红等.稀土元素对螺旋藻生长的影响[J].海洋通报,2000,19(4): 92~96.
    [73]林俊,李韬,沈宏等.镧对微囊藻的生长效应及被富集的动力学研究[J].环境化学,2003,22(1):75~79.
    [74]刘志伟,张晨,郭勇.镧对转基因鱼腥藻生长和外源基因表达的影响[J].稀土,2004,25(5):30~32.
    [75]葛文萍,任维美.稀土对养殖水体光合作用强度影响的初步研究[J].稀土,1996,17(2):55~56。
    [76]李发荣:王江涛,陈云进等.应用稀土元素治理滇池蓝藻爆发的实验研究[J].云南环境科学,2004,23(增刊):101-103.
    [77]葛新华,储昭升,金相灿等.外源性稀土La和Ce对几种淡水微藻生长影响的研究[J].环境科学研,2004,17(增刊):66~69.
    [78]沈根祥,胡宏,沈东升等.浮萍净化氮磷污水生长条件研究[J].农业工程学报,2004,20(1):284~287.
    [79]种云霄,胡洪营,钱易.稀脉浮萍和紫背浮萍在污水营养条件下的生长特性[J].7环境科学,2004,25(6):59~64.
    [80]Caicedo J R, Van der Steen N P, Orce O, et al. Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed(Spirodela polyrrihza) [J]. Wat. Res. 2000,34(15):3829~2835.
    [81]邢殿楼,霍堂斌,吴会民等.总磷、总氮联合消化的测定方法[J].大连水产学院学报,2006,21(3):219~225.
    [82]黄帆,郭正元,徐珍.测定浮萍叶绿素含量的方法研究[J].实验技术与管理,2007,24(5):29~31.
    [83]郭胜伟,高云东.比色法测定中华芦荟叶片中叶绿素含量方法的研究[J].中医药学刊,2004,22(1):53,76.
    [84]何文,郭正元,贺仲斌.异恶草酮对三叶浮萍的毒性研究[J].贵州农业科学,2006,34(1):71~72.
    [85]刘亚光,杨谦.长残留除草剂广灭灵的生物测定方法[J].东北农业大学学报,2005,36(4):463~466.
    [86]李军,刘丛强,王仕禄等.太湖水体溶解营养盐(N、P、Si)的冬、夏二季变化特征及其 与富营养化的关系[J].地球与环境,2005,33(1):63~67.
    [87]黄淑峰,李宗芸,傅美丽等.正交实验设计法检测6种硝酸稀土的遗传毒性[J].农业环境科学学报,2007,26(1):150~155.
    [88]刘信安,湛敏,罗彦凤等.三峡水域氮磷污染对水华暴发/消涨行为的协同影响[J].环境科学,2006,27(8):1554~1559.
    [89]王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2006.
    [90]邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995.
    [91]Wang Ai-guo. Quantitative relation between the reaction of hydroxylalmine and superoxide anion redical in plant[J]. Plant Physiology Communications,1990(6):55~57.
    [92]李忠光.植物中超氧阴离子自由基测定方法的改进[J].云南植物研究,2005,27(2):211~216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700