用户名: 密码: 验证码:
基于液质联用技术的代谢组学新方法的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
代谢组学研究的是生物体系受到刺激产生的内源性代谢变化,可以对那些能描述代谢循环情况的关键化合物进行定性和定量分析。作为应用驱动的新兴科学,它已在医药相关领域得到了广泛的应用。但在其发展过程中,也出现了一系列的问题,面对这些问题,本研究从策略上提出了定量化和整合化的思想,并在数据处理方法上进行了新的尝试。将这些研究策略和方法用在重大疾病的具体研究中,取得了良好的效果。
     针对目前代谢组学研究中存在的定量不准确的问题,将定量化策略用在代谢组学研究上,提出了自己的定量代谢组学的研究方法。针对糖尿病肾病,以嘌呤嘧啶类物质为主要目标,采用HPLC-UV-MS/MS分析技术,建立了同时对嘌呤嘧啶代谢循环中21种代谢物进行定量的定量代谢组学研究平台。将这一研究平台应用于糖尿病肾病的研究,筛查到七种潜在的代谢标志物,分别为尿酸、黄嘌呤、肌苷、腺苷、胞嘧啶、胞苷和胸腺嘧啶核苷,并推测了疾病可能的机理。针对神经管畸形,采用HPLC-MS/MS分析技术,建立了同时对叶酸、同型半胱氨酸和谷胱甘肽代谢循环中16种代谢物进行定量的定量代谢组学研究平台。将这一研究平台应用于营养素干预防止神经管畸形发生的研究,筛查到四种与干预相关的潜在生物标志物,分别为Hcy、5-MT、GSH和GluCys。结合神经管畸形病人的相关数据,说明干预是有效的,并对干预机理进行了推测。研究结果说明,定量化的研究策略解决了代谢组学研究定量不准确的缺点,使得研究结果更可靠,更容易被接受。
     针对代谢组学研究内容较单一而对象较复杂的问题,将整合化策略用到代谢组学的研究中,提出了自己的整合化代谢组学的研究思想。首先进行了定量代谢组学与代谢指纹谱的整合,寻找更全面的代谢标志物,使得对疾病病理分期的判别分析的预测准确率达到了96%。然后进行了代谢组学研究与临床研究的整合,用代谢标志物与临床生化指标一起对疾病进行预测,推高了预测准确率,并将两者结合探讨糖尿病肾病的发病机理;最后将基因组学研究结果与代谢组学研究进行了整合,提出了两者结合寻找疾病发生相关的通路的研究模式,寻找到一个与糖尿病肾病相关的重要通路——亚油酸代谢通路。整合的策略加强了各研究之间的联系,使疾病的研究更深入,更透彻。
     针对目前代谢组学数据处理方法对多类别样本分类和预测的能力较弱的问题,在数据处理上引入了人工智能技术,通过模糊逻辑和人工神经网络的结合,建立了一套人工智能技术寻找生物标志物的方法,并用在了糖尿病肾病的研究中。对于糖尿病肾病的定量代谢组学研究数据,最终寻找到四个标志物:尿酸、胞嘧啶、黄嘌呤和胸腺嘧啶核苷,与t检验找到的7个标志物相比,预测准确率相当;对于糖尿病肾病的代谢指纹谱研究数据,将4000个变量最终缩减到4个,且对疾病各分期样本的预测准确率超过0.92。此方法可以完成对多类样本的分类和预测,预测效果良好,而且技术的结合也实现了变量的缩减,寻找到了潜在的生物标志物。
Metabonomics, the scientific research of endogenous metabolic responses of living systems to stimuli, serves not only as a source of qualitative but also quantitative data of metabolites essential for the description of the metabolic cycle. As an application-driven science, metabonomics has been applied to the curatorial area broadly. For the questions of metabonomic research, the quantitative research strategy and integrated research strategy were proposed, and the data processing was carried out with a new try. These strategies and methods were used in the study of major diseases, which resulted in achieving good results.
     For the inaccurate quantitation of nowaday metabonomics, quantitative research strategy was applied to the metabonomic research. And our own research methods were proposed. Firstly, aimed at purine and pyrimidine, an analytical platform for simultaneous quantification of 21 related metabolites was established using HPLC-UV-MS/MS. Then the platform was applied to the research on diabetic nephropathy. With the research, seven potential biomarkers were found out, which were uric acid, xanthine, inosine, adenosine, cytosine, cytidine and thymidine. And the possible mechanism of the disease was speculated. Afterwards, an analytical platform for simultaneous quantification of 16 metabolites involved in folic acid, homocysteine and glutathione metabolism was established using HPLC-MS/MS. Then the platform was applied to the research on the avoidance of neural tube defects (NTDs) with nutriment. With the research, four potential biomarkers were found out, which were Hcy, 5-MT, GSH and GluCys. The results illuminated that the nutriment was effective refered to the data of NTDs patients. And the possible mechanism of the nutriment was speculated. Through the complete research, the problem of poor quantitation was solved by using the quantitative research strategy. So the results of metabonomic research were more reliable and acceptable.
     For the problem of the unilateral content and complex object, integrated research strategy was applied to the metabonomic research. And our own research methods were proposed. Firstly, we integrated quantitative metabonomics and metabolic fingerprinting to look for comprehensive biomarkers, which make the prediction accuracy rate of identification for disease stage reaching to 96%. Then the metabonomics was integrated with clinical research. With the combination of metabolic biomarkers and clinical biochemical parameters, the prediction accuracy for disease was increased. And the disease mechanism was speculated with the combination. Finally, a research mode was put forward for finding out metabolic pathway related to disease with the integration of genomics and metabonomics. With the research mode, a very important metabolic pathway related to diabetic nephropathy was found out, which is linoleic acid metabolism. Integrated strategy strengthen the links among the various studies, so that the research for the disease became deeper and more thorough.
     For the poor capacity of solving multiclass and prediction, artificial intelligence technologies were applied to the data processing. With the combination of fuzzy logic and artificial neural network, a new method was established for finding out biomarkers, which was then applied to the research of diabetic nephropathy. For the data of quantitative metabonomics, we found out four potential biomarkers, which were uric acid, cytosine, xanthine and thymidine. Compared to seven biomarkers found out using student-t test, they had similar prediction accuracy. For the data of metabolic fingerprinting, the variables was reduced from 4000 to 4, while both of them had good prediction accuracy, which is higher than 0.92. From the research results, we can see that the established method can achieve multiclass classification with a good prediction accuracy. In addition, the variables can be reduced, therefore the potential biomarkers can be found out with the artificial intelligence technologies.
引文
[1]Hood L. Systems biology:new opportunities arising from genomics, proteomics and beyond. Exp Hematol.1998,26(8):681-681
    [2]饶子和.近期国外重要的生命科学研究计划和资助情况.中国科学基金.2006:272-277
    [3]Nicholson JK, Lindon JC, Holmes E.'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica.1999,29(11):1181-1189
    [4]Lindon JC, Keun HC, Ebbels TMD, et al. The consortium for metabonomic toxicology (COMET):aims, activities and achievements. Pharmacogenomics.2005, 6(7):691-699
    [5]Keun HC. Metabonomic modeling of drug toxicity. Pharmacol. Therapeut.2006, 109(1-2):92-106
    [6]Rochfort S. A new'Omics'platform technology for systems biology and implications for natural products research. J. Nat. Prod.2005,68(12):1813-1820
    [7]Chen MJ, Zhao LP, Jia W. Metabonomic study on the biochemical profiles of a hydrocortisone-induced animal model. J. Proteome Res.2005,4(6):2391-2396
    [8]Gerszten RE, Wang TJ. The search for new cardiovascular biomarkers. Nature.2008, 451:949-952
    [9]Catchpole GS, Beckmann M, Enot DP, et al. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. P. Natl. Acad. Sci. USA.2005,102(40):14458-14462
    [10]Chen MJ, Su MM, Zhao LP, et al. Metabonomic study of aristolochic acid-induced nephrotoxicity in rats. J. Proteome Res.2006,5(4):995-1002
    [11]Idborg H, Edlund PO, Jacobsson SP. Multivariate approaches for efficient detection of potential metabolites from liquid chromatography/mass spectrometry data. Rapid Commun. Mass Spectrom.2004,18(9):944-954
    [12]Castle AL, Carver MR, Mendrick DL. Toxicogenomics:a new revolution in drug safety. Drug Discov. Today.2002,7(13):728-736
    [13]Muller M, Kersten S. Nutrigenomics:goals and strategies. Nat. Rev. Genet.2003,4(4): 315-322
    [14]Clayton TA, Lindon JC, Cloarec O, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature.2006,440(7087):1073-1077
    [15]Nebert DW, Vesell ES. Can personalized drug therapy be achieved? A closer look at pharmaco-metabonomics. Trends Pharmacol. Sci.2006,27(11):580-586
    [16]Lindon JC, Holmes E, Nicholson JK. Metabonomics techniques and applications to pharmaceutical research & development. Pharm. Res.2006,23(6):1075-1088
    [17]Waters MD, Fostel JM. Toxicogenomics and systems toxicology:Aims and prospects. Nat. Rev. Genet.2004,5(12):936-948
    [18]Ekins S. Systems-ADME/Tox:resources and network app roaches. J. Pharmacol. Toxicol. Methods.2006,53(1):38-66
    [19]Covery TR, Lee ED, Henion JD. Complex sample analysis by tandem mass spectrometry. Anal. Chem.1986,58:2453-2461
    [20]Ishino Y, Okada H, Ikeuchi M, et al. Mass spectrometry-based prokaryote gene annotation. Proteomics.2007,7(22):4053-4065
    [21]Zehender H, Mayr LM. Application of mass spectrometry technologies for the discovery of low-molecular weight modulators of enzymes and protein-protein interactions. Curr. Opin. Chem. Biol.2007,11(5):511-517
    [22]罗国安,梁琼麟,王义明,等.电喷雾质谱新方法及在生命分析化学中的应用.现代仪器.2005,1:5-8
    [23]Hood L, Health JR, Phelps ME, et al. System biology and new technologies enable predictive and preventative medicine. Science.2004,306:640-643
    [24]Weston AD, Hood L. Systems biology, proteomics, and the future of health care: Toward predictive, preventive, and personalized medicine. J. Proteome R.2004,3: 179-196
    [25]Andersen JS, Mann M. Functional genomics by mass spectrometry. FEBS Lett.2000, 480(1):25-31
    [26]Tost J, Gut VG. Genotyping single nucleotide polymorphisms by mass spectrometry. Mass Spectrom. Rev.2002,21(6):388-418
    [27]Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature.2003, 422(6928):198-207
    [28]Aebersold R, Goodlett DR. Mass spectrometry in proteomics. Chem. Rev.2001, 101(2):269-295
    [29]Wilson ID, Plumb R, Granger J, et al. HPLC-MS-based methods for the study of metabonomics. J. Chromatogr. B.2005,817(1):67-76
    [30]Horning MG, Murakam IS, Horning EC. Analyses of phospholipids, ceramides, and cerebrosides by gas chromatography and gas chromatography mass spectrometry. Am. J. Clin. Nutr.1971,24(9):1086-1096
    [31]Nicholson JK, Connelly J, Lindon JC, et al. Metabonomics:a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov.2002,1(2):153-161
    [32]Brindle JT, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using H-1-NMR-based metabonomics. Nat. Med.2002,8(12):1439-1444
    [33]Holmes E, Antti H. Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst.2002,127(12):1549-1557
    [34]Fiehn O. Metabolic networks of cucurbita maxima phloem. Phytochemistry.2003, 62(6):875-886
    [35]Fiehn 0. Metabolomics-the link between genotypes and phenotypes. Plant Mol. Biol. 2002,48(1-2):155-171
    [36]Allen J, Davey HM, Broadhurst D, et al. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat. Biotechnol.2003, 21(6):692-696
    [37]Nielsen J, Oliver S. The next wave in metabolome analysis. Trends Biotechnol.2005, 23(11):544-546
    [38]Villas-Boas SG, Hojer-Pedersen J, Akesson M, et al. Global metabolite analysis of yeast:evaluation of sample preparation methods. Yeast.2005,22(14):1155-1169
    [39]Villas-Boas SG, Mas S, Akesson M, et al. Mass spectrometry in metabolome analysis. Mass Spectrom. Rev.2005,24(5):613-646
    [40]Weckwerth W, Morgenthal K. Metabolomics:from pattern recognition to biological interpretation. Drug Discov. Today.2005,10(22):1551-1558
    [41]Xie YS, Pan GX, Gao XM, et al. Application of high performance liquid chromatographic technique in metabonomics studies. Chinese J. Anal. Chem.2006, 34(11):1644-1648
    [42]Li W, Han JP, Gao J, et al. Determination of aristolochic acid A in rhizoma asari and yangxue qingnao granules using liquid chromatography tandem mass spectrometry. Chinese J. Anal. Chem.2007,35(12):1798-1800
    [43]Lin YP, Si DY, Liu CX. Advances of liquid chromatography/mass spectrometry combined with chemometric approaches applied to metabonomics. Chinese J. Anal. Chem.2007,35(10):1535-1540
    [44]Chen J, Zhao X, Fritsche J, et al. Practical approach for the identification and isomer elucidation of biomarkers detected in a metabonomic study for the discovery of individuals at risk for diabetes by integrating the chromatographic and mass spectrometric information. Anal. Chem.2008,80:1280-1289
    [45]Nordstrom A, Want E, Northen T, et al. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal. Chem.2008,80: 421-429
    [46]Inagaki S, Noda T, Min JZ. Metabolic profiling of rat hair and screening biomarkers using ultra performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. J. Chromatogr. A.2007,1176:94-99
    [47]Godejohann M. Hydrophilic interaction chromatography coupled to nuclear magnetic resonance spectroscopy and mass spectroscopy—A new approach for the separation and identification of extremely polar analytes in bodyfluids. J. Chromatogr. A.2007, 1156:87-93
    [48]Bruce SJ, Jonsson P, Antti H, et al. Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry:From extraction to data analysis. Anal. Biochem. 2008,372:237-249
    [49]Lee R, Ptolemy AS, Niewczas L, et al. Integrative metabolomics for characterizing
    unknown low-abundance metabolites by capillary electrophoresis-mass spectrometry with computer simulations. Anal. Chem.2007,79:403-415
    [50]Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics. J. Proteome Res. 2007,6(2):469-479
    [51]Crockford DJ, Holmes E, Lindon JC, et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets:application in metabonomic toxicology studies. Anal. Chem.2006,78(2):363-371
    [52]Smilde AK, van der Werf MJ, Bijlsma S, et al. Fusion of mass spectrometry-based metabolomics data. Anal. Chem.2005,77(20):6729-6736
    [53]Lafaye A, Junot C, Pereira Y, et al. Combined proteome and metabolite-profiling analyses reveal surprising insights into yeast sulfur metabolism. J. Biol. Chem.2005, 280(26):24723-24730
    [54]Ippolito JE, Xu J, Jain SJ, et al. An integrated functional genomics and metabolomics approach for defining poor prognosis in human neuroendocrine cancers. P. Natl. Acad. Sci. USA.2005,102(28):9901-9906
    [55]Morgenthal K, Wienkoop S, Wolschin F, et al. Integrative profiling of metabolites and proteins:improving pattern recognition and biomarker selection for systems level approaches. Methods Mol. Biol.2007,358:57-75
    [56]Liao PQ, Zhang XY, Wei L, et al. Studies on the acute biochemical effects of Nd(NO3)(3) by nuclear magnetic resonance-based metabonomics. Chinese J. Anal. Chem.2008,36(4):426-432
    [57]Hucka M, Finney A, Sauro HM, et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics.2003,19(4):524-531
    [58]Xirasagar S, Gustafson S, Merrick BA, et al. CEBS object model for systems biology data, SysBio-OM. Bioinformatics.2004,20(13):2004-2015
    [59]Joyce AR, Palsson BO. The model organism as a system:integrating'omics'data sets. Nat. Rev. Mol. Cell Bio.2006,7(3):198-210
    [60]Yang F, Yan SK, Wang F, et al. DNA immunization perturbs lipid metabolites and increases risk of atherogenesis. J. Proteome Res.2008,7(6):741-748
    [61]Spicker JS, Brunak S, Frederiksen KS, et al. Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation. Toxicol. Sci.2008,102(2):444-454
    [62]Waters NJ, Holmes E, Williams A, et al. NMR and pattern recognition studies on the time-related metabolic effects of alpha-naphthylisothiocyanate on liver, urine, and plasma in the rat:an integrative metabonomic approach. Chem. Res. Toxicol.2001, 14(10):1401-1412
    [63]Waters NJ, Waterfield CJ, Farrant RD, et al. Integrated metabonomic analysis of bromobenzene-induced hepatotoxicity:novel induction of 5-oxoprolinosis. J. Proteome Res.2006,5(6):1448-1459
    [64]Saric J, Wang YL, Li J, et al. Species variation in the fecal metabolome gives insight into differential gastrointestinal function. J. Proteome Res.2008,7(1):352-360
    [65]Lee SH, Woo HM, Jung BH, et al. Metabolomic approach to evaluate the toxicological effects of nonylphenol with rat urine. Anal. Chem.2007,79:102-6110
    [66]Wang Y, Zhang HY, Liang QL, et al. Simultaneous quantification of 11 pivotal metabolites in neural tube defects by HPLC-electrospray tandem mass spectrometry. J. Chromatogr. B.2008,863(1):94-100
    [67]Bajad SU, Lu WY, Kimball EH, et al. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr. A.2006,1125:76-88
    [68]Weljie AM, Newton J, Mercier P, et al. Targeted profiling:quantitative analysis of 1H NMR metabolomics data. Anal. Chem.2006,78:4430-4442
    [69]Huang XD, Regnier FE. Differential metabolomics using stable isotope labeling and two-dimensional gas chromatography with time-of-flight mass spectrometry. Anal. Chem.2008,80:107-114
    [70]Alzweiri M, Watson DQ Robertson C, et al. Comparison of different water-miscible solvents for the preparation of plasma and urine samples in metabolic profiling studies. Talanta.2008,74:1060-1065
    [71]Quackenbush J. Data standards for'omic'science. Nat. Biotechnol.2004,22(5): 613-614
    [72]Bino RJ, Hall RD, Fiehn O, et al. Potential of metabolomics as a functional genomics tool. Trends Plant Sci.2004,9(9):418-425
    [73]Jenkins H, Hardy N, Beckmann M, et al. A proposed framework for the description of plant metabolomics experiments and their results. Nat. Biotechnol.2004,22(12): 1601-1606
    [74]Kell DB, Brown M, Davey HM, et al. Metabolic footprinting and systems biology:the medium is the message. Nat. Rev. Microbiol.2005,3(7):557-565
    [75]Castle AL, Fiehn O, Kaddurah-Daouk R, et al. Metabolomics standards workshop and the development of international standards for reporting metabolomics experimental results. Brief Bioinform.2006,7(2):159-165
    [76]Lindon JC, Nicholson JK, Holmes E, et al. Summary recommendations for standardization and reporting of metabolic analyses. Nat. Biotechnol.2005,23(7): 833-838
    [77]Brown SAE, Simpson AJ, Simpson MJ. Evaluation of sample preparation methods for nuclear magnetic resonance metabolic profiling studies with Eisenia fetida. Environ. Toxicol. Chem.2008,27(4):828-836
    [78]Lauridsen M, Hansen SH, Jaroszewski JW, et al. Human urine as test material in H-1 NMR-based metabonomics:Recommendations for sample preparation and storage. Anal. Chem.2007,79(3):1181-1186
    [79]Webb-Robertson BJM, Lowrya DF, Jarman KH, et al. A study of spectral integration and normalization in NMR-based metabonomic analyses. J. Pharm. Biomed. Anal. 2005,39:830-836
    [80]Kaal E, Janssen HG. Extending the molecular application range of gas chromatography. J. Chromatogr. A.2008,1184:43~60
    [81]Kind T, Tolstikov V, Fiehn 0, et al. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal. Biochem.2007,363:185-195
    [82]Bollard ME, Stanley EG, Lindon JC, et al. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed.2005, 18(3):143-162
    [83]Yin PY, Zhao XJ, Li QR, et al. Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-TOF MS). J. Proteome Res.2006,5(9):2135-2143
    [84]Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based Metabolomics. Mass Spectrom. Rev.2007,26(1):51-78
    [85]Want EJ, Cravatt BF, Siuzdak G. The expanding role of mass spectrometry in metabolite profiling and characterization. Chem. Biochem.2005,6(11):1941-1951
    [86]Brown SC, Kruppa G, Dasseux JL. Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom. Rev.2005,24(2):223-231
    [87]Dunn WB, Bailey NJC, Johnson HE. Measuring the metabolome:current analytical technologies. Analyst.2005,130(5):606-625
    [88]Allen J, Davey HM, Broadhurst D, et al. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat. Biotechnol.2003, 21(6):692-696
    [89]Wei J, Buriak JM, Siuzdak G. Desorption-ionization mass spectrometry on porous silicon. Nature.1999,399(6733):243-246
    [90]Takats Z, Wiseman JM, Gologan B, et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science.2004,306(5695):471-473
    [91]Cooks RG, Ouyang Z, Takats Z, et al. Ambient mass spectrometry. Science.2006, 311(5767):1566-1570
    [92]Wiseman JM, Puolitaival SM, Takats Z, et al. Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization. Angew. Chem. Int. Edit. 2005,44(43):7094-7097
    [93]Wang Y, Wang JS, Yao M, et al. Metabonomics Study on the effects of the ginsenoside Rg3 in a β-Cyclodextrin-based formulation on tumor-bearing rats by a fully automatic hydrophilic interaction/reversed-phase column-switching HPLC-ESI-MS approach. Anal. Chem.2008,80:4680-4688
    [94]Enke CG, Dobson GS. Achievement of energy focus for distance-of-flight mass spectrometry with constant momentum acceleration and an ion mirror. Anal. Chem. 2007,79:8650-8661
    [95]Saude EJ, Slupsky CM, Sykes BD. Optimization of NMR analysis of biological fluids for quantitative accuracy. Metabolomics.2006,2(3):113-123
    [96]Yang J, Xu GW, Zheng YF, et al. Strategy for metabonomics research based on high-performance liquid chromatography and liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A.2005,1084:214-221
    [97]Oh C, Huang X, Regnier FE, et al. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry peak sorting algorithm. J. Chromatogr A.2008,1179:205-215
    [98]Wiklund S, Johansson E, Sjostrom L, et al. Visualization of GC/TOF-MS-based metabolomicsData for identification of biochemically interesting compounds using OPLS class models. Anal. Chem.2008,80:115-122
    [99]Xu QW, Sachs JR, Wang TC, et al. Quantification and identification of components in solution mixtures from 1D proton NMR spectra using singular value decomposition. Anal. Chem.2006,78(20):7175-7185
    [100]Karas M. Electrospray interface for LC/MS/MS analysis. Anal. Chem.1988,60: 2299-2307
    [101]Matsuo T, Seyama Y. Special feature:Historical-Introduction to modem biological mass spectrometry. J. Mass. Spectrom.2000,35(2):114-130
    [102]Brewer E, Henion J. Atmospheric pressure ionization LC/MS/MS techniques for drug disposition studies. J. Pharm. Sci.1998,87(4):395-402
    [103]Hart KJ, McLuckey SA, Glish GL. Evidence of isomerization during isolation in the quadrupole ion trap. J. Am. Soc. Mass Spectrom.1992,3:680-682
    [104]Sadagopan N, Watson JT. Investigation of the tris (trimethoxy-phenyl) phosphonium acetyl charged derivatives of peptides by electrospray ionization mass spectrometry and tandem mass spectrometry. J. Am. Soc. Mass Spectrom.2000,11:107-119
    [105]Todd JF J, March RE. A retrospective review of the development and application of the quadrupole ion trap prior to the appearance of commercial instruments. Int. J. Mass Spectrom.1999,191:9-35
    [106]Hao CY, March RE. A survey of recent research activity in quadrupole ion trap mass spectrometry. Int. J. Mass Spectrom.2001,212(1-3):337-357
    [107]Mosi AA, Eigendorf GK. Current mass spectrometric methods in organic chemistry. Curr. Org. Chem.1998,2(2):145-172
    [108]Dawson JHJ, Guilhaus M. Orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun Mass Spec.1989,3:155-159
    [109]Wirta O, Pasternack A, Mustonen J, et al. Albumin excretion rate and its relation to kidney disease in non-insulin-dependent diabetes mellitus. J. Intern. Med.1995, 237(4):367-373
    [110]Esmatjes E, Castell C, Gonzalez T, et al. Epidemiology of renal involvement in type II diabetics (NIDDM) in Catalonia. The Catalan Diabetic Nephropathy Study Group. Diabetes Res. Clin. Pract.1996,32(3):157-163
    [111]Unnikrishnan RI, Rema M, Pradeepa R, et al. Prevalence and risk factors of diabetic nephropathy in an urban south indian population:the chennai urban rural epidemiology study (Cures-45). Diabetes Care.2007,30:2019-2024
    [112]Hunjoo HA, Hibahl LE. Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int.2000,58(77):S19-S25
    [113]Seivittano V, Ganz MB, Weiss MF. AGEs induce oxidative stress and activate protein kinase C beta (Ⅱ) in neotal mesangial cells. Am. J. Physiol. Renal. Physiol.2000, 278(4):F676
    [114]Takezako T, Noda K, Tsuji E, et al. Adenosine activates aromatic L-amino acid decarboxylase activity in the kidney and increases dopamine. J. Am. Soc. Nephrol. 2001,12(1):29-36
    [115]Franco M, Tapia E, Martinez F, et al. Adenosine regulates renal nitric oxide production in hypothyroid rats. J. Am. Soc. Nephrol.1999,10(8):1681-1688
    [116]Cirillo P, Sato W, Reungjui S, et al. Uric acid, the metabolic syndrome, and renal disease. J. Am. Soc. Nephrol.2006,17(12suppl 3):S165-8
    [117]Kang HD, Nakagawa T, Feng LL, et al. A role for uric acid in the progression of renal disease. J. Am. Soc. Nephrol.2002,13(12):2888-2897
    [118]Hsu SP, Pai MF, Peng YS, et al. Serum uric acid levels show a'J-shaped'association with all-cause mortality in haemodialysis patients. Nephrol. Dial. Transplant. 2004,19(2):457-462
    [119]Zhao JY, Liang QL, Luo GA, et al. Purine metabolites in gout and asymptomatic hyperuricemia:Analysis by HPLC-electrospray tandem mass spectrometry. Clin. Chem.2005,51(8):1742-1744
    [120]Pang LQ, Liang QL, Wang YM, et al. Simultaneous determination and quantification of seven major phospholipid classes in human blood using normal-phase liquid chromatography coupled with electrospray mass spectrometry and the application in diabetes nephropathy. J. Chromatogr. B.2008,869:118-125
    [121]Spinazzola A, Marti R, Nishino I, et al. Altered thymidine metabolism due to defects of thymidine phosphorylase. J. Biol. Chem.2002,277:4128-4133
    [122]Xia JF, Liang QL, Liang XP, et al. Ultraviolet and tandem mass spectrometry for simultaneous quantification of twenty-one pivotal metabolites in plasma from patients with diabetic nephropathy. J. Chromatogr. B.2009,877:1930-1936
    [123]Plagemann PGW. Transport and metabolism of adenosine in human erythrocytes effects of transport inhibitors and regulation by phosphate. J. Cell Physiol.1986,128: 491-500
    [124]Lum CT, Sutherland DER, Yasmineh WG, et al. Peripheral-blood mononuclear cell adenosine-deaminase activity in renal-allograft recipients. J. Surg. Res.1978,24: 388-395
    [125]Kameoka J, Tanaka T, Nojima Y, et al. Direct association of adenosine deaminase with a T-cell activation antigen, CD26. Science.1993,261:466-469
    [126]Pitocco D, Zaccardi F, Di Stasio E, et al. Serum uric acid, mortality and glucose control in patients with Type 2 diabetes mellitus:a PreCIS database study. Diabet. Med.2008,25:508-508
    [127]Ioachimescu AG; Hoogwerf BJ. Comments on the letter by Pitocco et al. (Serum uric acid, mortality and glucose control in patients with Type 2 diabetes mellitus:a PreCIS database study). Diabet. Med.2008,25:509-509
    [128]Khosla UM, Zharikov S, Finch JL, et al., Hyperuricemia induces endothelial dysfunction. Kidney Int.2005,67:1739-1742
    [129]Rao GN, Corson MA, Berk BC. Uric acid stimulates vascular smooth muscle cell proliferation by increasing platelet-derived growth-factor A-chain expression. J. Biol. Chem.1991,266:8604-8608
    [130]Ng DPK, Krolewski AS. Molecular genetic approaches for studying the etiology of diabetic nephropathy. Curr. Mol. Med.2005,5:509-525
    [131]Ritz E. Managing anaemia and diabetes:a future challenge for nephrologists. Nephrol. Dial. Transplant.2005,20:21-25
    [132]Jones CA, Krolewski AS, Rogus J, et al. Epidemic of end-stage renal disease in people with diabetes in the United States population:Do we know the cause? Kidney Int.2005,67:1684-1691
    [133]Parving HH, Harrington JT, Lewis J, et al. Diabetic nephropathy:Prevention and treatment. Kidney Int.2001,60:2041-2055
    [134]Stefek M, Tribulova N, Gajdosik A, et al. The pyridoindole antioxidant stobadine attenuates histochemical changes in kidney of streptozotocin-induced diabetic rats. Acta. Histochem.2002,104:413-417
    [135]Cleary MP, Brasel JA, Greenwood MR. Developmental changes in thymidine kinase, DNA, and fat cellularity in Zucker rats. Am. J. Physiol.1979,236:E508-13
    [136]Yamada N, Li W, Ihaya A, et al. Platelet-derived endothelial cell growth factor gene therapy for limb ischemia. J. Vasc. Surg.2006,44:1322-1328
    [137]沈稚舟,吴松华,等.糖尿病慢性并发症,上海:上海医科大学出版社.1999:139
    [138]Bunke MH. Urinary excretion and renal production of prostaglandin E1, F2, and thromboxane B2 in experimental diabetes. Diabetic Nephrop.1985,4:17-24
    [139]藤原丰,西原久司,田上清一,等.Lipo-PGE1治疗糖尿病肾病.新药与临床.1992,43(12):106-115
    [140]Guarente L. Sirtuins as potential targets for metabolic syndrome. Nature.2006,444: 868-874
    [141]Hibbard ED, Smithells RW. Folic acid metabolism and human embryopathy. Lancet. 1995,345(12):149-151
    [142]Grainger RB, O'Dell BL, Hogan AG. Congenital malformations as related to deficiencies of riboflavin and vitamin B12, source of protein, calcium to phosphorus ratio and skeletal phosphorus metabolism. J Nutr.1954,54(1):33-48
    [143]Kirke PN, Molloy AM, Daly LE. Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Q J Med.1993,86:703-708
    [144]Ray JG, Blom HJ. Vitamin B12 insufficiency and the risk of fetal neural tube defects. Q Med J.2003,96:289-295
    [145]Mills JL, McPartlin JM, Kerke PN, et al. Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet.1995,345:149-151
    [146]Blom HJ, Shaw GM, den Heijer M, et al. Neural tube defects and folate:case far from
    closed. Nat. Rev. Neurosci.2006,7(9):724-731
    [147]Zhao W, Mosley BS, Cleves MA, et al. Neural tube defects and maternal biomarkers of folate, homocysteine, and glutathione metabolism. Birth Defects Res. A Clin. Mol. Teratol.2006,76(4):230-236
    [148]Botto LD, Moore CA, Khoury MJ, et al. Neural tube defects. N Engl J Med.1999, 341:1509-1519
    [149]van der Put NMJ, van Straaten HWM, Trijbels FJM, et al. Folate, homocysteine and neural tube defects:an overview. Exp. Biol. Med.2001,226:243-270
    [150]Liang XP, Liang QL, Xia JF, et al. Simultaneous determination of sixteen metabolites related to neural tube defects in maternal serum by liquid chromatography coupling with electrospray tandem mass spectrometry. Talanta.2009,78(4-5):1246-1252
    [151]Arcot J, Shrestha A. Folate:Methods of analysis. Trends Food Sci. Technol.2005,16: 253-266
    [152]Gellekink H, van Oppenraaij-Emmerzaal D, van Rooij A, et al. Stable-isotope dilution liquid chromatography-electrospray injection tandem mass spectrometry method for fast, selective measurement of S-adenosylmethionine and S-adenosylhomocysteine in plasma. Clin. Chem.2005,51:1487-1492
    [153]Nelson BC, Satterfield MB, Sniegoski LT, et al. Simultaneous quantification of homocysteine and folate in human serum or plasma using liquid chromatography/tandem mass spectrometry. Anal Chem.2005,77:3586-3593
    [154]Annesley TM. Ion suppression in mass spectrometry. Clin Chem.2003,49(7): 1041-1044
    [155]Mortier KA, Verstraete AG, Zhang GF, et al. Enhanced method performance due to a shorter chromatographic run-time in a liquid chromatography-tandem mass spectrometry assay for paclitaxel. J Chromatogr. A.2004,1041:235-238
    [156]Rossi R, Milzani A, Dalle-Donne I, et al. Blood glutathione disulfide:In vivo factor or in vitro artifact? Clin. Chem.2002,48(5):742-753
    [157]Fujimoto A, Okano Y, Miyagi T, et al. Quantitative Beutler test for newborn mass screening of galactosemia using a fluorometric microplate reader. Clin Chem.2000, 46(6):806-810
    [158]Koshiishi I, Mamura Y, Liu J, et al. Evaluation of an acidic deproteinization for the measurement of ascorbate and dehydroascorbate in plasma samples. Clin Chem.1998, 44(4):863-868
    [159]Rashed MS, Al-Ahaidib LY, Aboul-Enein HY, et al. Determination of L-pipecolic acid in plasma using chiral liquid chromatography-electrospray tandem mass spectrometry. Clin Chem.2001,47(12):2124-2130
    [160]Kim I, Barnes AJ, Oyler JM, et al. Plasma and oral fluid pharmacokinetics and pharmacodynamics after oral codeine administration. Clin. Chem.2002,48(9): 1486-1496
    [161]Kema IP, Meijer WG, Meiborg G, et al. Profiling of tryptophan-related plasma indoles in patients with carcinoid tumors by automated, on-line, solid-phase extraction and
    HPLC with fluorescence detection. Clin. Chem.2001,47(10):1811-1820
    [162]Zhang J, Yan LJ, Lin L, et al. Metabonomics research of diabetes mellitus and diabetic nephropathy based on UPLC-oaTOF-MS system. Chem. J. Chinese U.2008,29(11): 2171-2173
    [163]Wang C, Kong HW, Guan YF, et al. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal. Chem.2005,77(13):4108-4116
    [164]Li X, Xu ZL, Lu X, et al. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics:Biomarker discovery for diabetes mellitus. Anal. Chim. Acta.2009,633(2):257-262
    [165]Han LD, Liang QL, Wang YM, et al. A new metabonomics method for simultaneous determination of EFAs and NEFAs in plasma using GC-MS and its application. Chinese Chemical Letters.2009,20(9):1103-1106
    [166]Jiang ZT, Liang QL, Luo GA, et al. HPLC-electrospray tandem mass spectrometry for simultaneous quantitation of eight plasma aminothiols:Application to studies of diabetic nephropathy. Talanta.2009,77(4):1279-1284
    [167]Hunjoo HA, Hibahl LE. Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int.2000,58(77):S19-S25
    [168]Seivittano V, Ganz MB, Weiss MF. AGEs induce oxidative stress and activate protein kinase C beta (II) in neotal mesangial cells. Am J Physiol Renal Physiol.2000,278(4): F676
    [169]Okada S, Shikata K. Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes.2003,52(10):2586-2593
    [170]Shi AH, Yoshinari M, Wakisaka M, et al. Lysophosphatidylcholine molecular species in low density lipoprotein of type 2 diabetes. Horm Metab Res.1999,31:283-286
    [171]Kuroda R, Hirata K, Kawashima S, et al. Unsaturated free fatty acids inhibit Ca2+ mobilization and NO release in endothelial cells. Kobe J. Med. Sci.2001,47:211-219
    [172]Xia JF, Liang QL, Hu P, et al. Correlations of six related purine metabolites and diabetic nephropathy in Chinese type 2 diabetic patients. Clinical Biochemistry.2009, 42(3):215-220
    [173]Dowell FJ, Hamilton CA, McMurray J, et al. Effects of a xanthine-oxidase hypoxanthine free-radical and reactive oxygen species generating-system on endothelial function in New-Zealand white-rabbit aortic rings. J Cardiovasc Pharmacol.1993,22:792-797
    [174]Galat JA, Robinson AV, Rhodes RS. Oxygen free-radical mediated renal dysfunction. J Surg. Res.1989,46:520-525
    [175]Linas SL, Whittenburg D, Repine JE. Role of xanthine-oxidase in ischemia reperfusion injury. Am J Physiol.1990,258:F711-F716
    [176]Pandey R, Guru RK, Mount DW. Pathway Miner:extracting gene association networks from molecular pathways for predicting the biological significance of gene
    expression microarray data. Bioinformatics.2004,20(13):2156-2158
    [177]Mlecnik B, Scheideler M, Hackl H, et al. PathwayExplorer:web service for visualizing high-throughput expression data on biological pathways. Nucleic Acids Research.2005,33(2):W633-637
    [178]Pan DY, Sun N, Cheung KH, et al. PathMAPA:a tool for displaying gene expression and performing statistical tests on metabolic pathways at multiple levels for Arabidopsis. BMC Bioinformatics.2003,4:56
    [179]Wolford JK, Konheim YL, Colligan PB, et al. Association of a F479L variant in the cytosolic phospholipase A2 gene (PLA2G4A) with decreased glucose turnover and oxidation rates in Pima Indians. Molecular Genetics and Metabolism.2003,79(1): 61-66
    [180]Sandberg M, Johansson I, Christensen M, et al. The impact of CYP2C9 genetics and oral contraceptives on cytochrome CYP2C9 phenotype. Drug Metabolism and Disposition.2004,32(5):484-489
    [181]Hesselink DA, van Gelder T, van Schaik RHN, et al. Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic-polymorphisms in the MDR-1, CYP3A4, and CYP3A5 genes. Clinical Pharmacology & Therapeutics.2004,76(6):545-556
    [182]Bullinger D, Frohlich H, Klaus F, et al. Bioinformatical evaluation of modified nucleosides as biomedical markers in diagnosis of breast cancer. Analytica Chimica Acta.2008,618(1):29-34
    [183]Li X, Lu X, Tian J, et al. Application of fuzzy c-means clustering in data analysis of metabolomics. Anal. Chem.2009,81(11):4468-4475
    [184]高军,梁明,赵国群,等.人工智能技术集成方法以及在塑性加工中的应用研究.金属成形工艺.2004,22(2):1-4
    [185]张海渠,陈淑利.塑性加工中的人工智能技术.沈阳大学学报.2002,14(4):5-9
    [186]Rowe RC, Elizabeth AC. Neural Computing in Product Formulation. Chem. Educator. 2003,8:1-8
    [187]Brugger B, Erben G., Sandhoff R, et al. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA.1997,94:2339-2344
    [188]Reynaud C, Bruno C, Boullanger P, et al. Monitoring of urinary excretion of modified nucleosides in cancer patients using a set of six monoclonal antibodies. Cancer Lett. 1992,61(3):255-262
    [189]Tebib JG, Reynaud C, Cedoz JP, et al. Relationship between urinary excretion of modified nucleosides and rheumatoid arthritis process. Br J Rheumatol.1997,36(9): 990-995
    [190]Goldstein DS, Eisenhofer G, Kopin IJ. Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther.2003,305(3): 800-11
    [191]Kushnir MM, Rockwood AL, Roberts WL, et al. Development and performance evaluation of a tandem mass spectrometry assay for 4 adrenal steroids. Clin. Chem. 2006,52(8):1559-1567

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700