用户名: 密码: 验证码:
水泥土防渗墙体的应力应变分析及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥土搅拌桩作为围护结构或者止水帷幕往往处于一定的围压环境中。水泥土的室内三轴试验可以更符合实际压力环境,故采用室内三轴试验对水泥土力学性能的研究具有非常重要的现实意义。
     本课题基于扬州施桥三线船闸基坑工程,选取该基坑工程中的两种土质(粉质粘土,粉砂),制备大量的水泥土试样,进行室内三轴试验。试验主要考虑土样水泥掺入比、养护龄期、含水率、围压等因素对水泥土力学性能的影响,分析试验数据,给出水泥土的应力—应变规律。应用有限元软件结合扬州施桥三线船闸基坑工程,模拟水泥土防渗帷幕在基坑开挖中的受力与变形情况。本文主要研究成果如下:
     1、通过不同水泥掺入比、不同龄期、不同含水率、不同围压以及不同土质的水泥土试样的三轴试验,系统分析了各因素对水泥土的应力—应变关系的影响,总结了各影响因素下水泥土应力—应变关系的变化规律。
     2、水泥土的应力—应变说明,提高水泥土的水泥掺入比使水泥土由塑性向脆性变化,弹性区域逐渐增大;养护龄期的增加也使得水泥土的弹性和脆性特征表现明显;被加固土质的差异也影响着水泥土的应力—应变特性;围压的增大使得水泥土的塑性特征更加明显,残余强度也随着围压的增大而明显提高。
     3、水泥土三轴剪切试验结果表明,水泥土的剪切强度与水泥掺入比大致成线性增长关系;水泥土的前期强度增长较快,强度与养护龄期的关系呈对数上升;含水率从20%、25%到30%,试样的抗剪强度逐渐增大;粉砂试样与粉质粘土试样的强度比值在1.02~1.31之间;在水泥掺入比较低,养护时间较短的条件下,围压的提高对水泥土强度增长的影响显著。
     4、水泥土的变形模量结果表明,水泥掺入量的水泥土的变形模量随着水泥掺入比的增大而增大,当水泥掺入比较低时与变形模量的关系增长比较平缓;而养护龄期T=28d的试样变形模量平均达到龄期T=90d试样变形模量的75%左右。
     5、水泥土的c值较原土样加固前提高了几百倍,?值也有很大的增长,平均增长到32.5°;水泥土应力—应变关系曲线一般表现为硬化型和软化型两种;水泥土试样的破坏形式有脆性剪切破坏、脆性张裂破坏及塑性剪切破坏。
     6、应用有限元程序,可以很好地考虑初始地应力场,单元的接触和大变形等问题,利用单元生死功能成功地进行了挖方工程的模拟。
     7、有限元模拟结果可以看出,水泥土防渗帷幕墙体的变形呈现明显的规律性,整个墙身的变形趋势可以为基坑边坡变形、稳定的预估提供参考。
     8、墙体的应力计算结果表明,墙身出现应力分布与变形状态相对应,开挖过程中墙身应力均在较小的应力状态下;开挖过程中墙身底部是逐步向基坑内侧移动,墙身向基坑外侧产生一定偏转。
     9、有限元模拟计算中,采用室内三轴试验结果作为水泥土的计算参数,模拟结果与实测位移比较接近,计算结果能够反映工程实际,可为实际工程的分析提供参考。
Cement mixing piles are often in a certain confining pressure environment as a retaining structure or diaphragm wall. The triaxial compression tests of cement stabilized soil can be more fitting to consider the actual pressure environment during its work. Thus, study on the mechanical properties of cement by using triaxial compression tests has very important practical significance.
     The subject based on the third-lane shiplock's excavation of Shiqiao, Yangzhou. Selecting two kinds of the soil from the project (silty clay and silty sand), preparing a large number of cement-soil samples to carry out the triaxial compression tests. The cement ratio, curing age, moisture content, confining pressure and other factors, which can affect the mechanical properties of cement-soil, are mainly considered in the test. According to the test results, the cement stabilized soil stress-strain law was given. Simulating the stress and deformation of diaphragm wall during the excavation in Shiqiao third-lane shiplock project by the application of finite element software.The main achievement and conclusions can be given as follows:
     1. Testing cement-soil samples in different cement ratio, different curing ages, different moisture content, different confining pressure and different kind of soil by triaxial compression tests. Analysing the effect of various factors on stress-strain relationship of cement-soil systematically, summing up the variation of cement-soil stress-strain relations.
     2. The stress-strain curve of cement-soil show that the characteristics of samples have been changed from plastic to brittle with the cement ratio increased; elastic and brittle characteristics of the sample have been performanced significantly with the growth of curing age; different soil particles contained in original soil fundamentally affected the characteristics of cement-soil stress-strain relationship; the samples’plastic characteristic have been performanced significantly with the increase of confining pressure, and the residual strength improved with increasing of confining pressure.
     3. The shear strength results of cement-soil show that the relationship between shear strength and cement ratio is roughly linear growthing; the early strength of cement-soil increased rapidly in curing; the relationship between shear strength and curing period increased logarithmically; with moisture content growth from 20%, 25% to 30%, the shear strength of samples increases gradually; intensity ratio between silty sand sample and silty clay sample is in 1.02 ~ 1.31; in the situation of low cement ratio and shorter curing, confining pressure was significantly affected the growth of shear strength.
     4. Analysis the deformation modulus of cement-soil, we can find that deformation modulus of cement soil growth with the increasing of cement ratio, and it growth slowly in the situation of low cement ratio; while the curing age T=28d, the deformation modulus of sample can averagely reach to about 75% of T=90d's.
     5. Value c increased hundreds of times than before; there is also a large growth in value? , it averagely increased to 32.5°; there are two ways of general performances, hardening and softening in the cement-soil stress-strain curves; samples damage in the form of brittle shear failure, brittle crack failure and plastic shear failure.
     6. Problems such as initial stress field, element contact, large deformation, etc. can be well considered by using finite element software.And the element Birth/Death function can simulate the excavation works successfully.
     7. From the simulate result we know that diaphragm wall show obvious regularity in its deformation. The deformation trend may provide reference on estimating deformation and stability of pit slope.
     8. The stress results of wall show that the stress distribution is corresponded to the deformation. The wall was under the small stress level during the excavation. The bottom of wall moved gradually to the inside of pit, and deflected a little to the outside pit.
     9. Using the triaxial compression test results of cement-soil as the parameters during the FEM calculation. The simulated results are very close to the measured results in displacement trends and the value range. It can reflect the actual project and provide practical reference for engineering analys.
引文
[1]徐志钧.水泥土搅拌法处理地基[M].北京:机械工业出版社,2004
    [2]龚晓南.复合地基设计和施工指南[M].北京:人民交通出版,2003
    [3]叶观宝,陈望春,杨晓明.水泥土早期强度的室内试验研究[J] .岩土工程技术,2003,6(3):346~348
    [4]陈辉.SMW工法中型钢-水泥土共同作用的研究[J].建筑科学,2007,23(7):78~80
    [5]叶书麟,叶观宝.地基处理[M].北京:中国建筑工业出版社,1997
    [6]叶书麟.水泥土搅拌桩加固软基的试验研究[J].同济大学学报,1995,23(3):270~275
    [7]陈宝勤,陈恭轼.超深水泥搅拌桩处理大型油罐深厚软基的设计和检测[J].地基处理,1998,9(3):14~28
    [8]黄均龙,张冠军.SMW工法四轴深层搅拌机研制与应用[J].上海市政工程,2002,56(4):57~58
    [9]郦建俊.水泥土的强度特性、固结机理与本构关系的研究[D].西安建筑科技大学硕士学位论文,2005,3
    [10]《地基处理手册》编写委员会.地基处理手册(第三版)[S].中国建筑工业出版社,2008
    [11]中国建筑科学研究院.建筑地基处理技术规范(JGJ79-2002)条文说明[S].北京:中国建筑工业出版社,2002
    [12]刘保平.多头小直径深层搅拌一次成墙技术研究[D].吉林大学硕士学位论文,2004,12
    [13]康燕玲.水泥土防渗墙无损检测方法的研究[D].天津大学硕士学位论文,2005,4
    [14]Mitchell J.K.In-place Treatment of Foundation soils [J]. Journal of the Soil Mechanics and Foundations division, ASCE 1970(1):74~110
    [15]Lee I.K.,White W.,Ingles O.G Geotechnical Engineering [M].Boston:Pitman ,1983
    [16]Terashi M.,Tanaka H.Ground improved by deep mixing method [A].Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering [C].Stockholm:1981(3)777~780
    [17]宫必宁,李淞泉.软土地基水泥深层搅拌加固土物理力学特性研究[J].河海大学学报(自然科学版),2000,28(2):101~105
    [18]刘建航.基坑工程手册[M].北京:中国建筑工业出版社,1997
    [19]张天红,周易平,叶阳升,祝和权.水泥土的强度及影响因素初探[J].中国铁道科学,2003,24(6):53~56
    [20]李帆.水泥土工程特性的室内试验和分析[J].水力发电学报,2005,2,33~34
    [21]张家柱,程钊,余金煌.水泥土性能的试验研究[J].岩土工程技术,1999,3,38~40
    [22]焦志斌,刘汉龙,蔡正银.淤泥质酸性土水泥土强度试验研究[J].岩土力学,2005,26(增刊):57~60
    [23]郭红梅,马培贤.夯实水泥土强度特性的试验研究[J].勘察科学技术,2001(4):27~31
    [24]李建,张松宏,刘宝举.水泥土力学性能试验研究[J].铁道建筑,2001,8,31~32
    [25]汤怡新,刘汉龙,朱伟.水泥固化土工程特性试验研究[J].岩土工程学报,2000,22(5):549~554
    [26]储诚富,洪振舜,刘松玉.用似水灰比对水泥土无侧限抗压强度的预测[J].岩土力学,2005,26(4),645~650
    [27]Gallavresi F.Grouting improvement of foundation soils,Proceedings of Grouting[J],Soil Improvement and Geosynthetics,ASCE,1992,1,1~38
    [28]Lee F-H,Lee Y,Chew S-H,Yong K-Y.Strength and modulus of marine clay-cement mixes[J],J of Geotech&Geoenvir Eng,2004,10,1096~1105
    [29]Lorenzo G,Bergado DT.Fundamental parameters of cement-admixed clay—New approach[J],J of Geotech&Geoenvir Eng,2004,10,1042~1050
    [30]张家柱,程钊,余金煌.水泥土性能的试验研究[J].岩土工程技术,1999,3,38~40
    [31]陈甦,宋少华,沈剑林,陈越.水泥土配合比试验研究[J].中外公路,2006,26(6):166~170
    [32]陈瑞生,蔡荣坤.水泥土无侧限抗压强度的影响因素分析[J].中外公路,2005,25(2):140~142
    [33]荀勇.有机质含量对水泥土强度的影响与对策[J].四川建筑科学研究,2000,26(3):58~60
    [34]李广信.高等土力学[M].北京:清华大学出版社,2004
    [35]中国建筑科学研究院.建筑地基处理技术规范(JGJ79-2002) [S] .北京:中国建筑工业出版社,2002
    [36]中华人民共和国水利部.土工试验方法标准(GB/T50123-1999) [S].北京:中国计划出版社,1999
    [37]交通部公路科学研究院.公路土工试验规程(JTJ051-93) [S].北京:人民交通出版社,1993
    [38]中华人民共和国水利部.土工试验规程(SL237-1999) [S].北京:中国计划出版社,1999
    [39]华南理工大学等四院校.地基及基础[M].北京:中国建筑工业出版社,1991
    [40]严红霞.水泥土的拉压强度性能试验研究及其数值模拟究[D].扬州大学硕士学位论文,2009,6
    [41]梁仁旺,张明,白晓红.水泥土的力学性能试验研究[J].岩土力学,2001,22 (2):211~213
    [42]张尔齐,常青.关于具有软化性能土的应力-应变关系的研究[J].哈尔滨建筑大学学报,2001(3) :45~48
    [43]周敏锋,张克绪.一种水泥土非线性应力-应变关系研究[J].哈尔滨工业大学学报,2005,37(10) :1400~1402
    [44]周敏锋,张克绪,刘红卫.峰值后软化水泥土桩复合地基性能模拟分析[J].哈尔滨工业大学学报,2007,39(2) :225~228
    [45]朱大宇.水泥土力学性能的试验分析[J].建筑材料学报,2006(9):291~296
    [46]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1979
    [47]王勖成,邵敏.有限单元法基本原理与数值方法[M].北京:清华大学出版社,1997
    [48]丁科,陈月顺.有限单元法[M].北京:北京大学出版社,2006
    [49]张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社,2004
    [50]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996
    [51]殷宗泽.土工原理[M].北京:中国水利水电出版社,2007
    [52] ADINA北京代表处. ADINA用户手册[M].北京:亚得科技,2003
    [53]郑宏,葛修润,谷先荣,丰定祥.关于岩土工程有限元分析中的若干问题[J] .岩土力学,1995.16(3):7~12
    [54] ADINA北京代表处.ADINA中文土木练习手册[M].北京:亚得科技,2004
    [55]岳戈,陈权等.ADINA应用基础与实例详解[M].北京:人民交通出版社,2008
    [56]许宏发,吴华杰,郭少平等.桩土接触表面单元参数分析[J].探矿工程,2002(5):10~12
    [57]中华人民共和国交通部.渠道工程地质勘察规范(JTJ 241-1998)[S].北京:人民交通出版社,1998
    [58]章根德.土的本构模型及其工程应用[M].北京:科学出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700