用户名: 密码: 验证码:
反刍月形单胞菌乙酸激酶基因缺陷株的构建及特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奶牛在围产期时,常常会发生能量负平衡,为了消除或缓解围产期奶牛能量的负平衡,本研究从瘤胃内的优势菌——反刍兽月形单胞菌入手,对该菌发酵代谢通路进行调控,以期望从切断乙酸的生成来增加生糖先质—丙酸的产量和比例。
     本研究首先利用CODEHOP设计了反刍兽月形单胞菌乙酸生成途径的关键酶——乙酸激酶(AK)的简并引物,并且从该菌基因组中成功克隆出749 bp的乙酸激酶片段。以克隆的乙酸激酶片段为基础,将其连入pUC18载体中构建了针对乙酸激酶的质粒pUC18-ack,在这个质粒的基础上,将一段从干酪乳杆菌中克隆的耐酸基因ffh插入到质粒载体pUC18-ack的ack基因内部,构建了自杀性质粒载体pUC18-ack::ffh。利用该载体,通过同源重组技术对K6基因组的ack基因进行定点插入失活,切断了K6乙酸生成的途径,利用氟乙酸平板成功筛选出三株ack基因缺失的反刍兽月形单胞菌重组子,乙酸激酶活性分析结果显示这三株菌均为ack基因缺陷型,表明成功构建了反刍兽月形单胞菌乙酸生成缺陷株K6Δ(ack)。
     最后对基因工程菌K6Δ(ack)进行了体外发酵实验,同时与原始菌K6进行了比较,结果表明,K6Δ(ack)仅保留微弱的产乙酸能力,同时丁酸的产量显著提高了,丙酸的产量并没有显著高于原始菌,但是显著提高了丙酸/乙酸比例,K6Δ(ack)的发酵类型倾向于丙酸型。
Deficiency of feed intake and increased metabolic demand will usually lead to negative energy balance in periparturient dairy cows. Selenomonas ruminantium is one of dominant bacteria in the rumen. Carbohydrates from feed can be utilized by the bacteria to generate propionic acid, acetic acid and other metabolites in order to provide enegy for ruminant. To study the cell metabolic network of dominant microbial in rumen and finally improve negative energy balance in periparturient dairy cows, we knocked out acetate kinase gene which codes the key enzyme in generation process of acetic acid and constructed the Selenomonas ruminantium ack deleted mutant K6Δ(ack). Finally, the fermentation characteristics of the K6Δ(ack) was analyzed.
     Firstly, we analyzed the evolutional position of Selenomonas ruminantium K6 and screened out 6 strains from all the bacterium who had near genetic relationship with K6. Amino acid sequence of ack from 6 strains were submitted to BlockMaker program to make BLOCKS from MOTIF. We found 9 relatively conservative BLOCKS and for every BLOCK design degenerate primer for acetate kinase of Selenomonas ruminantium using CODEHOP program. Chose one pair of degenerate primers named ACKSe and used the propionic acid producing bacteria Selenomonas ruminantium K6 genome DNA as template to make degenerate PCR. 749bp PCR product was obtained. Similarity alignment showed that the products of the cloned DNA were similar to those of acetate kinase gene.
     Acid-resistant lactobacilli was successfully isolated from rumen fluid of healthy dairy cow by the anaerobic isolation culture method. The bacteria was preliminary identificated to Lacbobacillus casel by Gram staining method and biochemistry identification morphology. After that, the 16S rDNA phylogenetic analysis were used to identify the bacteria. The 16S ribosomal RNA primer was designed on the basis of the sequence of GenBank,and 16S ribosomal RNA gene was cloned.The result showed that the obtained sequence was 99% identical with those of Lacbobacillus casel in GenBank. Based on the above mentioned results,it was confirmed as Lacbobacillus casel. The 16S rDNA sequence and ffh gene full-length sequence of Lactobacillus casei were submitted to Genbank, and their accession numbers were FJ171331 and FJ227541 respectively.
     The ack fragment (749bp) cloned from Selenomonas ruminantium K6 was linked with vector pUC18 to construct the pUC18-ack plasmid. The acid-resistant gene ffh cloned from Lactobacillus casei was inserted into plasmid vector pUC18-ack, thus the suicide plasmid vector pUC18-ack:: ffh was obtained. Then ack gene of K6 genome was inactivated due to site-directed inserting of the pUC18-ack::ffh by homologous recombination, so the acetic acid can not be generated. Finally three ack-deleted mutants were successfully screened from the numerous transconjugants with selective culture medium containing fluoroacetic acid. There numbers were 081110-1, 081110-2 and 081110-3 respectively. the three mutants were identified by 16S rDNA phylogenetic analysis, the result showed that the obtained sequence was 100% identical with Selenomonas ruminantium K6. Enzyme activity assays showed that the AK activity in the three mutants decreased significantly in compared with the wild type K6. Based on the above mentioned results,it was confirmed that ack gene deleted mutant K6Δ(ack) of Selenomonas ruminantium was obtained.
     Acid-resistant experiments showed that both strains were inhibition for growth in CDC plate which pH is 5.5, while no bacterial colony can be observed in either CDC plate when pH is 5.0. This experiments showed that K6Δ(ack) has no better acid resistance than the wild strain K6. Possible reason is that ffh gene is a major acid-resistant genes, may not be the only acid-resistant gene. Compared to the wild type, the mutant grew more slowly at pH 6.0 and 37℃, with a lower specific growth rate, likely due to the partially impaired pta-ack pathway.
     Primary substrates (lactic acid and pyruvate) were cocultured with K6 and K6Δ(ack) for 48h, respectively, in order to observe the fermentation of pure culture medium in vitro. Culture fluid was sampled at 0、2、4、6、8、10、12、24、36、48h for analysis of pH and VFA. The results were as follows: the lactate and pyroracemic acid in the culture fluid were utilized by the strains of K6 and K6Δ(ack). Compared to strains K6, propionic acid production of K6Δ(ack) did not significantly enhanced, lactic acid generation was significantly inhibited, only few acetic acid was detected. The ratio of acetate to propionate were obviously reduced in the culture fluid of the strain K6Δ(ack). The effect demonstrating that the transponed engineering bacteria K6Δ(ack) belonged to a deleted strain of acetic acid-producing gene.
     In vitro fermentation of ruminal fluid, primary substrates (lactic acid and pyruvate) were cultured with K6 and ack deleted mutant K6Δ(ack) for 48h, respectively. Culture fluid was sampled at 0、2、4、6、8、10、12、24、36、48h for analysis of pH and VFA. The results were as follows: substrate in the culture fluid was utilized by the strains of K6 and K6Δ(ack). Compared to strains K6, propionic acid production and acetic acid production of K6Δ(ack) were both decreased. In addition, there were no differences in production of butyric acid, pH, concentration of lactic acid, the ratio of acetate to propionate between K6 and K6Δ(ack). This result may be relationship with slow growth rate of K6Δ(ack). The next step will focus on improving the growth and vitality of the engineering strain K6Δ(ack).
引文
[1] JOHNSON C A. Glucose homeostasis during canine pregnancy: Insulin resistance, ketosis, and hypoglycemia [J]. Theriogenology, 2008, 70(9): 1418-1423.
    [2] DUSKE K, HAMMON H M, LANGHOF A K, et al. Metabolism and lactation performance in dairy cows fed a diet containing rumen-protected fat during the last twelve weeks of gestation [J]. J Dairy Sci, 2009, 92(4): 1670-1684.
    [3] KASPEROWICZ A, STAN-GLASEK K, GUCZYNSKA W, et al. Sucrose phosphorylase of the rumen bacterium Pseudobutyrivibrio ruminis strain A [J]. J Appl Microbiol, 2009,
    [4] EL-KADI S W, BALDWIN R L T, MCLEOD K R, et al. Glutamate Is the Major Anaplerotic Substrate in the Tricarboxylic Acid Cycle of Isolated Rumen Epithelial and Duodenal Mucosal Cells from Beef Cattle [J]. J Nutr, 2009,
    [5] BRESTERS T W, KRUL J, SCHEEPENS P C, et al. Phosphotransacetylase associated with the pyruvate dehydrogenase complex from the nitrogen fixing Azotobacter vinelandii [J]. FEBS Lett, 1972, 22(3): 305-309.
    [6] ASANUMA N, IWAMOTO M, HINO T. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro [J]. J Dairy Sci, 1999, 82(4): 780-787.
    [7] ANDERSON P J, COLE L J, MCKAY D B, et al. A flavoprotein encoded in Selenomonas ruminantium is characterized after expression in Escherichia coli [J]. Protein Expr Purif, 2002, 24(3): 429-438.
    [8] ASANUMA N, HINO T. Activity and properties of fumarate reductase in ruminal bacteria [J]. J Gen Appl Microbiol, 2000, 46(3): 119-125.
    [9] COTTA M A. Utilization of nucleic acids by Selenomonas ruminantium and other ruminal bacteria [J]. Appl Envir Microbiol, 1990, 56(12): 3867-3870.
    [10] COUNOTTE G H M, PRINS R A, JANSSEN R H A M, et al. Role of Megasphaera elsdenii in the Fermentation of DL-[2-13C]lactate in the Rumen of Dairy Cattle [J]. Appl Envir Microbiol, 1981, 42(4): 649-655.
    [11] SUWANNAKHAM S, HUANG Y, YANG S T. Construction and characterization of ack knock-out mutants of Propionibacterium acidipropionici for enhanced propionic acid fermentation [J]. Biotechnol Bioeng, 2006, 94(2): 383-395.
    [12] RIEU-LESME F, DAUGA C, FONTY G, et al. Isolation from the rumen of a newacetogenic bacterium phylogenetically closely related to Clostridium difficile [J]. Anaerobe, 1998, 4(2): 89-94.
    [13] CASTILLEJOS L, CALSAMIGLIA S, FERRET A. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems [J]. J Dairy Sci, 2006, 89(7): 2649-2658.
    [14] AN D, DONG X, DONG Z. Prokaryote diversity in the rumen of yak (Bos grunniens) and Jinnan cattle (Bos taurus) estimated by 16S rDNA homology analyses [J]. Anaerobe, 2005, 11(4): 207-215.
    [15] ZHAO T, ZHAO P, WEST J W, et al. Inactivation of enterohemorrhagic Escherichia coli in rumen content- or feces-contaminated drinking water for cattle [J]. Appl Environ Microbiol, 2006, 72(5): 3268-3273.
    [16] LEE J W, LEE S Y, SONG H, et al. The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium [J]. Proteomics, 2006, 6(12): 3550-3566.
    [17] AL-KHALDI S F, EVANS J D, MARTIN S A. Complete nucleotide sequence of a cryptic plasmid from the ruminal bacterium Selenomonas ruminantium HD4 and identification of two predicted open reading frames [J]. Plasmid, 1999, 42(1): 45-52.
    [18] ASANUMA N, HINO T. Ability to utilize lactate and related enzymes of a ruminal bacterium, Selenomonas ruminantium [J]. Animal Science Journal, 2005, 76(4): 345-352.
    [19] ASANUMA N, IWAMOTO M, YOSHII T, et al. Molecular characterization and transcriptional regulation of nitrate reductase in a ruminal bacterium, Selenomonas ruminantium [J]. J Gen Appl Microbiol, 2004, 50(2): 55-63.
    [20] ATASOGLU C, VALDES C, WALKER N D, et al. De novo synthesis of amino acids by the ruminal bacteria Prevotella bryantii B14, Selenomonas ruminantium HD4, and Streptococcus bovis ES1 [J]. Appl Environ Microbiol, 1998, 64(8): 2836-2843.
    [21] ATTWOOD G T, BROOKER J D. Complete nucleotide sequence of a Selenomonas ruminantium plasmid and definition of a region necessary for its replication in Escherichia coli [J]. Plasmid, 1992, 28(2): 123-129.
    [22] BISHOP R, OBURA M, ODONGO D, et al. Specific PCR assay for a tannin-tolerant selenomonas ruminantium isolate, derived from helicase coding sequences [J]. Appl Environ Microbiol, 2004, 70(5): 3180-3182.
    [23] BOMBA A, ZITNAN R, KONIAROVA I, et al. Rumen fermentation and metabolic profile in conventional and gnotobiotic lambs [J]. Arch Tierernahr, 1995, 48(3): 231-243.
    [24] BRYANT M P. BACTERIAL SPECIES OF THE RUMEN [J]. Microbiol Mol Biol Rev, 1959, 23(3): 125-153.
    [25] C. HENDERSON C S S, F. V. NEKREP,. The Effect of Monensin on Pure and Mixed Cultures of Rumen Bacteria [J]. Journal of Applied Microbiology, 1981, 51(1): 159-169.
    [26] ACETI D J, FERRY J G. Purification and characterization of acetate kinase from acetate-grown Methanosarcina thermophila. Evidence for regulation of synthesis [J]. J Biol Chem, 1988, 263(30): 15444-15448.
    [27] ANTHONY R S, SPECTOR L B. Phosphorylated acetate kinase. Its isolation and reactivity [J]. J Biol Chem, 1972, 247(7): 2120-2125.
    [28] BOWMAN C M, VALDEZ R O, NISHIMURA J S. Acetate kinase from Veillonella alcalescens. Regulation of enzyme activity by succinate and substrates [J]. J Biol Chem, 1976, 251(10): 3117-3121.
    [29] CHAMPINE J E, GOODWIN S. Acetate catabolism in the dissimilatory iron-reducing isolate GS-15 [J]. J Bacteriol, 1991, 173(8): 2704-2706.
    [30] CHALCROFT J P, BULLIVANT S, HOWARD B H. Ultrastructural studies on Selenomonas ruminantium from the sheep rumen [J]. J Gen Microbiol, 1973, 79(1): 135-146.
    [31] COOK M K, COOLEY J H, EDENS J D, et al. Effect of ruminal lactic acid-utilizing bacteria on adaptation of cattle to high-energy rations [J]. Am J Vet Res, 1977, 38(7): 1015-1017.
    [32] AL-KHALDI S F, DUROCHER L L, MARTIN S A. Deoxyribonuclease activity in Selenomonas ruminantium, Streptococcus bovis, and Bacteroides ovatus [J]. Curr Microbiol, 2000, 41(3): 182-186.
    [33] HESPELL R B, WOLF R, BOTHAST R J. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria [J]. Appl Environ Microbiol, 1987, 53(12): 2849-2853.
    [34] MULDER R, TEIXEIRA DE MATTOS M J, NEIJSSEL O M. The mechanism of aggregate formation by Selenomonas ruminantium [J]. Applied Microbiology and Biotechnology, 1989, 32(3): 350-355.
    [35] NAKAMURA M, NAGAMINE T, OGATA K, et al. Sequence analysis of small cryptic plasmids isolated from Selenomonas ruminantium S20 [J]. Curr Microbiol, 1999, 38(2): 107-112.
    [36] NARITO ASANUMA M I, MASARU KAWATO, TSUNEO HINO,. Numbers of nitrate-reducing bacteria in the rumen as estimated by competitive polymerase chainreaction [J]. Animal Science Journal, 2002, 73(3): 199-205.
    [37] NEWBOLD C J, USHIDA K, MORVAN B, et al. The role of ciliate protozoa in the lysis of methanogenic archaea in rumen fluid [J]. Lett Appl Microbiol, 1996, 23(6): 421-425.
    [38] NEWBOLD C J, WALLACE R J. Effects of the ionophores monensin and tetronasin on simulated development of ruminal lactic acidosis in vitro [J]. Appl Environ Microbiol, 1988, 54(12): 2981-2985.
    [39] NING Z, ATTWOOD G T, LOCKINGTON R A, et al. Genetic diversity in ruminal isolates ofSelenomonas ruminantium [J]. Current Microbiology, 1991, 22(5): 279-284.
    [40] NISBET D J, MARTIN S A. Factors affecting L-lactate utilization by Selenomonas ruminantium [J]. J Anim Sci, 1994, 72(5): 1355-1361.
    [41] ODENYO A A, BISHOP R, ASEFA G, et al. Characterization of tannin-tolerant bacterial isolates from East African ruminants [J]. Anaerobe, 2001, 7(1): 5-15.
    [42] PARK S Y, WOODWARD C L, KUBENA L F, et al. Environmental dissemination of foodborne Salmonella in preharvest poultry production: Reservoirs, critical factors, and research strategies [J]. Critical Reviews in Environmental Science and Technology, 2008, 38(2): 73-111.
    [43] PRISTAS P, FLIEGEROVA K, JAVORSKY P. Two restriction endonucleases in Selenomonas ruminantium subsp. lactilytica [J]. Lett Appl Microbiol, 1998, 27(2): 83-85.
    [44] PUHL A A, GRUNINGER R J, GREINER R, et al. Kinetic and structural analysis of a bacterial protein tyrosine phosphatase-like myo-inositol polyphosphatase [J]. Protein Sci, 2007, 16(7): 1368-1378.
    [45] QIN X T, MARTIN S A. Cloning of the O-acetylhomoserine sulfhydrylase gene from the ruminal bacterium Selenomonas ruminantium HD4 [J]. Current Microbiology, 2004, 48(4): 305-311.
    [46] RICKE S C, MARTIN S A, NISBET D J. Ecology, metabolism, and genetics of ruminal selenomonads [J]. Crit Rev Microbiol, 1996, 22(1): 27-56.
    [47] RUSSELL J B. Intracellular pH of acid-tolerant ruminal bacteria [J]. Appl Environ Microbiol, 1991, 57(11): 3383-3384.
    [48] SCHEIFINGER C C, LINEHAN B, WOLIN M J. H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria [J]. Appl Microbiol, 1975, 29(4): 480-483.
    [49] SCHEIFINGER C C, WOLIN M J. Propionate formation from cellulose and solublesugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium [J]. Appl Microbiol, 1973, 26(5): 789-795.
    [50] SMITH C J, HESPELL R B, BRYANT M P. Ammonia assimilation and glutamate formation in the anaerobe Selenomonas ruminantium [J]. J Bacteriol, 1980, 141(2): 593-602.
    [51] SMITH C J, HESPELL R B, BRYANT M P. Regulation of urease and ammonia assimilatory enzymes in Selenomonas ruminantium [J]. Appl Environ Microbiol, 1981, 42(1): 89-96.
    [52] VLAEMINCK B, FIEVEZ V, DEMEYER D, et al. Effect of forage:concentrate ratio on fatty acid composition of rumen bacteria isolated from ruminal and duodenal digesta [J]. J Dairy Sci, 2006, 89(7): 2668-2678.
    [53] BELOQUI A, PITA M, POLAINA J, et al. Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships [J]. J Biol Chem, 2006, 281(32): 22933-22942.
    [54] MELVILLE S B, MICHEL T A, MACY J M. Regulation of carbon flow in Selenomonas ruminantium grown in glucose-limited continuous culture [J]. J Bacteriol, 1988, 170(11): 5305-5311.
    [55] MICHEL T A, MACY J M. Preparation of spheroplasts from the strict anaerobe Selenomonas ruminantium [J]. Journal of Microbiological Methods, 1990, 11(1): 37-41.
    [56] MILLER-WEBSTER T, HOOVER W H, HOLT M, et al. Influence of Yeast Culture on Ruminal Microbial Metabolism in Continuous Culture [J]. J Dairy Sci, 2002, 85(8): 2009-2014.
    [57] RODRIGUEZ C A, GONZALEZ J. In situ study of the relevance of bacterial adherence to feed particles for the contamination and accuracy of rumen degradability estimates for feeds of vegetable origin [J]. Br J Nutr, 2006, 96(2): 316-325.
    [58] AUBELE M, SMIDA J. Degenerate oligonucleotide-primed PCR [J]. Methods Mol Biol, 2003, 226(315-318.
    [59] HERMOUET S, SUTTON C A, ROSE T M, et al. Qualitative and quantitative analysis of human herpesviruses in chronic and acute B cell lymphocytic leukemia and in multiple myeloma [J]. Leukemia, 2003, 17(1): 185-195.
    [60] LI Y, DIETRICH M, SCHMID R D, et al. Identification and functional expression of a Delta9-fatty acid desaturase from Psychrobacter urativorans in Escherichia coli [J]. Lipids, 2008, 43(3): 207-213.
    [61] BAINES J E, MCGOVERN R M, PERSING D, et al. Consensus-degenerate hybrid 93oligonucleotide primers (CODEHOP) for the detection of novel papillomaviruses and their application to esophageal and tonsillar carcinomas [J]. J Virol Methods, 2005, 123(1): 81-87.
    [62] MORANT M, HEHN A, WERCK-REICHHART D. Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants [J]. BMC Plant Biol, 2002, 2(7):23-26.
    [63]黄菁,王少丽,乔传令.程序化设计简并引物与克隆小菜蛾酯酶基因[J].昆虫知识, 2002, (06):34-39
    [64] ROSE T M. CODEHOP-mediated PCR - a powerful technique for the identification and characterization of viral genomes [J]. Virol J, 2005, 2(20):85-89.
    [65]夏瑞,陆旺金,李建国,等.简并引物的程序化设计与荔枝HMGR基因片段的克隆[J].果树学报, 2006, (06):57-59
    [66] SHAHROKHABADI K, AFSHARI R T, ALIZADE H, et al. Identification of DREB homologous genes in bread wheat via CODEHOP PCR primer design [J]. Pak J Biol Sci, 2008, 11(16): 1979-1986.
    [67] LUZHETSKYY A, WEISS H, CHARGE A, et al. A strategy for cloning glycosyltransferase genes involved in natural product biosynthesis [J]. Appl Microbiol Biotechnol, 2007, 75(6): 1367-1375.
    [68] MARFE G, DE MARTINO L, FILOMENI G, et al. Degenerate PCR method for identification of an antiapoptotic gene in BHV-1 [J]. J Cell Biochem, 2006, 97(4): 813-823.
    [69] COMINO C, HEHN A, MOGLIA A, et al. The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway [J]. BMC Plant Biol, 2009, 9(1): 30.
    [70] REVANKAR S G, FU J, RINALDI M G, et al. Cloning and characterization of the lanosterol 14alpha-demethylase (ERG11) gene in Cryptococcus neoformans [J]. Biochem Biophys Res Commun, 2004, 324(2): 719-728.
    [71] LOURENCO P M, ALMEIDA T, MENDONCA D, et al. Searching for nitrile hydratase using the Consensus-Degenerate Hybrid Oligonucleotide Primers strategy [J]. J Basic Microbiol, 2004, 44(3): 203-214.
    [72] ACEVEDO J P, REYES F, PARRA L P, et al. Cloning of complete genes for novel hydrolytic enzymes from Antarctic sea water bacteria by use of an improved genome walking technique [J]. J Biotechnol, 2008, 133(3): 277-286.
    [73] CARBONE A, ZINOVYEV A, KEPES F. Codon adaptation index as a measure ofdominating codon bias [J]. Bioinformatics, 2003, 19(16): 2005-2015.
    [74] CHEN M, LIU H, BAI Y, et al. Homologous-restraint polymerase chain reaction: an efficient and rapid protocol to clone multiple homologous genes [J]. Curr Microbiol, 2008, 57(1): 51-54.
    [75] LIN P K, BROWN D M. Synthesis of oligodeoxyribonucleotides containing degenerate bases and their use as primers in the polymerase chain reaction [J]. Nucleic Acids Res, 1992, 20(19): 5149-5152.
    [76] YAMAMOTO K, OKA M, KIKUCHI T, et al. Cloning of the creatinine amidohydrolase gene from Pseudomonas sp. PS-7 [J]. Biosci Biotechnol Biochem, 1995, 59(7): 1331-1332.
    [77] PAN Z, BARRY R, LIPKIN A, et al. Selection strategy and the design of hybrid oligonucleotide primers for RACE-PCR: cloning a family of toxin-like sequences from Agelena orientalis [J]. BMC Mol Biol, 2007, 8(32.
    [78] NEVES A M, THOMPSON G, CARVALHEIRA J, et al. Detection and quantitative analysis of human herpesvirus in pilocytic astrocytoma [J]. Brain Res, 2008, 1221(108-114.
    [79] ORTNER B, HUANG C W, SCHMID D, et al. Epidemiology of enterovirus types causing neurological disease in Austria 1999-2007: detection of clusters of echovirus 30 and enterovirus 71 and analysis of prevalent genotypes [J]. J Med Virol, 2009, 81(2): 317-324.
    [80] GALLI-TALIADOROS L A, SEDGWICK J D, WOOD S A, et al. Gene knock-out technology: a methodological overview for the interested novice [J]. J Immunol Methods, 1995, 181(1): 1-15.
    [81] WESTPHAL C H, LEDER P. Transposon-generated 'knock-out' and 'knock-in' gene-targeting constructs for use in mice [J]. Curr Biol, 1997, 7(7): 530-533.
    [82] BOGARAD L D, ARNONE M I, CHANG C, et al. Interference with gene regulation in living sea urchin embryos: transcription factor knock out (TKO), a genetically controlled vector for blockade of specific transcription factors [J]. Proc Natl Acad Sci U S A, 1998, 95(25): 14827-14832.
    [83] OTSUKI T, WANG J, DEMUTH I, et al. Assessment of mitomycin C sensitivity in Fanconi anemia complementation group C gene (Fac) knock-out mouse cells [J]. Int J Hematol, 1998, 67(3): 243-248.
    [84] KIM J M, LEE K H, LEE S Y. Development of a markerless gene knock-out system for Mannheimia succiniciproducens using a temperature-sensitive plasmid [J]. FEMSMicrobiol Lett, 2008, 278(1): 78-85.
    [85] WU Y, HE Y, ZHANG H, et al. A stringent dual control system overseeing transcription and activity of the Cre recombinase for the liver-specific conditional gene knock-out mouse model [J]. J Genet Genomics, 2008, 35(7): 431-439.
    [86] LI H T, LIU H, GAO X S, et al. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress [J]. Biochem Biophys Res Commun, 2009,
    [87] ZHANG X, ZHAO F, XU C, et al. Circadian rhythm disorder of thrombosis and thrombolysis-related gene expression in apolipoprotein E knock-out mice [J]. Int J Mol Med, 2008, 22(2): 149-153.
    [88] WANG Q, ZHOU S, CHEN J Y. Functions of CRK1 Gene of Candida albicans as Studied by Gene Knock-out [J]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 1999, 31(5): 545-552.
    [89] KARAKAS B, WEERARATNA A T, ABUKHDEIR A M, et al. p21 Gene knock Down Does Not Identify Genetic Effectors Seen with Gene Knock Out [J]. Cancer Biol Ther, 2007, 6(7):
    [90] SHIH J C, CHEN K. MAO-A and -B gene knock-out mice exhibit distinctly different behavior [J]. Neurobiology (Bp), 1999, 7(2): 235-246.
    [91] AUGUSTUS A, YAGYU H, HAEMMERLE G, et al. Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression [J]. J Biol Chem, 2004, 279(24): 25050-25057.
    [92] ABRAHAM M R, SELIVANOV V A, HODGSON D M, et al. Coupling of cell energetics with membrane metabolic sensing. Integrative signaling through creatine kinase phosphotransfer disrupted by M-CK gene knock-out [J]. J Biol Chem, 2002, 277(27): 24427-24434.
    [93] BLUHER M, PATTI M E, GESTA S, et al. Intrinsic heterogeneity in adipose tissue of fat-specific insulin receptor knock-out mice is associated with differences in patterns of gene expression [J]. J Biol Chem, 2004, 279(30): 31891-31901.
    [94] BORETSKY Y R, PYNYAHA Y V, BORETSKY V Y, et al. Development of a transformation system for gene knock-out in the flavinogenic yeast Pichia guilliermondii [J]. J Microbiol Methods, 2007, 70(1): 13-19.
    [95] CHEN Z C, GALILI U. Genes coding for anti-Gal in knock-out mice for the alpha1, 3Galactosyltransferase gene: analysis by hybridomas [J]. Transplant Proc, 2000, 32(5): 846-847.
    [96] GARCIA-SEVILLA J A, FERRER-ALCON M, MARTIN M, et al. Neurofilamentproteins and cAMP pathway in brains of mu-, delta- or kappa-opioid receptor gene knock-out mice: effects of chronic morphine administration [J]. Neuropharmacology, 2004, 46(4): 519-530.
    [97] CSABA G, KOVACS P, BUZAS E, et al. Serotonin content is elevated in the immune cells of histidine decarboxylase gene knock-out (HDCKO) mice. Focus on mast cells [J]. Inflamm Res, 2007, 56(2): 89-92.
    [98] RENNICK D, DAVIDSON N, BERG D. Interleukin-10 gene knock-out mice: a model of chronic inflammation [J]. Clin Immunol Immunopathol, 1995, 76(3 Pt 2): S174-178.
    [99] KATIC M, KENNEDY A R, LEYKIN I, et al. Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fat-specific insulin receptor knock-out mice [J]. Aging Cell, 2007, 6(6): 827-839.
    [100] GAO W, LIU Y, GIOMETTI C S, et al. Knock-out of SO1377 gene, which encodes the member of a conserved hypothetical bacterial protein family COG2268, results in alteration of iron metabolism, increased spontaneous mutation and hydrogen peroxide sensitivity in Shewanella oneidensis MR-1 [J]. BMC Genomics, 2006, 7(76.
    [101] PASZTY C. Transgenic and gene knock-out mouse models of sickle cell anemia and the thalassemias [J]. Curr Opin Hematol, 1997, 4(2): 88-93.
    [102] QIN S, KAWANO K, BRUCE C, et al. Phospholipid transfer protein gene knock-out mice have low high density lipoprotein levels, due to hypercatabolism, and accumulate apoA-IV-rich lamellar lipoproteins [J]. J Lipid Res, 2000, 41(2): 269-276.
    [103] SALMON A M, EVRARD A, DAMAJ I, et al. Reduction of withdrawal signs after chronic nicotine exposure of alpha-calcitonin gene-related peptide knock-out mice [J]. Neurosci Lett, 2004, 360(1-2): 73-76.
    [104] KATO S, TAKEYAMA K, KITANAKA S, et al. In vivo function of VDR in gene expression-VDR knock-out mice [J]. J Steroid Biochem Mol Biol, 1999, 69(1-6): 247-251.
    [105] NARASIPURA S D, AULT J G, BEHR M J, et al. Characterization of Cu,Zn superoxide dismutase (SOD1) gene knock-out mutant of Cryptococcus neoformans var. gattii: role in biology and virulence [J]. Mol Microbiol, 2003, 47(6): 1681-1694.
    [106] KOHARA K, YASUDA H, HUANG Y, et al. A local reduction in cortical GABAergic synapses after a loss of endogenous brain-derived neurotrophic factor, as revealed by single-cell gene knock-out method [J]. J Neurosci, 2007, 27(27): 7234-7244.
    [107] DZEJA P P, BAST P, PUCAR D, et al. Defective metabolic signaling in adenylate kinase AK1 gene knock-out hearts compromises post-ischemic coronary reflow [J]. JBiol Chem, 2007, 282(43): 31366-31372.
    [108] DE HOOGE A S, VAN DE LOO F A, BENNINK M B, et al. Male IL-6 gene knock out mice developed more advanced osteoarthritis upon aging [J]. Osteoarthritis Cartilage, 2005, 13(1): 66-73.
    [109] HENRIQUES R, JASIK J, KLEIN M, et al. Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects [J]. Plant Mol Biol, 2002, 50(4-5): 587-597.
    [110] MA C, LI L F, ZHANG B X. Metallothionein I and II gene knock-out mice exhibit reduced tolerance to 24-h sodium lauryl sulphate patch testing [J]. Clin Exp Dermatol, 2007, 32(4): 417-422.
    [111] MAIWALD D, DIETZMANN A, JAHNS P, et al. Knock-out of the genes coding for the Rieske protein and the ATP-synthase delta-subunit of Arabidopsis. Effects on photosynthesis, thylakoid protein composition, and nuclear chloroplast gene expression [J]. Plant Physiol, 2003, 133(1): 191-202.
    [112] MALHOTRA M, SRIVASTAVA S. An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion [J]. Antonie van Leeuwenhoek, 2008, 93(4): 425-433.
    [113] MATALON R, RADY P L, PLATT K A, et al. Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system [J]. J Gene Med, 2000, 2(3): 165-175.
    [114] MCCAUSLIN C S, WINE J, CHENG L, et al. In vivo retroviral gene transfer by direct intrafemoral injection results in correction of the SCID phenotype in Jak3 knock-out animals [J]. Blood, 2003, 102(3): 843-848.
    [115] WOLF S E, WOODSIDE K J. Transgenic and gene knock-out techniques and burn research [J]. J Surg Res, 2005, 123(2): 328-339.
    [116] GUIDOTTI J E, MIGNON A, HAASE G, et al. Adenoviral gene therapy of the Tay-Sachs disease in hexosaminidase A-deficient knock-out mice [J]. Hum Mol Genet, 1999, 8(5): 831-838.
    [117] STRASBERG P M, SKOMOROWSKI M A, WARREN I B, et al. Homozygous presence of the crossover (fusion gene) mutation identified in a type II Gaucher disease fetus: is this analogous to the Gaucher knock-out mouse model? [J]. Biochem Med Metab Biol, 1994, 53(1): 16-21.
    [118] SVEDIN P, HAGBERG H, SAVMAN K, et al. Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia [J]. J Neurosci,2007, 27(7): 1511-1518.
    [119] WEBB D J, WEN J, LYSIAK J J, et al. Murine alpha-macroglobulins demonstrate divergent activities as neutralizers of transforming growth factor-beta and as inducers of nitric oxide synthesis. A possible mechanism for the endotoxin insensitivity of the alpha2-macroglobulin gene knock-out mouse [J]. J Biol Chem, 1996, 271(40): 24982-24988.
    [120] TURAKAINEN H, SAARIMAKI-VIRE J, SINJUSHINA N, et al. Transposition-based method for the rapid generation of gene-targeting vectors to produce Cre/Flp-modifiable conditional knock-out mice [J]. PLoS ONE, 2009, 4(2): e4341.
    [121] BEUMER J H, FRANKE N E, TOLBOOM R, et al. Disposition and toxicity of trabectedin (ET-743) in wild-type and mdr1 gene (P-gp) knock-out mice [J]. Invest New Drugs, 2009,
    [122] ASAHI M, WANG X, MORI T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia [J]. J Neurosci, 2001, 21(19): 7724-7732.
    [123] LE MOINE C, FAUCHEY V, JABER M. Opioid receptor gene expression in dopamine transporter knock-out mice in adult and during development [J]. Neuroscience, 2002, 112(1): 131-139.
    [124] ZHANG J C, CHEN K J, LIU J G. Effect of assorted use of Chinese drugs for detoxifying and activating blood circulation on serum high sensitive C-reactive protein in apolipoprotein E gene knock-out mice [J]. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2008, 28(4): 330-333.
    [125] MUKHOPADHYAY S, HASSON M S, SANDERS D A. A continuous assay of acetate kinase activity: measurement of inorganic phosphate release generated by hydroxylaminolysis of acetyl phosphate [J]. Bioorg Chem, 2008, 36(2): 65-69.
    [126] REN N Q, LIN H L, ZHANG K, et al. Cloning, expression, and characterization of an acetate kinase from a high rate of biohydrogen bacterial strain Ethanoligenens sp. hit B49 [J]. Curr Microbiol, 2007, 55(2): 167-172.
    [127]逄晓阳,李晶,刘国文,等.利用转座子诱变构建反刍兽月形单胞菌乙酸生成关键酶基因缺失工程菌[D], 2006.
    [128]王庆昭.高产琥珀酸大肠杆菌的代谢工程[D], 2006.
    [129] PRISTAS P, PIKNOVA M, SPRINCOVA A, et al. Genetic variability of rumen Selenomonads [J]. Folia Microbiol (Praha), 2008, 53(2): 165-172.
    [130] LIAO S, POONPAIROJ P, KO K C, et al. Occurrence of agmatine pathway forputrescine synthesis in Selenomonas ruminatium [J]. Biosci Biotechnol Biochem, 2008, 72(2): 445-455.
    [131] CHANG M C, CHANG C C, CHANG J C. Cloning of a creatinase gene from Pseudomonas putida in Escherichia coli by using an indicator plate [J]. Appl Environ Microbiol, 1992, 58(10): 3437-3440.
    [132] NISHIYA Y, TODA A, IMANAKA T. Gene cluster for creatinine degradation in Arthrobacter sp. TE1826 [J]. Mol Gen Genet, 1998, 257(5): 581-586.
    [133]王洪振,周晓馥,宋朝霞,等.简并PCR技术及其在基因克隆中的应用[J].遗传, 2003, 02):
    [134]智强,李淑慧,高利宏,等.利用简并PCR克隆烟草节杆菌02181肌酸酶基因[J].第三军医大学学报, 2007, 12):
    [135] FUJIMOTO J, MATSUKI T, SASAMOTO M, et al. Identification and quantification of Lactobacillus casei strain Shirota in human feces with strain-specific primers derived from randomly amplified polymorphic DNA [J]. Int J Food Microbiol, 2008, 126(1-2): 210-215.
    [136] DIANCOURT L, PASSET V, CHERVAUX C, et al. Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination [J]. Appl Environ Microbiol, 2007, 73(20): 6601-6611.
    [137] BEAUFILS S, SAUVAGEOT N, MAZE A, et al. The cold shock response of Lactobacillus casei: relation between HPr phosphorylation and resistance to freeze/thaw cycles [J]. J Mol Microbiol Biotechnol, 2007, 13(1-3): 65-75.
    [138] GIRALT J, REGADERA J P, VERGES R, et al. Effects of probiotic Lactobacillus casei DN-114 001 in prevention of radiation-induced diarrhea: results from multicenter, randomized, placebo-controlled nutritional trial [J]. Int J Radiat Oncol Biol Phys, 2008, 71(4): 1213-1219.
    [139] NISBET D J, MARTIN S A. Effects of fumarate,l-malate, and anAspergillus oryzae fermentation extract ond-lactate Utilization by the ruminal bacteriumSelenomonas ruminantium [J]. Current Microbiology, 1993, 26(3): 133-136.
    [140] STARAI V J, GARRITY J, ESCALANTE-SEMERENA J C. Acetate excretion during growth of Salmonella enterica on ethanolamine requires phosphotransacetylase (EutD) activity, and acetate recapture requires acetyl-CoA synthetase (Acs) and phosphotransacetylase (Pta) activities [J]. Microbiology, 2005, 151(Pt 11): 3793-3801.
    [141] GORRELL A, LAWRENCE S H, FERRY J G. Structural and kinetic analyses of arginine residues in the active site of the acetate kinase from Methanosarcinathermophila [J]. J Biol Chem, 2005, 280(11): 10731-10742.
    [142] KNORR R, EHRMANN M A, VOGEL R F. Cloning of the phosphotransacetylase gene from Lactobacillus sanfranciscensis and characterization of its gene product [J]. J Basic Microbiol, 2001, 41(6): 339-349.
    [143] LIU S J, STEINBUCHEL A. A novel genetically engineered pathway for synthesis of poly(hydroxyalkanoic acids) in Escherichia coli [J]. Appl Environ Microbiol, 2000, 66(2): 739-743.
    [144] [美]J.莎姆布鲁克.分子克隆实验指南(第三版) [M].科学出版社, 2002.
    [145] WENDISCH V F, SPIES M, REINSCHEID D J, et al. Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes [J]. Arch Microbiol, 1997, 168(4): 262-269.
    [146] WOLFE A J. The Acetate Switch [J]. Microbiol Mol Biol Rev, 2005, 69(1): 12-50.
    [147]朱彤波,杨蕴刘,焦瑞身.大肠杆菌抗氟乙酸变株的选育及应用[J].微生物学报, 2000, 40(01): 100-104.
    [148]李志敏,叶勤.大肠杆菌乙酸代谢突变株的选育和特性研究[J].微生物学报, 2001, 41(02): 421-425.
    [149]阮红, R.GERSTMEIR, SCHINKE S, et al. amrG1基因在谷氨酸棒杆菌乙酸活化中的作用[J].中国科学C辑, 2004, 34(03): 223-231.
    [150] PAYNTER M J, ELSDEN S R. Mechanism of propionate formation by Selenomonas ruminantium, a rumen micro-organism [J]. J Gen Microbiol, 1970, 61(1): 1-7.
    [151] TOYODA Y, SAKO T, MIZUTANI H, et al. A bolus infusion of xylitol solution in the treatment of cow ketosis does not cause a surge in insulin secretion [J]. J Vet Med Sci, 2008, 70(10): 1091-1093.
    [152] IWAMOTO M, ASANUMA N, HINO T. Effects of Energy Substrates on Nitrate Reduction and Nitrate Reductase Activity in a Ruminal Bacterium, Selenomonas ruminantium [J]. Anaerobe, 2001, 7(6): 315-321.
    [153] HAYNIE S L, WHITESIDES G M. Preparation of a mixture of nucleoside triphosphates suitable for use in synthesis of nucleotide phosphate sugars from ribonucleic acid using nuclease P1, a mixture of nucleoside monophosphokinases and acetate kinase [J]. Appl Biochem Biotechnol, 1990, 23(3): 205-220.
    [154] KONDO H, TOMIOKA I, NAKAJIMA H, et al. Construction of a system for the regeneration of adenosine 5'-triphosphate, which supplies energy to bioreactor [J]. J Appl Biochem, 1984, 6(1-2): 29-38.
    [155] LAAKEL M, LEBRIHI A, KHAOUA S, et al. Relationship between valine, fatty acids,and spiramycin biosynthesis in Streptomyces ambofaciens [J]. Can J Microbiol, 1994, 40(8): 672-676.
    [156] LATIMER M T, FERRY J G. Cloning, sequence analysis, and hyperexpression of the genes encoding phosphotransacetylase and acetate kinase from Methanosarcina thermophila [J]. J Bacteriol, 1993, 175(21): 6822-6829.
    [157] MATSUMOTO T, TAO W, SHA'AFI R I. Demonstration of calcium-dependent phospholipase A2 activity in membrane preparation of rabbit neutrophils. Absence of activation by fMet-Leu-Phe, phorbol 12-myristate 13-acetate and A-kinase [J]. Biochem J, 1988, 250(2): 343-348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700