用户名: 密码: 验证码:
外循环厌氧反应器处理城镇污水新工艺及数学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧工艺是一种低能耗、投资省、污泥产量低、占地面积少的污水处理技术,在我国一些气候适合的地区,利用厌氧工艺处理城镇污水将是一项很有吸引力的技术。本课题针对城镇污水的特点开发出了低能耗的新型外循环厌氧反应器(OCAR),通过小试试验对比研究了上流式厌氧污泥床(UASB)、厌氧膨胀颗粒污泥床(EGSB)和OCAR处理模拟城镇污水的稳定运行和冲击,重点考察了上升流速、水力停留时间、有机负荷等因素对OCAR处理效果的影响。并以中试装置进一步研究了EGSB和OCAR处理实际城镇污水的性能,详细分析了进水悬浮物(SS)、溶解氧和温度对OCAR处理城市污水的影响及微生物的变化,并采用停留时间分布(RTD)模型、弥散模型和厌氧消化1号模型(ADM1)对反应器的性能进行了分析,建立了适用于OCAR的数学模型。
     在小试实验中,对比研究了厌氧反应器在低温和中温启动的两种方式。出水中的COD、碱度、VFA、辅酶F_(420)和胞外多聚物ECPs等表明,反应器启动的快慢顺序为OCAR>EGSB>UASB。随着上升流速的提高,OCAR反应器的出水SS明显低于EGSB反应器,当上升流速为9.0 m/h时最大相差值达到58mg/L,表明OCAR通过将出水与回流水在沉淀区进行分离,成功地降低了出水SS的流失;随着停留时间的降低,OCAR、EGSB去除污染物的有机负荷量增加,当停留时间为2.08 hr时,有机负荷达到3.14 kg COD/(m~3·d),此时出水COD稳定达到城市污水二级排放标准;停留时间与有机负荷去除量的关系式为:OCAR反应器Y=0.26 Ln(x)+2.13。UASB、EGSB、OCAR处理城市污水过程中的基质降解规律可以用Monod模型来拟合。
     通过中试反应器,具体研究了常温下OCAR处理实际城镇污水的效果。由于城市污水的波动性大,OCAR反应器在采用穿孔管布水系统时处理效率不稳定,出水COD波动明显;通过改造采用了高位脉冲布水系统代替了穿孔管布水系统进水,不仅有效的降低了进水波动对反应器运行稳定的影响,同时提高了反应器的处理效果;随着回流比的增加,EGSB和OCAR出水中SS也逐渐加大,但是OCAR出水SS比EGSB的明显要低(最大相差了66.3mg/L),即使在回流比增大到30时,出水COD并未出现较大的波动。城市污水中的悬浮物较多,但能够有效地在OCAR反应器中被降解,不会在反应器中积累。OCAR采用了出水回流,较高的上升流速提供最佳混合条件,强化了基质的扩散、传递,同时能够保持足够的污泥量在反应器内,可以补偿温度波动对反应器运行的影响。另外由于城市污水的COD较低,抵消了低温对厌氧降解的不利影响。因此OCAR在常温下处理低浓度的城市污水时,温度的波动基本不会影响系统的运行。溶解氧与厌氧颗粒污泥的SMA具有较好的线性关系,常温下其线性关系式为:Y=-2.9885X+90.162;但是厌氧颗粒污泥由于兼性菌多包围在颗粒的外围,能够及时消耗完进水中的溶解氧,对颗粒内的产甲烷菌起到保护作用。
     通过对反应器污泥量平衡控制的研究表明,当反应器容积负荷Y与出水TSS(X)满足以下关系式时,才能保持反应器里污泥量平衡以维持正常的运行:Y≥X×0.8/HRT×y×η×0.7式中η为COD去除率平均值,y产率系数为,HRT为停留时间。对厌氧颗粒污泥的性质进行了研究,在中温处理高负荷柠檬酸废水IC的颗粒污泥粒径平均为1.337mm,而接种到OCAR中后,由于有机负荷和温度的降低,污泥的平均粒径30天后下降到1.106mm。颗粒污泥接种后驯化时间越长,颗粒污泥SMA值越高、产甲烷菌的活性越强;随着容积负荷的增加,颗粒污泥中辅酶F_(420)的量也随着增加。从中温处理柠檬酸废水的IC厌氧反应器取得接种污泥微生物种属为15个,经过在常温处理城市污水的外循环反应器驯化后,有9个种属被淘汰,并新生出6个种属。在10℃、20℃、30℃的不同温度下运行,厌氧颗粒污泥的微生物群落结构和种群数量存在明显的演替过程,其PCR-DGGE图谱相似性系数Cs在53.5%~74.5%,温度相差越大,Cs越小。
     采用RTD模型对比分析了EGSB和OCAR的水力学特性,离散数D和死区百分率表明,在高的上升流速时,EGSB存在沟流现象,死区百分率升高;而OCAR由于采用了中部水回流、改进了布水系统,因此上升流速越高,离散数D越大,返混效果越好,当上升流速为9.00m/h,死区百分率减少到0.87%。采用弥散模型对不同上升流速下OCAR污泥浓度进行了模拟计算,在模拟过程中,通过纳入三相分离器分离效率(SE)的概念实现了模型对出水SS的模拟,模拟数据的标准偏差小于6%。在参考ADM1的基础上,建立了适用于OCAR的动力学模型。该模型对OCAR反应器的模拟结果的平均相对误差在10%以下,与实际运行结果基本吻合,并能真实的反映反应器的运行情况。
Anaerobic treatment is a technology of low energy consumption, low construction and operating costs, less sludge output and small layout area. It will be very attractive for some regions of our country, where the climate is amenable. So the subject of the paper is to develop a new type of energy saving process-the Outside Circling Anaerobic Reactor (OCAR). Through small-scale comparative study of the Up-flow Anaerobic Sludge Blanket (UASB), Expanded Granular Sludge Bed (EGSB) and OCAR treating synthetic municipal wastewater, stabilization shock of process operation were investigated, on which effects of factors such as the up-flow velocity, HRT, organic load on OCAR were focused. Characters of municipal wastewater treatment by EGSB and OCAR were studied; furthermore, effects of suspended solids (SS), dissolved oxygen and temperature on OCAR treating municipal wastewater were analyzed; also, residence time distribution (RTD) model, diffusion models and Anaerobic Digestion Model No. 1 (ADM1) were used to analyze the reactor performance.
     Start-up modes of low-temperature and high-temperature were studied comparatively using seeded granular sludge that has been adapted to the municipal wastewater. Analyses of COD, alkalinity, VFA, Coenzyme F420 and EPS etc indicated that the start speed were in the order of OCAR>EGSB>UASB. With the increasing of flow rate, effluent SS of OCAR was significantly lower than EGSB. When the up-flow velocity was 9.0 m/h , the value of difference reaches its biggest as 58mg/L, which indicated that through separation of effluent and recycled stream before precipitation areas, OCAR can reduce effluent SS significantly. Along with the lower residence time, organic pollutants loads of both OCAR and EGSB increases, when the residence time is 2.08 hr, the organic load reach 3.14 kg COD/(m~3·d), and the effluents meet secondary sewage discharge standards stability; relationship between the organic loading and HRT is: Y=0.26 Ln(x) + 2.13.Hours of continuous experiments showed that substrate degradation of UASB, EGSB and OCAR fit the Monod model.
     A pilot experiment was established in a municipal wastewater treatment plant, and actual performance of OCAR at room temperature was discussed specifically. As quality of municipal wastewater fluctuated much, The performance of OCAR pilot installations with perforated pipe water distribution system became unstable and effluent COD fluctuated obviously, the transformation used by the high pulsed water distribution system instead of perforated pipe water distribution system inundated, which not only effectively reduced effect of the flow fluctuations on the reactor operation stability, but also improved efficiency of the reactor; with increasing of reflux ratio, effluent SS of EGSB and OCAR gradually increased too. However, effluent SS of OCAR was obviously lower than that of EGSB (with the largest difference of 66.3 mg/L). Even when the reflux ratio increased to 30, effluent COD of OCAR did not change much. SS were high in the municipal wastewater, but can be effectively depredated in OCAR without accumulation in the reactor. OCAR used effluent recycle and higher up-flow rate to make better mixing conditions, strengthening the substrate diffusion and transmission; at the same time it can maintain adequate quantity of sludge in the reactor, which can compensate for the fluctuations of the temperature. As the influent COD of the municipal wastewater was low, adverse effects of low-temperature on anaerobic degradation can be offset.
     Therefore, temperature fluctuations will not affect the basic operation of the system of OCAR at room temperature treatment of low concentrations of municipal wastewater. DO and SMA of the anaerobic granular sludge fited a good linear relationship of Y =- 2.9885X +90.162 at room temperature; as anaerobic granular sludge has facultative bacteria buildings in the periphery of particles, with timely completion influent consumption of dissolved oxygen, it can play a protective role for particles within the methane-producing bacteria. In the media-temperature processing load IC citric acid wastewater sludge particles for the average particle size 1.337 mm, sludge average size dropped to 1.106 mm in OCAR after inoculation of 30 days, as the organic load and temperature decrease. The study of the reactor control the balance through sludge showed that only when the reactor volume load Y and effluent TSS (X) meet the following relationship, can the reactor maintain sludge balance to maintain the normal operation:
     In the formula,ηstands for the average removal efficiency of COD, average, y yield coefficient, HRT hydraulic retention time. The longer the granular sludge inoculated, the more SMA of the granular sludge, and the greater the methane-producing bacteria activity is; Along with the increase in volume load, Coenzyme F420 of the granular sludge increased. There were 15 microbial species in the sludge of media-temperature processing citric acid wastewater while 9 of them were eliminated, and six new species were generated from the normal temperature processing municipal wastewater treatment. After treatment at temperature of 10℃, 20℃, 30℃respectively, microbial community structure and population size of the anaerobic granular sludge marked the succession process, PCR-DGGE map similarity coefficient Cs is 53.5% - 74.5%; the greater the temperature difference, the smaller Cs is.
     RTD models were used to analyze the hydraulic characters of EGSB and OCAR. Discrete parameter D and the dead percentage showed that when the up-flow rate was high, EGSB existed ditch stream with increase of dead percentage; OCAR used a central return, which improved the water distribution system. The higher the velocity increases, the greater the discrete parameter D is, the better the mixed results were. When the up-flow rate rose to 9.00 m/h, the dead zone percentage decreased to 0.87%. Dispersion model was used for different velocity increased under OCAR sludge concentration of simulation, the simulation process, through the inclusion ofthree-phase separator separation efficiency (SE) to achieve the concept of the modelto simulate the effluent SS. Standard deviation of the simulation data was less than 6%.
引文
陈坚.环境生物技术[M].北京:中国轻工业出版社,1999.
    陈坚,李春生,伦世仪.厌氧颗粒污泥的形成机制[J].中国环境科学,1993,13(5):334-338.
    陈敏恒.化工原理[M].北京:化学工业出版社,1998年8月.
    陈玉,刘峰,王健晨等.上流式厌氧污泥床(UASB)处理制药废水的研究[J].环境科学,1994,15(1):50-52.
    戴秋萍.UASB-接触氧化-絮凝沉淀工艺处理低浓度生活污水小试研究[J].中国沼气,2002,20(2):8-11
    董良德,张民,陆上岭等.我国氧化塘废水处理的现状简述[J].污染防治技术,1995,8(1):52-55
    方先金.SBRS艺特性及降解过程的研究[J],给水排水,2000,7:18-22
    冯亮,吴静,陆正禹.高温厌氧颗粒污泥的培养试验研究[J].中国沼气,2003,21(3):12-14
    傅嘉媛,董发开.折流板厌氧生物接触池处理城镇污水(中试)[J].中国给水排水2003(19):17-19
    傅嘉媛,董发开.组合式折流板厌氧池处理城镇污水(中试)[J].中国给水排水2003(19):1-4
    傅山岗,李宗义.厌氧颗粒污泥的超微结构分析[J].生物技术,2004,14(4):69-71.
    郭晓磊,胡勇有,高孔荣.厌氧颗粒污泥及其形成机理[J].给水排水,2000,26(1):33-38.
    郝星华译.城镇污水厌氧预处理的应用和发展趋势[J].国外环境科学技术,1993,4:54-58
    贺延龄.废水的厌氧生物处理.北京[M]:中国轻工业出版社,1998
    胡纪萃,周孟津,左剑恶.废水厌氧生物处理理论与技术(第一版)[M]北京:中国建筑工业出版社,2003
    胡启春.国外厌氧处理城镇生活污水技术的应用现状和发展趋势[J].中国沼气,1998,16(2):11-15
    黄爱群,傅以钢,陈皓等.降解2-氯酚厌氧颗粒污泥中微生物种群结构研究[J].同济大学学报(自然科学版),2006,34(12):1651-1656
    蒋柱武,罗琳,赵建夫.HAR—生物接触氧化处理生活污水[J],工业水处理,2005,25(7):23-26
    李波,徐高田,邹伟国等.复合式厌氧污泥床反应器处理城市生活污水的研究[J].环境技术,
    李高洁.厌氧膨胀颗粒污泥床(EGSB)反应器水力混合特性研究,合肥工业大学硕士论文,2004
    李亚新译.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社,2001.
    李宗义,王海磊,程彦伟.成熟厌氧颗粒污泥的结构及其特征[J].微生物学通报,2003, 30(3):56-59.
    刘鸿志.国外城市污水处理厂的建设及运行管理[J].世界环境,2000,1:31-33.
    刘双江,胡纪萃,顾夏声.厌氧颗粒污泥形成过程的微生物学研究[J].中国环境科学,1992,12(6):405-408.
    刘永红,贺延龄,刘宗宽等.厌氧反应器内颗粒污泥沉降速率的测定与研究[J].工业用水与废水,2005,36(5):45-48
    刘双江,唐一,胡纪萃.UASB反应器中厌氧污泥颗粒化的微生物学机理[J].中国沼气,1991,
    陆正禹,王勇军.UASB处理链霉素废水颗粒污泥培养技术探索[J].中国沼气,1997,15(3):11-15
    雒文生,张青,蔡振华.UASB处理低浓度城市生活污水的中试试验[J].环境工程,2000,59(2):1-5
    龙腾锐,郭劲松,何强等.厌氧流化床(AVBR)常温处理城市污水的试验研究[J].重庆建筑工程学院学报,1993,15(2):14-21
    裘湛,张之源.高速厌氧反应器处理城镇污水的现状与发展[J].合肥工业大学学报(自然科学版),[J].2002,25(1):117-122
    任洪强,厌氧膨胀颗粒污泥床反应器工作特性研究,无锡轻工业大学博士学位论文,2000
    唐受印,戴友芝等.废水处理工程[M].北京:化学工业出版社,1998年4月
    王长辉.微量元素在厌氧生化处理中的应用[J].福建环境,1999,16(3):24-25.
    王成瑞,蒋光明.中小城镇污水处理工艺优化研究[J].中国科技成果,2004,6:13-16.
    王翠兰,宋铁红,高艳娇.一种低能耗污水处理技术[J].长春工程学院学报(自然科学版),2005,4(6):24-25
    王建龙,韩英健,钱易.折流式厌氧反应器(ASR)的研究进展[J].,应用与环境生物学报,2000,6(5):490-498
    王凯军,Van der Last A.R.M.,Lettinga G.水解与颗粒污泥膨胀床串联工艺处理城镇污水[J].中国给水,1999,15(8):19-23
    王凯军,Van der Last A.R.M.,Lettinga G.厌氧处理的污泥稳定化研究[J].中国给水排水,2001,17(12):69-72
    王凯军.生活污水厌氧后处理工艺研究—微氧升流式污泥床反应器[J].中国给水排水,1998,14(3):20-23
    王凯军,左剑恶.UASB工艺的理论与工程实践[M].北京:中国环境科学出版社,2000
    吴慧芳,孔火良.城镇小型生活污水处理设备及其展望[J].工业安全与环保,2003,29(5):17-20.
    萧云开.升流式厌氧生物滤池(AF)处理低浓度废水应用实例[J].市场推介,2006,6:216-216
    谢汉方,苏希.UASB系统启动过程中颗粒污泥形成全过程的机理性分析[J].微生物学杂志, 1993,5:25-28
    邢德峰,任南琪,宫曼丽.PCR-DGGE技术解析生物制氢反应器微生物多样性[J].环境科学,2005,26(2):172-176
    荆肇乾,吕锡武,林国峰等.小型污水处理工艺及其应用展望.中国化学会第六届水处理化学大会暨学术讨论会论文集,南京,2002.154-157
    许景文.日本生活污水处理技术的趋向[J].上海环境科学,1995,14(2):38-40
    徐向阳,冯孝善.工业有机废水为共基质培养降解五氯酚厌氧颗粒污泥[J].环境科学,2001,22(3):108-112
    徐向阳,冯孝善.五氯酚(PCP)污染土壤厌氧生物修复技术的初步研究[J].应用生态学报,2001,12(3):439-44
    徐向阳,郑平,冯孝善.厌氧附着膜膨胀床反应器内生物颗粒特性的初步研究[J],环境科学,1989,10(2):10-15。
    徐俊伟,徐高田,邹伟国.复合式厌氧污泥床反应器处理城市生活污水的研究[J].环境技术,2002,20(4):33-36
    鄢恒珍,陈向阳,何于坤.城镇污水处理实用技术分析[J].安全与环境工程,2003,10(3):31-34
    杨琦,尚海涛.厌氧颗粒污泥膨胀床(ECSB)反应器处理生活污水中试研究,中国沼气,2006,24(4):13-16
    杨秀山,汪洪杰,石晓东等.厌氧一缺氧一好氧工艺去除废水中COD,氮和磷的究[J].中国环境科学,1995,4:298-291
    聂丽君.化学混凝对UASB工艺处理低浓度生活污水的影响[J].污染防治技术,2003,16(2):37-38
    张亚雷,周雪飞,赵建夫;厌氧消化数学模型[M],同济大学出版社,2004
    张旭栋,刘燕,邓丛蕊.常温下膨胀颗粒污泥床(EGSB)反应器处理城市污水[J].复旦学报(自然科学版),2006,45(3):353-358
    张希衡编著.废水厌氧生物处理工程[M].中国环境科学出版社,北京,1996
    赵健良,童褪,沈耀良.厌氧(水解酸化)一好氧生物处理工艺及其在我国难降解有机废水处理中的应用[J].苏州大学学报(工科版),2002,2:84-88
    中华人民共和国国家标准《城镇污水处理厂污染物排放标准》(GB 18918-2002)
    周雹.国内外城镇污水处理技术概况[J].天津市政设计(给排水专辑),2003,3(4):74-89
    周琪.UASB反应器处理低浓度有机废水的机理研究[J].同济大学学报,1995,23(2):192-196
    周琪,胡纪萃,顾夏声.升流式厌氧污泥层反应器水力混合特性研究[J].环境科学学报,1995,15(2):170-177
    周生贤。国家环保总局局长周生贤在主要污染物减排形势分析会上的讲话,中国环境报, 2007-02-28
    朱静平,王成端.适于中小城镇污水处理工艺的流程研究[J].西南工学院学报,2002,17(1):45-51
    左剑恶.厌氧消化过程中的酸碱平衡及PH控制的研究[J].中国沼气,1998,16(1):3-7
    左剑恶,凌雪峰.EGSB反应器的动力学模型研究-模型的建立[J].中国沼气,2003,21(1):3-7
    Ahn Y.H,Hwang I.S,Min K.S.ANAMMOX and partial denitritation in anaerobic nitrogen removal from piggery waste[J].Water Science and Technology,2004,49(5-6):145-153
    Alette A.M.,Langenhoff David C,et al.Treatment of dilute wastewater using an anaerobic baffled reactor:effect of low temperature[J].Water Research,2000,34(15):3867-3875
    Amann R I,Stromley J,Devereux R,et al.Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms[J].Apply Environment Microbiology,1992,58(2):614-623.
    Andrews J F.Kinetics and characteristics of volatile acid production in anaerobic fermentation process[J].Air and Water Pollution,1965,9(7/8):127-1621
    Anthony G.Collins.Anaerobic treatment of low-strength domestic wastewater using an anaerobic expanded bed reactor[J].Journal of Environ.Engineering,1998,4(7):652-659
    Barns S M,Takala S L,Kuske C R.Wide distribution and diversity of members of the bacterial kingdom Acdiobacterium in the environment[J].Apply Environment Microbiology,1999,65(4):1731-1737.
    Barber,William P,Stuckey,David C.The use of the anaerobic baffled reactor(ABR)for wastewater treatment:a review[J].Water Research,1999,33,(7):1559-1578
    Bogte,J.J.Anaerobic treatment of domestic wastewater in small scale UASB reactors[J].Water Science and Technology,2001,27(9):75-52
    Chernicharo CAL.Feasibility of the UASB/AF system for domestic sewage treatment in developing countries[J].Water Science and Technology,1998,38(8-9):325-332
    Chui H.K,Fang H.H.P.Histological analysis of microstructure of UASB granules[J].Environmental.Engngineering,1994,120(5):1322-1326.
    Contois D E.Kinetics of bacterial growth:relationship between population density and specific growth rate of continuous cultures[J].Journal of genal Microbiology,1959,21:40-50.
    Costello D J.Dynamic modeling of a single 2stage high rate anaerobic reactor I.model derivation[J].Water Research,1991,25(7):847-8581
    Delbes C,Leclerc M,Zumstein E,et al.A molecular method to study population and activity dynamics in anaerobic digesters[J].Water Science and Technology,2001,43(1):51-57.
    DeLong E F.Archaea in coastal marine environments[J].Proc Natl Acad Sci U S A,1992, 89(12):5685-5689.
    De Man A W A. Anaerobic treatment of sewage using a granular sludge bed UASB reactor [A]. Proceedings in Anaerobic Treatment: a Grown-up Technology, 1986, 451-466
    Derycke D, Verstraete W. Anaerobic treatment of domestic wastewater in a lab and pilot scale polyurethane carrier reactor [A] .Proceedings in Anaerobic Treatment: a Grown-up Technology, 1986,437-450
    Dubourgier H.C, Prensier G, Albagnac G. Structure and microbial activities of granular anaerobic sludge.In:Lettinga G, Zehnder AJB, Grotenhuis JTC, HulshoffPolLW, editors. Granular anaerobic sludge: microbiology and technology. The Netherlands: Pudoc Wageningen; 1987: 18-33.
    Dolfing J, Mulder J W. Comparison of methane production rate and coenzyme F420 content of methanogenic consortia in anaerobic granular sludge [J]. Apply Environmental Microbiology, 1988, 49:1142-1145
    Elmitwalli Tarek A. Low temperature treatment of domestic sewage in upflow anaerobic sludge blanket and anaerobic hybrid reactors [J]. Water Science and Technology, 1999, 39(5): 177-185
    Fang H H. Microbial distribution in UASB granules and its resulting effects [J]. Water Science and Technology, 2000, 42(12): 201-208
    Fukuzaki S, Nishio N, Nagai S. The use of polyurethane foam for microbial retention in methanogenic fermentation of propionate [J]. Apply of Microbiology Biotechnology, 1990, 34:408 - 13
    Gnanadipathy A. Treatment of a domestic wastewater with UASB reactor [JJ. Water Science and Technology, 1993, 27(1):195-203
    Godon J J, Zumstein E, Dabert P, et al. Molecular microbial diversity of an anaerobic digester as determined by small-subunit rDNA sequence an analysis [J]. Apply of Environmental Microbiology, 1997, 63(7): 2802-2813
    Gouranga C.Banik.Structure and methanogenic activity of granules from an ASBR treating dilute wastewater at low temperatures [J]. Water Science and Technology, 1997,36(6-7):149-156
    Grin P. Anaerobic treatment of raw sewage at lower temperature [A] .Proceedings of the European Symposium on Anaerobic Wastewater Treatment, 1983, 335-347
    Guiot S R, Lavoie L, Rocheleau S, et al. Extracellular polymeric substance in anaerobic granules. Sixth International Symposium on Anaerobic Digestion [J]. LAWPRC, Sao Paulo, Brazil, 1992.12
    Hill D T. A dynamic model for simulation of animal waste digestion[J], Journal of Water Pollution Control Federation, 1977, 49(10): 2129-2143
    Hulshoff Pol LW, De Zeeuw WJ, Velzeboer CTM, et al. Granulation in UASB reactors [J]. Water Science and Technology, 1983,15(8/9):291-304.
    Hyun Seong Jeong, Yong Hwan Kima, Sung Ho Yeom et al. Facilitated UASB granule formation using organic - inorganic hybrid polymers [J]. Process Biochemistry, 2005, 40(1): 89-94
    I Bod K B Herdova, M Drtil. Anaerobic treatment of the municipal wastewater under Psychrophlic conditions [J]. Bioprocess Engineering, 2000, 22:385-390
    Igor Bodik, et al. Nitrogen removal in an anaerobic baffled filter reactor with aerobic post-treatment [J]. Bioresource Technology, 2003, 86:79-84
    Imai T, Ukita M, Liu J et al. Advanced start up of UASB reactors by adding of water absorbing polymer [J]. Water Science and Technology, 1997, 36(7):399 - 406
    Ir.W.Verstraete, et al. Proceedings of the 8th international conference on anaerobic digestion [A] , Sendai international Center, Sendai, Japan. 1997:67
    I.T. Ukita M, J Liu, M Sekine, H. Nakanishi et al. Advanced starts up of UASB reactors by adding of water absorbing polymer [J]. Water Science and Technology, 1997, 36(7) :399 - 406
    Jeison D. and Chamy R. Comparison of the behaviors of expanded granular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewater treatment [J].Water Science and Technology, 1999,40(8): 91-97.
    Kalker T.J.J. Transfer and acceptance of UASB technology for domestic wastewater: two case studies [J]. Water Science and Technology, 1999, 39(5): 219-225
    Kato M. T., Field J. A., Lettinga G. The anaerobic treatment of low strength wastewaters in UASB and EGSB reactors [JJ. Water Science and Technology, 1997, 36(6-7): 375-382.
    Kuniyasu K., Ohomri S. Anaerobic-aerobic treatment of a dye wastewater by combination of RBC with activated sludge [JJ. Water Science and Technology, 1993, 27(1): 1213-1223
    Last van der A R M, Lettinga G. Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial velocities [JJ. Water Science and Technology, 1992, 25: 167-178
    Lettinga, G. Challenge of psychrophilic anaerobic wastewater treatment [J]. Trends in Biotechnology, 2001, 19(9): 363-370
    Lettinga G. Use of the upflow sludge blanket (USB) reactor concept for biological waste water treatment [JJ. Biotechnology and bioengineering, 1980,22: 699-734
    Lettinga G. Anaerobic treatment of domestic sewage and wastewater [JJ. Water Science and Technology, 1993,27(9): 67-73
    Lettinga G., et al. Advanced anaerobic wastewater treatment in the near future [J] .Water Science and Technology, 1997,35(10): 5-12
    Lettinga G, Hulshoff Pol L W. UASB-process design for various type of wastewater [J]. Water Science and Technology, 1991,24:87-107
    Lettinga.G., Ro ersma R., Grin P. Use of the upflow sludge blanket(USB) reactor concept for biological waste water treatment[J]. Biotechnology and bioengineering, 1980,22: 699-734
    Lettinga G, Pette KC, De Vletter R et al. Anaerobic treatment of beet sugar wastewater on semi-technical scale. CSM-report.The Netherlands: Amsterdam; 1977, [in Dutch].
    Lin C.Y., Noike K.S, J.Matsumoto. Temperature characteristics of the methanogenesis process in anaerobic digestion [J]. Water Science and Technology, 1987, 19:299
    Liu Yu, Tay Joo-Hwa. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge [J]. Water Research, 2002,36(7): 1653-1665
    Macleod A, Guiot S R, Costerton J W. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed filter reactor [J]. Apply of Environmental Microbial, 1990, 56:1598-1607
    McHugh S, Carton M, Mahony T, et al. Methanogenic population structure in a variety of anaerobic bioreactors [J]. FEMS Microbiology Letter, 2003, 219(2):297-304
    McLeod FA, Guiot SR, Costerton J.W. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor [J]. Apply of Environmental Microbial, 1990, 56(6): 1598-607.
    Miron Y. The role of sludge of residence time in the hydrolysis of lipids, carbohydrates and proteins during the anaerobic treatment of domestic sewage[J] .Water Research, 2000, 34:1705-1713
    Monroy O. Anaerobic digestion of water hyacinth as a highly efficient treatment Process for developing countries [A] .Proceedings of the 5th International Symposium on Anaerobic Digestion, 1988, 747-757
    Morgan J.W, Evison L.M. Forster C.F. Internal architecture of anaerobic sludge granules [J]. Journal of Chemical Technology Biotechnology, 1991, 50: 211-26
    Morgan J.W, Evison L.M, Forster C.F. Upflow sludge blanket reactors: the effect of bio-supplements on performance and granulation [J]. Journal of Chemical Technology Biotechnology, 1991, 52: 243 - 55
    Mosey F E. Mathematical Modeling of the anaerobic digestion process: regulatory mechanisms for the formation of short2chain volatile acids from glucose [J]. Water Science and Technology, 1983, 15:209-2321
    Ndon, Udeme J. Effects of temperature and hydraulic retention time on anaerobic sequencing batch reactor treatment of low-strength wastewater [J]. Water Research, 1997, 31(10): 2455-2466
    Nicolella, C. Van Loosdrecht. Wastewater treatment with particulate biofilm reactors [J]. Journal of Biotechnology, 2000, 80(1): 1-33
    Pahl M, Lunze J. Dynamic modeling of a biogas tower reactor [J].Chemical Engineering Science, 1998, 53(5):995-1007
    Pereboom J.H.F. Methanogenic granule development in full scale Internal Circulation Reactors [JJ. Water Science and Technology, 1994, 30(8): 9-21
    Pereboom J.H.F. Size distribution model for methanogenic granules from full scale UASB and IC reactors [J]. Water Science and Technology, 1994, 30(12):211-21.
    Petreira M.A., Roest K., Stains A.J.M. et al. Molecular monitoring of microbial diversity in expanded granular sludge bed (EGSB) reactors treating oleic acid [JJ. FEMS Microbiology, 2002, 41:95-103
    Petruy R. and Lettinga G. Digestion of a milk-fat emulsion [J].Bioresource Technology, 1997, 61:141-149
    P L McCarty, F E Mosey. Modeling of anaerobic digestion processes (A discussion of concepts) [J]. Water Science and Technology, 1991, 24(8): 17-33
    Quarmby J, Forster C F. An examination of the structure of UASB granules [J]. Water Research, 1995, 29(11):2449-2454
    Ranalli-G, Terzi-C, Bargna-R et al. Use of bioindicators to monitoring aerobic [J]. Water Science and Technology, 1996, 33(3):85-98
    Rebac Saliha. Psychrophilic anaerobic treatment of low strength wastewaters [JJ. Water Science and Technology, 1999, 39(5): 203-209
    Ricardo Franci. Combining Upflow Anaerobic Sludge Blanket (UASB) Reactors and Submerged Aerated Biofilters for Secondary Domestic Wastewater Treatment [J]. Water Science and Technology, 1999, 40(8):71-79
    Sam-Soon PALNS, Loewenthal RE, Dold PL. Marais GvR. Hypothesis for pelletisation in the upflow anaerobicsludge bed reactor [JJ.Water SA, 1987, 13(2):69-80
    Sam-Soon P A L N S, Loewenthal R E, Dold P L et al. Pelletization in upflow anaerobic sludge bed reactors. In: Anaerobic Digestion[J].Pergamon, Oxford,1988,55-60
    Sanz, I., Fdz-Polanco F. Low temperature treatment of municipal sewage in anaerobic fluidized bed reactors [J]. Water Research, 1990, 24: 463 - 469
    Sayed S. K. L, et al. Two-stage UASB concept for treatment of domestic sewage including sludge stabilization process[J].Water Science and Technology,1995,32(11):55-63
    Schellinkhout A,Collazos C J.Full-scale application of the UASB technology for sewage treatment[J].Water Science and Technology,1992,25:159-166
    Schmidt E J,Alberto J.Effects of magnesium on methanogenic subpopulations in a theomorphic acetate degrading granular consortium[J].Apply of Environmental Microbiology.1992,58(3):862-868.
    Schmidt J E,Ahring B K.Granular sludge formation in up flow anaerobic sludge blanket(UASB)reactors[J].Biotechnology Bioengineering,1996,49(3):229-246.
    Schramm A,Larsen L H,Revsbech et al.Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes[J].Apply Environmental Microbiology,1996,62:4641-4647
    Tanemura,Kouhei,Kida.Anaerobic treatment from a food-manufacturing plant with a low concentration of organic matter and regeneration of useable water[J].Journal of Fermentation and Bioengineering,1994,77(3):307-311
    Tarek A.E.Biodegradability and change of physical characteristics of particles during anaerobic digestion of domestic sewage[J].Water Researcher,2001,35(5):1311-1317
    Tarek A E.,Marcel H Z.Low temperature treatment of domestic sewage in upflow anaerobic sludge blanket and anaerobic hybrid reactor[J].Water Science and Technology 1999,39(5):177-185
    Tarek A E.,Kim L T Oan.Treatment of domestic sewage in a two-step anaerobic filter/ anaerobic hybrid system at low temperature[J].Water Research,2002,36:2225-2232.
    Teo K.C,Xu H.L,Ay J.H.Molecular mechanism of granulation.I:proton translocating activity[J].J Environmental Engineering,2000,126:411-8.
    Tay J.H,Xu H,Teo KC.Molecular mechanism of granulation.I:H+ translocation - dehydration theory[J].J Environmental Engineering 2000;126:403 - 10.
    Tay J.H,Zhang Xiyue.A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems[J].Water Research,2000,34(11):2849-2860
    Thaveesri J,Daffonchio D,Liessens B et al.Granulation and sludge bed stability in upflow anaerobic sludge bed reactors in relation to surface thermodynamics[J].Apply of Environmental Microbial,1995,61(10):3681-3686
    Uemura S and Harada H.Treatment of sewage by a UASB reactor under moderate to low temperature conditions[J].Bioresource Technology,2000,72:275-283
    Wang K.Alteration in sewage characteristics upon aging[J].Water Science and Technology 1995,31(7):191-200
    Watanabe K, Kodama Y, Kaku N. Diversity and abundance of bacteria in an underground oil-storage cavity [J].BMC Microbial, 2002, 2:23-29
    Wiegant W.M. The 'spaghetti theory' on anaerobic sludge formation or the inevitability of granulation. In: Lettinga G, Zehnder AJB, Grotenhuis JTC, Hulshoff Pol LW, editors. Granular anaerobic sludge: Microbiology and technology. The Netherlands: Pudoc.Wageningen; 1987:146-52.
    Wiegant W.M,de Man A.W.A. Granulation of biomass in thermophilic anaerobic sludge blanket reactors treating acidified wastewater[J]. Biotechnology Bioengineer, 1986,28:718-727
    Wu Wei-min, Jain MK, Zeikus J.G. Formation of fatty acid-degrading, anaerobic granules by defined species [J]. Apply of Environmental Microbial, 1996, 62(6): 37-44
    Yoda M, Kitagawa M, Miyaji Y. Granular sludge formation in the anaerobic expanded micro carrier process [J]. Water Science and Technology, 1989,21: 109-22
    Yu HQ, Tay JH, Fang HHP. Effects of added powdered and granular activated carbons on start-up performance of UASB reactors [J].Environmental Technology 1999, 20:1095-101
    Zeeman G. Anaerobic treatment of complex wastewater and waste activated sludge—Application of upfow anaerobic solid removal (UASR) reactor for the removal and pre-hydrolysis of suspended COD [J]. Water Science and Technology, 1997, 35(10): 121-128
    Zeeman G. The role of anaerobic digestion of domestic sewage in closing the water and nutrient cycle at community level [J]. Water Science and Technology, 1999, 39(5): 187-194
    Zhu J, Hu J, Gu X. The bacterial numeration and the observation of a new syntrophic association for granular sludge [J]. Water Science and Technology, 1997, 36(6/7): 133-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700