用户名: 密码: 验证码:
两相厌氧—膜生物反应器处理中药废水中试研究及数学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国家环境保护“十一五”规划指出,我国环境保护形式依然严峻,主要污染物指标排放量远远超过环境容量,水环境减排目标非常艰巨。目前,制药工业不断壮大和发展,据统计,制药工业占全国工业总产值的1.7%,而污水排放量占2%,已经成为国家环境保护规划重点治理的12个行业之一。中药废水属于高浓度难降解有机废水,有机污染物种类多、浓度高,采用常规的生物处理方法难以达标排放。通过分析中药废水水质特点和比较多种废水处理路线与工艺,并在小试研究成果的基础上,提出了利用“CSTR产酸相—UASBAF复合产甲烷相—膜生物反应器”这一技术路线处理该种废水的中试方案。
     通过对两相厌氧-膜生物反应器工艺处理中药废水中试试验研究,考察了工艺系统的运行效果,结果表明,两相厌氧-膜生物反应器工艺处理高浓度中药废水在技术上是可行的,能够长期稳定运行。产酸相启动42天后平均COD去除率为32%~52%,容积负荷可达到30~42kgCOD/m3·d。发酵类型呈丁酸型发酵类型,挥发酸含量从3.65%提高到23.09%,可生化性大大提高。产甲烷相经过20天成功完成启动,运行稳定时COD平均去除率为86.7%,平均容积负荷为4.5 kgCOD/(m3·d)。膜生物反应器经过12天完成启动,平均容积负荷在5.0~6.2kgCOD/m3.d之间,出水COD小于50mg/L,可达到中水回用标准。
     采用分子生物学手段,对两相厌氧-膜生物反应器工艺处理中药废水中试试验微生物学进行了研究,考察了工艺系统的种群结构和群落演替变化,研究结果表明,反应器初始生态系统的确定对反应器快速启动和高负荷稳定运行起到了关键作用。膜生物反应器从启动期到稳定运行期共计12天,接种污泥的微生物种群比运行稳定期膜生物反应器多出来2个种群。从而证明了膜生物反应器的微生物群落演替较快,膜生物反应器的启动要比普通好氧活性污泥启动期要短。产酸反应器和产甲烷相反应器接种污泥和回流污泥中微生物种群丰富,产酸相反应器泥样从启动到运行稳定,有一种群始终存在于产酸中,并且占据较大组分,推测其为产酸相中降解污水的主要微生物。产甲烷相反应器初始生态系统确定较好,种群多样性丰富,反应器经过较短时间即达到了稳定运行。
     以国际水质污染与控制协会IAWQ推出的活性污泥数学模型(ASM1)和厌氧活性污泥数学模型(ADM1)为理论基础,建立了两相厌氧-膜生物反应器处理中药废水的数学模型。模拟结果表明该模型基本可以模拟两相厌氧-膜生物反应器的运行情况。ADM1模型可以直接用于CSTR反应器的模拟,而UASBAF复合式厌氧反应器内部的流体流态比较复杂,经研究发现轴向离散模型和全混串联模型能够较好的反映UASBAF反应器内部的流体流动状态。ASM1能够有效的模拟膜生物反应器的运行情况,并可以应用模型对膜生物反应器影响因素精选评价。可用于工艺流程的选择、各种构筑物的尺寸及其关键运行参数的确定;能够优化一体式膜生物反应器的运行和管理(进行动态模拟以寻求MBR的最佳工作状态)。
     通过对哈尔滨中药二厂废水厌氧处理工艺的故障诊断,认为控制产酸相反应器为丁酸型发酵比较适宜于高浓度中药废水处系统的高效、稳定运行,在有机负荷为Nv=30kgCOD/m3.d时,产酸反应器仍可保证10~15%的COD去除率。长期的低负荷运行对于产甲烷反应器的稳定和安全有害,产甲烷反应器应保持运行参数为:Nv=8~10kgCOD/m3.d,COD去除率达80%左右。
     研究证明,以二沉池排放的剩余活性污泥做为厌氧反应器“酸化”后修复的接种污泥是可行的,投加微量金属元素有利于反应器故障的修复,本工程中,微量金属的投加数量为:Fe2+ 1.0mg/L、Co2+ 0.1mg/L、Ni2+ 0.1mg/L。
     从两相厌氧生物处理工艺中微生物相分离的角度进行了相反应过程和系统的优化。产酸相反应过程应控制为丁酸型发酵,即以丁酸型发酵菌群为优势种群;产甲烷相反应过程,则应达到以甲烷丝状菌和甲烷八叠球菌为主要组成菌种的颗粒污泥的形成。产酸相处于丁酸型发酵有利于产甲烷相颗粒污泥的形成。
State Environmental Protection "Eleventh Five-Year Plan" pointed out that the form of China's environmental protection is still grim, targets emissions of major pollutants far exceed the capacity of the environment, water environment is very difficult emission reduction targets. At present, the pharmaceutical industry continue to grow and develop, according to statistics, the pharmaceutical industry the country's total industrial output value of 1.7 percent, and accounted for 2% of sewage has become the focus of the State Environmental Protection planning governance, one of 12 industries. Chinese medicine is a high concentration of wastewater refractory organic wastewater, many kinds of organic pollutants, at high concentrations, the use of conventional biological treatment difficult to discharge polluted water. By analyzing the characteristics of traditional Chinese medicine wastewater quality and compare a wide range of wastewater treatment and process routes, and in a small test of research results based on the use of "CSTR acidogenic phase-UASBAF composite methanogenic phase - membrane bioreactor" This technology routes to deal with the types of wastewater pilot program.
     Through the two-phase anaerobic - membrane bioreactor process wastewater Chinese test pilot study investigated the effect of technology systems, results show that two-phase anaerobic - membrane bioreactor process wastewater of high concentration of Chinese medicine is technically viable, long-term stable operation. Acidogenic phase to start 42 days after the average COD removal rate of 32% ~ 52%, volumetric loading up to 30 ~ 42kgCOD/m3 ? d. Fermentation type was the type of acid-type fermentation, volatile acid content increased to 3.65 percent from 23.09 percent, biodegradability greatly enhanced. Methane-producing phase, after the successful completion of 20 days to start, run stable COD average removal rate was 86.7 percent, the average volume load of 4.5 kgCOD / (m3 ? d). Membrane bioreactor start after the completion of 12 days, the average volume of the load in between 5.0 ~ 6.2kgCOD/m3.d, the effluent COD is less than 50mg / L, can be achieved in the water reuse standards.
     The use of molecular biology means of two-phase anaerobic - membrane bioreactor process wastewater Chinese pilot test conducted microbiology studied Process Systems population structure and changes in community succession, research results show that the initial reactor ecosystems to determine the reactor quick start and high load and stable operation played a key role. Membrane bioreactor from start-up period to period and stable operation of a total of 12 days, inoculated sludge microbial populations stable than running membrane bioreactor extra two populations. Proved membrane bioreactor rapid succession of microbial communities, membrane bioreactor start-up than ordinary aerobic activated sludge shorter start-up period. Acidogenic reactor and methane-producing reactor inoculated with sludge and return sludge microbial populations rich acidogenic phase reactor mud-like from the start to run a stable, there is a group always exist in the acid production, and to occupy a larger group points, that its phase acidogenic microbial degradation of the main sewage. Methane-producing reactor, the initial phase to determine a better ecosystem, species diversity, reactor, after a relatively short time that reached a stable operation.
     International water pollution and Control Association IAWQ introduced mathematical model of activated sludge (ASM1) and anaerobic activated sludge mathematical model (ADM1) for the theoretical foundation, established a two-phase anaerobic - Membrane Bioreactor for Treatment of Wastewater mathematical model of traditional Chinese medicine . Simulation results show that the model can simulate the basic two-phase anaerobic - membrane bioreactor operation. ADM1 model can be directly used for CSTR Reactor Simulation, and UASBAF HABR fluid flow within the complex, the study found that the axial dispersion model and the whole series mixed model can better reflect the internal UASBAF Reactor fluid flow state. ASM1 can be effectively simulated membrane bioreactor operation, and can be applied to the model of membrane bioreactor selection evaluation factors. Can be used to process the choice of the size of the various structures and its key operating parameters to identify; to optimize the submerged membrane bioreactor operation and management (for dynamic simulation to find the best working condition MBR).
     Through the diagnose of the morbidity symptom of the anaerobic wastewater treatment system in the 2nd factory, controlling of the fermentation at the phase of butyric-acid-fermentation was appropriate for the reactor of acid-producing stage to achieve steady and high efficient performance. At the organic loading of 110, the acid-producing reactor could remove 10~15% of COD. Long-term operation under low organic loading was detrimental to the operation of methane-producing stage, based on which, the stage should operated under the conditions as follows:
     It was proved in this research that it was feasible to restart the anaerobic system after its acidification by inoculating the excess sludge extracted from the settling tank into the anaerobic reactor. Dosing of trace mental materials was found helpful for the system to recover from sick conditions. In this project, the dose of the trace mental were as follows: Fe2+ 1.0mg/L, Co2+ 0.1mg/L and Ni2+ 0.1mg/L.
     With regard to the separation of the two phase anaerobic process, the reaction course of the separated phase and optimization of the system were also studied. The fermentation in the acid-producing stage should controlled at the phase of butyric-acid-fermentation. As for the methane-producing stage, Methanothrix sp. and Methanosarcina sp.should grow predominant in the granule sludge. In addition, butyric-acid-fermentation in the acid-producing stage was favorable for the formation of granule sludge in the methane-producing stage.
引文
1吴郭虎,李鹏,王曙光等.混凝法处理制药废水的研究.水处理技术. 2000, 26(1): 53~55
    2潘志强.土霉素、麦迪霉素废水的化学气浮处理.工业水处理. 1991, 11(1): 24~26
    3陈志强.低压蒸馏法处理高浓度中药废水的研究.哈尔滨建筑大学学报. 1999, 32(6): 16~18
    4王玉坷.抗生素制药废水的炉渣处理.环境保护. 1993, 8: 15~16
    5王淑琴,李十中.反渗透法处理土霉素结晶母液的研究.城市环境与城市生态. 1999, 12 (1): 25~27
    6马毅,孙斌,吴桂峰.强制电化学还原技术处理制药废水的研究.科技信息. 2007, 23: 45~46
    7杨雪,胡开林,毕丽萍. SBR工艺在处理制药废水中的运用.环境科学与管理. 2007,32(1): 100~102
    8 Z.B. Chen, N.Q. Ren, A.J. Wang, Z.P. Zhang, Y. Shi. A novel application of TPAD–MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater. Water Research. 2008, 42: 3385~3392.
    9 Z.B. Chen, D.X. Hu, N.Q. Ren, Z.P. Zhang. Simultaneous removal of organic substances and nitrogen in pilot-scale submerged membrane bioreactors treating digested traditional Chinese medicine wastewater. International Biodeterioration & Biodegradation. 2008, 62: 250~256.
    10 N.Q. Ren, Z.B. Chen, X.J. Wang, A.J. Wang. Optimized operational parameters of a pilot scale membrane bioreactor for high-strength organic wastewater treatment. International Biodeterioration & Biodegradation. 2005, 56: 216-223.
    11 N.Q. Ren, Z.B. Chen, A.J. Wang, D.X. Hu. Removal of organic pollutants and analysis of MLSS– COD removal relationship at different HRTs in a submerged membrane bioreactor. International Biodeterioration & Biodegradation. 2005, 55: 279~284.
    12 B.G. Yeoh. Two phase anaerobic treatment of anemolasses alcohol stil-lage.Proc 8th Intentational Conf on Anaerobic Digestion. 1997(2):208~215
    13 Keunyoung Yang, Youngseob Yu, Seokhwan Hwang. Selective optimization inthermophilic acidogenesis ofcheese-whey wastewater to acetic and butyric acids:partial acidification and methanation. Water Research. 2003, 37: 2467~2477
    14 Tuanchi Liu. Anaerobic digestion of solid substrates in an innovative two-phase plug-flow reactor (tppfr) and a conventional single-phase continuously stirred-tank reactor .Water Science and Technology. 1998, 38: 453~461
    15 YongJin Park, Feng Hong,JiHoon Cheon,Taira Hidaka.Comparison of thermophilic anaerobic digestion characteristics between Single-Phase and Two-Phase Systems for Kitchen Garbage Treatment. Bioscience And Bioengineering. 2008, 105: 48~54
    16 Sz. G?bl?s, P. Port?r?, D. Bordás, M. Kálmán, I. Kiss. Comparison of the effectivities of two-phase and single-phase anaerobicsequencing batch reactors during dairy wastewater treatment. Renewable Energy. 2008, 33: 960~965
    17刘琳.合成制药废水处理的设计与实践.工程设计与建设. 2004, 36(4):38~42
    18楼菊青.制药废水处理进展综述.重庆科技学院学报(自然科学版). 2006,8(4): 13~20
    19于龙,赵雅芝,童健. MBBR处理制药废水的试验研究.环境科学与技术. 2007, 30(1): 66~67
    20王才.制药废水生化处理实验研究.给水排水,1999, 25(3): 41~43
    21许玫英.生物膜和SBR法相结合处理难降解制药废水的研究.微生物学通报. 2002, 29(3): 45~49
    22丁恒如.给水处理中除有机物研究的现状.水处理技术,1995,21(5): 282-287
    23乔洪棋,毕东,揭成渝.四环素工业废水生化处理工艺的研究.重庆环境科学. 1994. 16(1): 5-9
    24王文浪.一体式膜生物反应器的设计及其运行的研究.哈尔滨工程大学. 2007
    25徐又一,石灯水,王剑鸣等.环保领域中聚丙烯中空纤维膜—生物反应器的研究.膜科学与技术, 2000 ,20(2): 26~29
    26 Benitez,Jaime,Rodriguez ,et al.Stabilization and dewatering of wastewater using hollow fiber membranes . Wat . Res. ,1995 ,29(10) :2281 ~ 2286
    27俞敏,陶佳,王家德.膜生物反应器处理制药工业废水中试研究.工业水处理,2008, 28(2): 45~48.
    28相震,陈淑娟,王连军等.膜生物反应器联合工艺处理合成制药废水的中试.环境科学与技术. 2005,28(4):98~100
    29白晓慧,陈英旭.一体式膜生物反应器处理医药化工废水的试验.环境污染与防治. 2000 ,22(6) :19~21.
    30宋旭,梅荣武,唐颖栋.水解酸化—A2/O—SMBR工艺处理高浓度含氮合成制药废水.给水排水, 2007,33(2):57~59
    31 M. L. Massey, F. G. Pohland. Phase Separation of Anaerobic Stabilization by Kinetic Controls. Water. Pollute. Control Fed. 1978, 50(9):2204~2222
    32 F. G. Pohland, S. Ghosh. Developments in Anaerobic Stabilization of Organic Wastes-the Two-phase Concept. Environ. Technol. 1971,1(2):255~266
    33 M.Shore, et al. Anaerobic Treatment of Waste Waters in the Beet Sugars Industry. Wat. Pollut. Control. 1984, 83(4):499~506
    34沈其杰.两相厌氧工艺处理富含硫酸盐的高浓度制药废水的研究上海:上海交通大学.2006.
    35买文宁,周荣敏.两相厌氧系统处理乙酞螺旋霉素废水.郑州大学学报.2002 23(3):2528-2536
    36吕开雷.两相厌氧一好氧组合工艺处理制药废水的试验研究.北京交通大学. 2006
    37肖利平,李胜群,周建勇等.微电解一厌氧水解酸化一SBR串联工艺处理制药废水试验研究.工业水处理,2000, 20(11): 25-27.
    38于龙.高级氧化-UASB-MBBR工艺处理制药废水的小试研究.大连理工大学.2006.7
    39 G. G. Morris, S. Buegess. Experience with the Anodek Process. Wat. Pollut. Control. 1984, 83(4):514~520
    40 M.Shore, et al. Anaerobic Treatment of Waste Waters in the Beet Sugars Industry. Wat. Pollut. Control. 1984, 83(4):499~506
    41国家环保局主持.高浓度有机废水厌氧处理技术.中国环境科学出版社,1992:70~83
    42国家环境保护局科技处,清华大学环境科学系.高浓度有机废水.化学工业出版社, 1988:67~75
    43 S. M. Lee, J. Y. Jung and Y. C. Chung. Novel Method for Enhancing Permeate Flux of Submerged Membrane System in Two-phase Anaerobic Reactor. Wat. Res. 2001,35(2):471~477
    44黄永恒.折流式厌氧反应器的工艺特性及其运用.中国给水排水. 1999,(7):18~20
    45李刚,欧阳峰,杨立中,付永胜.两相厌氧消化工艺的研究与进展.中国沼气. 2001,19(2):25~29
    46顾国维.水污染治理技术研究.同济大学出版社. 1997
    47周帆,沈军.用正交试验法确定两相厌氧消化的主要影响因素.给水排水. 1985, (1):2~8
    48 M. L. Massey, F. G. Pohland. Phase Separation of Anaerobic Stabilization by Kinetic Controls. Wat. Pollut. Control Fed. 1978, 50(9):2204~2222
    49 P. N. Hobson, In Subba RaoNs(ed) Aduan inagricult Microb. Bufferworth Scientific. Landon. 1982:523
    50任南琪,王宝贞.有机废水发酵发生物制氢技术.黑龙江科学技术出版社,1994:24~35
    51 Sopa Chinwetkitvanich, Munsin Tuntoolvest and Thongchai Panswad. Anaerobic Decolorization of Reactive Dyebath Effluents by a Two-Stage UASB System With Tapioca as a Co-substrate. Wat. Res. 2000,34(8):2223~2232
    52 A. Mahdavi Talarposhti, T. Donnelly and G. K. Anderson. Colour Removal From a Simulated Dye Wastewater Using a Two-Phase Anaerobic Packed Bed Reactor. Wat. Res. 2001,35(2):425~432
    53 P. Herrmann and H. D. Janke. Co-fermentation of Rutin and Hesperidin During Two-Stage Anaerobic Pre-treatment of High-loaded Brewery Wastewater. Wat. Res. 2000,35(11):2583~2588
    54 Gülüm Y?lmazer and Othan Yenigün. Two-phase anaerobic treatment of cheese whey. Wat. Sci. Tech. 1999,40(1):289~295
    55 D. R. Wilson, I. C. Page, A. A. Cocci and R. C. Landine. Case History-Two Stage, Low-Rate Anaerobic Treatment Facility for South American Alcochemical/Citric Acid Wastewater. Wat. Sci. Tech. 1998,38(4-5):45~52
    56 C. J. Banks and Z. Wang. Development of a Two-Phase Anaerobic Digester for the Treatment of Mixed Abattoir Wastes. Wat. Sci. Tech. 1999,40(1):69~76
    57 B. Goel, D. C. Pant, V. V. N. Kishore. Two-Phase Anaerobic Digestion of Spent Tea Leaves for Biogas and Manure Generation. Bioresource Technology. 2001,80:153~156
    58 M. Beccari, M. Majone and L. Torrisi. Two-reactor System with Partial Phase Separation for Anaerobic Treatment of Olive Oil Mill Effluents. Wat. Sci. Tech. 1998,38(4-5):53~60
    59 R.M. Dinsdale, G.C. Premier, F.R. Hawkes, D.L. Hawkes. Two-Stage Anaerobic Co-Digestion of Waste Activated Sludge and Fruit/Vegetable Waste Using Inclined Tubular Digesters. Bioresource Technology. 2000,72:159~168
    60 Liu Tuanchi. Anaerobic Digestion of Solid Substrates in an Innovative Two-Phase Plug-Flow Reactor (TPPFR) and a Conventional Single-Phase Continuously Stirred-Tank Reactor. Wat. Sci. Tech. 1998,38(8-9):453~461
    61 Christof Held, Martin Wellacher, Karl-Heinz Robra, Georg M. Gübitz. Two-Stage Anaerobic Fermentation of Organic Waste in CSTR and FUAF-reactors. Bioresource Technology. 2002,81:19~24
    62郭养浩,孟春,石贤爱等.高浓度有机废水二相厌氧消化过程特性研究.环境科学. 1997,17(5):69~73
    63郭养浩,孟春,石贤爱等.改进的二相厌氧消化系统的特性研究.环境科学. 1997,18(3):38~40,44,92
    64安景辉,卜城.厌氧反应过程中相状态的确定.中国沼气. 2001, 19(1):11~13
    65张仁江,张振家,谷成,张虹,戴树桂.糖蜜酒精废水两相UASB处理工艺的酸化段特征.城市环境与城市生态. 2000,13(2):60~62
    66高廷耀,周恭明,周增炎.污泥两相与单相厌氧消化性能比较研究.同济大学学报. 1997,25(6):629~634
    67管运涛,蒋展鹏.两相消化系统产酸相酸化特性模型.环境科学. 2000,21(3):36~39
    68 SANG-MIN LEE, JIN-YOUNG JUNG and YUN-CHUL CHUNG. Novel Method for Enhancing Permeate Flux of Submerged Membrane System in Two-System in Two-Phase Anaerobic Reactor. Wat. Res. 2001,35(2): 471~477
    69管运涛,蒋展鹏,祝万鹏,陈中颍等.两相厌氧膜生物系统处理有机废水的研究.环境科学. 1998,19(6):56~59
    70 C.V.Smith. The Use of Ultrafiltration Membrane for Activated Sludge Separation. In:Proceedings of the 24th Annual Purdue Industrial Waste Conference. West Lafayette, Indiana. 1969:1300~1310
    71 F.W.Hardt, L.S.Clesceri, N.L.Nemerow. Solids Separation by Ultrafiltration for Concentrated Activated Sludge. JWPCF. 1970,42(12):1235~1248
    72 H.E.Crethlein. Anaerobic Digestion and Membrane Separation of Domestic Wastewater. Wat Poll Control Fed. 1978,(50):754~763
    73何义亮,顾国维.膜生物反应器技术的研究和应用展望.上海环境科学.1998, 11(7):17~19
    74 S.Kimura. Japan’s Aqua Renaissance 90’Project. Wat. Sci. Tech. 1991,25(10): 95~105
    75芩运华.膜生物反应器在污水处理中的应用.水处理技术. 1991,17(5): 318~323
    76 T.V.Tran. Advanced Membrane Filtration Process Treats Industrial Wastewater Efficiently. Chem. Engng. Prog. 1985,(3):29~33
    77 A.M.Bindoff. The Application of Cross-Flow Microfiltration Technology to the Concentration of Sewage Words Sludge Streams. Int. Wat. Envir. Mgmt. 1988,(2):513~522
    78 K.H.Krauth, K.F.Staab. Substitution of the Final Clarifier60 by Membrane Filtration with the Activated Sludge Process. Deselination. 1988,(68):179~189
    79 T.Suzuki, Y.Suwa, H.Toyhara, et al. Effects of Organic Loading, pH and DO Concentration on the Dissolved Organic Carbon Removal by an Activated Sludge Process with Cross-Flow Filtration. Bull. Nat. Inst. & Res. 1988 , 8(1):25~29
    80 K.Yamamoto, M.Hiasa, T.Mahmood, et al. Direct Solid-Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank. Wat. Sci. Tech. 1989,(21):43~54
    81 C.Chiemchaisri, Y.K.Wong, T.Urase, K.Yamamoto. Organic Stabilization and Nitrogen Removal in Membrane Separation Bioreactor for Domestic Wastewater Treatment. Wat. Sci. Tech. 1992,25(10):171~178
    82 F.W.Trouve, V.Urbain, J.Manem. Treatment of Municipal Wastewater by Membrane Bioreactor Results of a Semi-industrial Pilot-scale Study. 1994,(30):151~157
    83 H.Winnen , M.T.Suidan , P.V.Scarpino. Effectiveness of the Membrane Bioreactor in the Biodegradation of High Molecular-weight Compounds. Wat .Sci .Tech. 1996,34(9):197~203
    84 F.A.Tonelli Femado , R.Canning Philip. Membrane Bioreactor System for Treatment Synthetic Metal-working Fluid and Oilbased Products. PCT int, WO9307092(C1.C02F1/44). 1991
    85 R.Venkatadri, R.L.Irvine. Cultivation of Lignin Peroxidase in Novel Biofilm Reactor System: Hollow Fiber Reactor and Silicon Membrane Bioreactor. Wat. Res. 1993,27(4):591~596
    86 R.Zaloum, S.Lessard, D.Mourato. Membrane Bioreactor Treatment of Oily Wastes from a Metal Transformation Mill. Wat .Sci .Tech. 1994,30(9):21~27
    87 P.R.Brooks,A.G.Livingston. Biological Detoxification of 3-Chloronitrobenzene Manufacture Wastewater in an Extractive Membrane Bioreactor. Wat. Res. 1994, 28(6):1347~1354
    88 M.D. Knoblock, P.M.Sutton, P.N.Mishra. Membrane Bioreactor System for the Treatment of Oily Wastewaters. Wat. Environ. Res. 1994,66(2):133~139
    89 A.Beaubien, E.Trouve, V.Urbain. Membrane Bioreactors Offer New Solution to Old Wastewater Treatment Problems. Environ. Solutions. 1994,(8):173~184
    90 A.G.Livingston. Detoxification of Industrial Wastewaters in an Extractive Membrane Bioreactor. Wat .Sci .Tech. 1996,33(3):1~8
    91 J.A.Scott, K.L.Smith. A Bioreactor Coupled to a Membrane to Provide Aeration and Filtration in Ice-cream Factory Wastewater Remediation. Wat. Res. 1997,31(1):69~74
    92 U.Tatsuki, H.Kenji. Domestic Wastewater Treatment by Submerged Membrane Bioreactor with Gravitational Filtration. Wat. Res. 1999,33(12):2888~2892
    93 M.Gander, B.JeVerson, S.Judd. Aerobic MBRs for Domestic Wastewater Treatment: a Review with Cost Considerations. Separation and Purification Technology. 2000,(18):119~130
    94 S.Holler, W.Trosch. Treatment of Urban Wastewater in a Membrane Bioreactor at High Organic Loading Rates. Journal of Biotechnology. 2001,(92):95~101
    95 N.Xu, W.H.Xing, N.P.Xu, J.Shi. Application of Turbulence Promoters in Ceramic Membrane Bioreactor Used for Municipal Wastewater Reclamation. Journal of Membrane Science. 2002,(210):307~313
    96 Y.L.Hsieh, S.K.Tseng, Y.J.Chang. Nitrogen Removal from Wastewater Using a Double-Biofilm Reactor with a Continuous-Flow Method. Bioresource Technology. 2003,(88):107~113
    97吴盈禧,陈福泰,黄霞.高通量自生动态膜生物反应器的运行特性.中国给水排水. 2004,1(20):5~7
    98艾翠玲,贺延龄,周孝德.一体式膜生物反应器中污染物浓度限制条件.长安大学学报. 2004,24(1):109~110
    99 S.Yasutoshi. Filtraation Characteristics of Hollow Fiber Microfiltration Membranes Used in Membrane Bioreactor for Domestic Wastewater Treatment. Wat. Res. 1996, 30(100):2385~2392
    100 U.Tatsuki, H.Kenji, K.Yasuto, et al. Effect of Aeration on Suction Pressure in a Submerged Membrane Bioreactor. Wat.Res. 1997,31(3):489~494
    101宋亮.一体式膜生物反应器处理有机废水的实验研究.西安建筑科技大学硕士学位论文. 2000:67~114
    102 E.Hans. Grethlein: Anaerobic Digestion and Membrane Separation of Domestic Wastewater. Journal WPCE. 1978,(50):754~763
    103汪诚文,钱易.膜-好氧生物反应器处理生活污水的实验研究.给水排水. 1996,22(12):18~21
    104杜萍,黄霞.膜-生物反应器运行条件对膜过滤特性的影响.环境科学. 1999,20(3):38~41
    105 L.van Dijk,G.G.G.Roncken. Membrane Bioreactors for Wastewater Treatment:the State of the Art and New Developments. Water Science & Technology. 1997,35(10):35~41
    106 S.S.Madaeni. Critical Flux Mechanism in Membrane Filtration of Biomass, Book of Abstracts, Euromembrane’97,“Progress in Membrane Science and Technology”, University of Twente, the Netherlands, June 1997:14~19
    107 Y.K.Benkahla, A.Ould-Dris et al. Hydrodynamic Anti-Fouling Mechanism in Crossflow Microfiltration, Poster Presentation at ICOM’93, Heidelberg, Gemany, Aug.30~Sept.3, 1993
    108 D.Si-Hassen, A.Ould-Dris. Conditions for Cake Reversibility in Microfiltration of Mineral Suspension with an Organic Membrane, Book of Abstracts, Euromembrane’97 ,“Progress in Membrane Science and Technology”, University of Twente, the Netherlands, June 1997:150~164
    109 E.H.Bouhbia, R.B.Aim. Fouling Characterization in Membrane Bioreactors. Separation and Purification Technology, 2001,(22~23):123~132
    110 E.H.Bouhbia, R.B.Aim. Microfiltration of Activated Sludge Using Submerged Membrane with Air Bubbling(Application to Wastewater Treatment). Desalination. 1998,(118):315~322
    111何义亮.膜生物反应器工艺参数控制研究.上海环境科学. 1999,18(2):83~87
    112刘锐.一体式膜-生物反应器的微生物代谢特性及膜污染控制.清华大学博士学位论文. 2000:59~97
    113王亚娥,欧阳铭,朱联锡.膜生物反应器中UF膜过滤阻力影响因素.中国给水排水. 2000,16(2):55~57
    114 Y.Magara, M.Itoh. The Effect of Operation Factors on Solid/Liquid Separationby Ultra-membrane Filtration in a Biological Denitrification System for Collected Human Excreta Treatment Plans. Wat.Sci.Tech. 1991,(23):1583~1590
    115顾平.应用膜生物反应器处理生活污水的研究.中国给水排水. 1998,14(5): 6~8
    116杜萍.一体式膜生物反应器污水处理特性及膜污染机理研究.清华大学博士学位论文. 1999:114~197
    117 B.Gunder et al. Replacement of Secondary Clarification by Membrane Separation Results with Tubular,Plate and Hollow Fibre Modules. Wat. Sci. Tech. 1999,40(4~5):311~320
    118 E.B.Muller et al. Aerobic Domestic Waste Water Treatment in a Pilot Plant with Complete Sludge Retention by Crossflow Filtration. Wat. Res. 1995,29(4): 1179~1189
    119刑传宏.陶瓷膜—生物反应器工艺处理城市废水及膜堵塞机理研究.清华大学博士学位论文. 1998:50~73
    120顾夏声.废水生物处理数学模式.清华大学出版社, 1993
    121 Eckenfelder W.W, Biological waste treatment. New York: Pergamon Press,1961
    122 McKinney. R.E, San.J, Mathematics of complete mixing activated sludge. Eng. Div, ASCE 1962,88(3)
    123国际水协废水生物处理设计与运行数学模型课题组著,张亚雷,李咏梅译.活性污泥数学模型.同济大学出版社.2002.3
    124 Anastasios LS. Modelling of oxidation ditches using an open channel flow 1-D advection-dispersion equation and ASMl process description [J]. Wat. Sci. Tech., 1997,36(5/6),P269.
    125 Van Veldhuizen, H.M. et al. Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process[J].Water Res., 1999, 33,P3459.
    126 Andreottla.C; Bortone.G Experimental validation of a simulation and design model for nitrogen removal in sequencing batch reactors[J]. Wat Sci Tech, 1997,43(3),P69.
    127 Hulsbeek, J.J.W, Kruit, J, Roeleveld, P.J. and van Loosdrecht, M. C. M. A practical protocol for dynamic modelling of activated sludge systems. [J]Water. Sci. Tech. 2002,45(6), 127-136.
    128施汉昌,刁惠芳,刘恒.污水处理厂运行模拟、预测软件的应用.中国给水排水. 2001,17(10):61~63
    129季民,霍金胜.活性污泥数学模型的研究和应用.中国给水排水.2001,17(8):18~22
    130杨青,刘遂庆,甘树应.城市污水处理厂动态模拟研究.上海环境科学. 2001,21(5):278~281
    131 Alonzo W. Lawrence, Perry L. McCarty., Kinetics of Methane Fermentation in Anaerobic Treatment.Journal Water Pollution Control Federation.Vol,41,No.2, Part 2.R1-R17
    132 Andrews, J.F., Dynamic Model of the Anaerobic Digestion Process, J.SanitaryEng. Div., Proc.Am.Soc.Civil Eng.(1969)95,SA1,95.
    133 Andrews J K., Dynamic modeling of anaerobic digestion process, Journal of Sanitary Engineering,1969, 5(2):95~102.
    134 Hill D T. and Barth, C.L. A dynamic model for simulation of animal waste digestion, Journal Water Pollution Control Federation, 1977, 2129-2144
    135 Hill D T., A comprehensive by namic model for animal easte methannogensis, Water Research, 1982,25(5):1374~1379.
    136 Lohani,B.N.,et al, Adynamic Model for Simulation of Animal Waste Digestion, J.Water Pollution Control Federation ,49,10,2129-2143,1977
    137 Mosey F.E. Mathematical modeling of the anaerobic digestion process:regulatory mechanisms for the formation of short-chain volatile acids from glucose, Water Science and Technology, 1983,15(2):209~232.
    138 Costello D J., Greenfield P F., Lee P L. Dynamic modeling of asingle-stage high-rate anaerobic rector—I model derivation, Water Research, 1991, 25(7):77~81.
    139 Costello D J., Greenfield P F., Lee P L. Dynamic modeling of asingle-stage high-rate anaerobicrector—II model verification, Water Research, 1991, 25(7):859~871.
    140 Ramsay, I.R.(1997) Modelling and Control of high-rate anaerobic wastewater treatment system[D].University of Queensland, Brisbane.
    141 D. J. Batstone, J. Keller, R. B. Newell, et al. Modelling anaerobic degradation of complex wastewater.Ⅱ: parameter estimation and validation using slaughterhouse effluent. Bioresource Technology. 2000,75: 75~85.
    142国际水协厌氧消化工艺数学模型课题组著,张亚雷,周雪飞译.同济大学出版社.2004.12
    143 F. Blumensaat,J. Keller. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Research 2005,39:171~183
    144 Wayne J. Parker. Application of the ADM1 model to advanced anaerobic digestion. Bioresource Technology 2005, 96: 1832~1842
    145 Hansruedi Siegrist. et al. Mathematical Model for Meso- and Thermophilic Anaerobic Sewage Sludge Digestion,[J], Envi.Sci.Tech.2002, 36:1113~1123
    146 Manfred Lübken,Marc Wichern, et al.,Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crop. Water reaserch 2007, 41: 4085~4096
    147左剑恶,凌雪峰,顾夏声.厌氧消化1号模型(ADMl)简介.环境科学研究.2003. 16(1),57~61
    148周雪飞,张亚雷,顾国维.厌氧消化模型对生化反应抑制形式的模拟,[J]中国给水排水,2004,20(6),19~21
    149 PUN? A, TREVISAN M, ROZZI A, tal. Influence of C:N ratio on the start-up of up-flow ,anaerobic filter reactors[J]. Water Research, 2000, 34(9): 2 614-2 619.
    150 Kuan-Yeow Show, Ying Wang, Shiu-Feng Foong, Joo-Hwa Tay. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors[J]. Water Research 2004,38: 2293~2304
    151刘艳玲.两相厌氧系统底物转化规律与群落演替的研究哈尔滨工业大学博士学位论文,2001,145
    152 W.M.Wt,J.C.Hu,X.5.Cu,et al. Cultivation of Anaerobic Granular Sludge in UASB Reactors with Aerobic Activated Sludge as Seed. WaterRes. 1987(21): 789~799
    153胡纪萃.废水厌氧生物处理理论与技术.北京:中国建筑工业出版社,2003
    154孙明东.厌氧一好氧工艺处理高低浓度乳品废水试验研究.北京交通大学2007.6
    155 B. Tartakovsky, S.J. Mu , Y. Zeng , P. Wu , S.J. Lou ,et al. Anaerobic digestion model no. 1-based distributed parameter model of an anaerobic reactor: II. Model validation. Bioresource Technology 2008, 99:3676~3684
    156 Fang, H.H.P., Liu, H.. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 2002, 82: 87~93.
    157黄铭洪.环境污染与生态恢复.科学出版社, 2003:44~60
    158 Demongeot J. Chaos in Biological System. New York:Plenum Press,1987
    159刘艳玲.两相厌氧系统底物转化规律与群落演替的研究.哈尔滨工业大学博士学位论文. 2001: 42~52
    160赵丹.产酸发酵类型控制对策研究.哈尔滨建筑大学硕士学位论文. 1998:21
    161刘敏.产氢-产甲烷两相厌氧工艺运行特性研究.哈尔滨工业大学博士学位论文. 2004: 28~40
    162任南琪,李建政.中药生产废水处理技术的研究.哈尔滨建筑大学学报. 1999,33(4):36~38
    163李建政.中药废水高效生物处理技术的研究.中国给水排水. 2000,16(6):5~8
    164沙明辉.中药废水高效生物处理的中试研究.哈尔滨建筑大学硕士学位论文. 1996:27~40
    165赵文琛.厌氧-好氧工艺处理制药废水试验研究.哈尔滨建筑大学硕士学位论文. 1997:14~40
    166李欣.复合式厌氧反应器处理中药废水的启动研究.哈尔滨建筑大学学报. 2001,34(3):75~78
    167施悦.中药废水高效生物处理技术生产性试验研究.哈尔滨工业大学硕士学位论文. 2002: 27~40
    168胡纪萃.废水厌氧生物处理理论与技术.中国建筑工业出版社, 2003:187~190
    169任南琪,赵丹,陈晓蕾,李建政.厌氧生物处理丙酸产生和积累的原因及控制对策.中国科学(B辑). 2002, 32(1):83~89
    170陈晓蕾.产酸发酵细菌顶极群落研究.哈尔滨建筑大学硕士学位论文. 1998:35~46
    171吴唯民,朱学庆. pH对厌氧颗粒污泥产甲烷活性影响的研究.中国沼气.1988,6(1):16~19
    172刘双江.两相厌氧工艺的理论基础及实际应用.中国沼气. 1989,7(1):1~6
    173斯皮斯著,李亚新译.工业废水的厌氧生物技术.中国建筑工业出版社, 2001:153.
    174赵一章.高活性厌氧颗粒污泥微生物特性和形成机理的研究.微生物学报.1994,34(1):45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700