用户名: 密码: 验证码:
基于GreenLab结构—功能模型的油松随机形态结构模拟及个体竞争效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构-功能模型,是指能明确表达由生理过程和环境因子调控的植物三维结构生长和变化的一类模型。它既考虑了林木的形态结构,又考虑了其生理生态过程,能描述林木各器官的三维动态的生长和拓扑结构的发展,并且可以考虑环境因素的影响。目前该模型主要应用于单木的模拟,缺少在林分层次的应用研究及森林经营的结合。本研究以我国北方主要针叶树种油松(Pinus tabulaeformis)为对象,基于16株实测的油松数据,在GreenLab结构-功能模型框架内,建立了油松形态结构的随机模型,模拟了油松个体在不同发育阶段的随机形态;建立了异速生长的混合效应模型,更真实地反映了油松的异速生长规律和参数在树木之间及内部的变异性;建立了包含竞争和随机形态参数的结构-功能模型,获得了GreenLab结构-功能模型参数与年龄之间的关系规律,定量研究竞争对油松形态及生物量生产和分配过程的影响,并对采伐进行了模拟。
     1)建立了油松叶面积和比叶面积的估计模型。叶面积和比叶面积是GreenLab结构-功能模型中的重要参数。本文通过winSEEDLE种子和针叶图像分析系统获得油松522个单个针叶的表面积LA、针叶长度L、针叶宽W、针叶周长P,分别建立了以针叶长、针叶宽、针叶周长等形状属性为自变量的叶面积估计模型和以针叶干重为自变量的叶面积估计模型。通过对算术平均法、比估计法、最小二乘法三种方法的比较,得到油松的比叶面积为0.708m2/kg。
     2)建立了包含随机效应的油松节间异速生长模型。异速生长模型是GreenLab结构-功能模型中的一部分,它可以提供节间的形状参数与比例参数。本研究考虑树木之间以及各级枝枝与枝之间的存在的差异,建立了不同生理年龄的节间异速生长的混合效应模型。通过AIC与BIC指标选出最优的混合效应模型。与基础模型相比,混合效应模型的决定系数R2一级枝节间提高了27.84%,二级枝提高了31.59%,三级枝提高了24.53%,大大提高了节间异速生长模型的精度。通过形状参数和比例参数的随机效应的方差发现,在树木水平节间异速生长的差异性要大于分枝水平,一级枝水平上的差异要大于二级枝,说明随着分枝级别的增加,节间的差异性有所下降。因此需要建立单个分枝和单株木的异速生长模型,更真实地反映油松节间的生长规律和随机效应。
     3)建立了油松形态结构的随机模型,模拟了油松个体在不同发育阶段的随机形态。树木由于受到环境的影响,形态结构相当复杂,生长过程会出现一些随机性,如芽的休眠、生长、死亡等,分枝的出现的时间以及死亡等。本文主要通过主干及各级枝节间的生长概率、生长节律、分枝概率、分枝的死亡概率以及芽的存活概率等参数来构建油松的随机形态结构,参数的求解主要是通过分枝节间数的均值以及之间的方差等统计量获得;通过参数主干及各级枝节间的生长概率、生长节律结合实测主干及各级枝的节间数,可以得到主干及各级枝的节间数量,通过分枝概率以及分枝的死亡概率得到油松的分枝情况,从而得到油松的形态结构。结果显示随着分枝级别的增加,分枝的生长概率和分枝概率均有所下降,随着年龄的增加,除了主干的生长速度基本不变外,主干及各级枝的分枝概率以及各级枝的生长概率均呈现先增加后减小的趋势,模型可以合理并较为逼真地描述油松的随机形态结构。
     4)通过拟合不同年龄不同密度油松的GreenLab结构-功能模型,获得了相应的参数,拟合结果表明模型对于主干节间生物量、针叶生物量以及主干节间长度的拟合效果较好,决定系数均在0.7以上。主干节间直径的模拟值比实际值要高,这可能是由于模型对于次生生长汇强参数的估计有所偏差造成的。模型输出了与森林经营直接相关的单木树高、胸径、冠幅以及冠长,其拟合值和实际值的决定系数分别为0.85、0.65、0.82和0.91,拟合效果较好。
     5)分析了油松GreenLab结构-功能模型参数随年龄的变化规律,建立了油松年龄与结构-功能模型参数之间的关系模型。对油松的结构和生物量生产和分配进行了预测。通过经验模型得到的幼龄到成熟油松的总生物量、树干生物量、枝以及针叶生物量,与由GreenLab结构-功能模型模拟得到相应年龄油松各生物量,二者之间的决定系数分别为0.80、0.56、0.92和0.91,模型的预估效果较好。
     6)分析了不同年龄不同密度的油松林分竞争单元内对象木与竞争木在形态上和生物量上的差异,包括主干及各级枝最后一个节间的平均长度、平均直径、平均重量、树木分枝的活枝数、死枝数、分枝的总生物量以及其上针叶的总生物量等的;GreenLab结构-功能模型的模拟结果显示,对象木与竞争木的植株投影面积、各节间以及针叶的汇强、次生汇强等参数有很大差异,从而影响了结构-功能模型中生物量的生产与分配,导致竞争木与对象木在形态和生物量方面有很大差异。根据模型输出的形态信息和生物量信息与实测数据检验得到各级枝最后一个节间的平均长度、平均直径以及平均重量的决定系数均大于0.5,分枝的活枝个数的模拟的决定系数为0.93。活枝生物量与针叶生物量的决定系数分别为0.91和0.89,说明GreenLab结构-功能模型可以很好的模拟树木之间的竞争效应。
     7)建立了经验模型中的竞争指数-生存面积指数与结构-功能模型中的竞争指数植株投影面积之间的关系模型,利用GreenLab结构-功能模型模拟了采伐对形态结构和生物量生产和分配的影响。模拟结果表明:采伐2株竞争木与1株竞争木相比,对象木的总生物量、树高、胸径、冠幅、冠长以及活枝个数的生长量均大于采伐1株竞争木。采伐改变了对象木的植株投影面积,对GreenLab模型中的生物量的生产方程产生影响,增加了树木的生物量的生产,从而导致导对象木的总生物量、树高、胸径、冠幅、冠长以及活枝个数的增加,研究为基于结构-功能模型的森林经营决策提供了方法和依据。
Functional-structural tree models (FSTMs) refer to models which can explicitlydescribe thedevelopment over time of the3D architecture of trees as governedby physiological processesand environmental factors. They consider not only tree structure development, but alsophysiological process and interactions with the environment.At present, this model is mainlyused in individual tree simulation, lackingof applicationat stand level and the linkwith forestmanagement. The main coniferous tree species Chinese Pine trees in north China were chosenas research object in this paper. Within the framework of GreenLab functional-structural model,the stochatic model on morphological structures of Chinese pine trees with differentdevelopmental stages were developed based on the measured data; the mixed effect models ofallometric growth were established which couldrealistically reflect the allometric growth lawof Chinese Pine trees and parameters variability withinand between trees; Functional-structuralmodels for Chinese pine trees with different developmental stages were developed with theconsiderationof competition mechanism and random morphological parameters; the modelsbetween tree age and parameters of GreenLab functional-structural tree models wereestablished; the influence of the competition on morphology and biomass production anddistribution process was quantitatively studied and the felling effectswas simulated.
     1) Models for estimating leaf area and specific leaf area were developed. Leaf area and specificleaf area are important parameters in GreenLab functional-structural tree models. We sampled522needles of Chinese pine in Mulanweichang and obtained needle surface area LA, needlelength L, needle width W and needle perimeter P by winSEEDLE software. The modelsbetween leaf area and shape attributes including leaf length, leaf width, leaf perimeter andmodels between leaf area and leaf dry weight were developed, respectively. The specific leafarea of Chinese pine is7.08m2/kg derived from the comparison among the arithmetic averagemethod, ratio estimation method, and the least square method. It provides a simple and reliablemethod for estimating leaf area of Chinese pine.
     2)Internode allometric growth models including random effectswere established.Allometricgrowth models are important parts of the GreenLab functional-structural tree models, whichcan provide the shape parameter and scale parameter of internode in the GreenLabFunctional-structural tree models for Chinese Pine trees.This study considered the differencesamong trees and among branches to develop the internode allometric growth models withmixedeffect.Optimal mixed effects models were selectedthrough statistics AIC and BIC. Thedetermination coefficientR2of the mixed effect models increases27.84%,31.59%,24.53%compared to those of base models for the1st-, the2nd-and the3rd-order branches, respectively.Random effect variance of shape parameters and scale parameters shows differencesat treelevel are more obvious than those atbranch level and differences in the1st-order branchesaregreater than those in the2nd-order branches.The differences of internode decreased with theincrease of branch level. Allometric growthmodels ofspecific branchesortrees need to beestablished so that they can more accurately reflect internode growth regulation and randomeffects of Chinese Pine trees.
     3) Stochastic morphological models of Chinese Pine trees were developed and stochasticmorphological structure of Chinese Pine treeswith different growth stages were simulated.Trees morphological structure is very complex due to the influence of environment and somerandomness can exist in tree grow process, such as bud dormancy, growth and death, the timeof the branches, the dead of the branches and so on.The model in the study employed growthprobability, rhythm ratio, branching probability, survival probability of buds and mortalityprobability of branches for producing random morphological structure for Chinese Pine trees.These parameters were attained by calculating statisticssuch as branches internode numbermean and the variance.The number of internode on the trunk and branches can be calculated byparameters growth probability and rhythm ratio.The situation of branchescan be simulated byparameter branching probability, and mortality probability of branches. The morphologicalstructures of Chinese Pine trees were obtained.The results showed that the growthprobabilityand the branchprobability of all branches declined with branch levelincreasing.Branch probability and branch growth probabilityshowed a trend of decrease after increasing with ageincreasing. The model could reasonably and realistically describe thetopological structure of Chinese pine trees.
     4) The GreenLab functional-structural modelsof Chinese Pine trees with different ages,different densities were established andthe parameters were obtained. Results showed that thesimulations of internode length, internode biomass and needle biomass on the trunk were well.The fitting values and measureddata are close and their determine coefficients are all above0.7.The simulated values of internode diameter on the trunk are bigger than measured data.This may result from the deviated estimation of the model parameters sink strong for thesecondary growth.The model also simulated tree height, diameter at the breast height(DBH),canopy and crown length of all measured trees and the determination coefficients were0.85,0.65,0.82and0.85, respectively.
     5)The models between age and the parameters of GreenLab functional-structural models weredeveloped. The total biomass, biomass of trunk, branches and needles biomass of9-47year-oldChinese Pine treeswere obtained by empirical model. We compared biomass values obtainedfrom the two types of models and found that theirdetermination coefficients were0.80,0.56,0.92and0.91, respectively.
     6) The differences on the morphology and biomass for different ages and different densitiesChinese Pine trees having the competitive relationship with each other were analyzed. Theaverage length, average diameter, average weight of last internode,the number of livingbranches and dead branches, the total biomass of branches and biomass of needle on thebranches were analyzed. Results of individual plant simulation using GreenLab showed thatthe direct parameters and the hidden parameters for target tree and competitive tree vary largely,such as plant projection area, the sink strength of internode and needles, the sink strength ofsecondary growth. These influence the biomass production and distribution of GreenLabmodels and result in the diffrences between target and competitive trees.The determinationcoefficientsofthe average length, average diameter, average weight of last internode are allabove0.5according to the morphological and the biomass information model outputed.Thedetermination coefficients of the number of living branches, living branches biomass and needle biomass are0.93,0.91and0.89, respectively.The results showed that GreenLabmodelscan simulate tree competition well.
     7)The model between theissen polygon area and plant projection area was developed. Thecutting influences on the morphology and biomass production and distribution were simulatedusing GreenLab model. The parameter plant projection areachanged with theissen polygonsarea after cutting. The results showed that the growth of total biomass, tree height, DBH,crown, crown length and living branch number of target trees for removal of two competivetrees are larger than those forremoval of one competive tree. The reasons are that the parameterplant projection area increases after cutting which result in thebiomass production increasing.When plant projection area increased by10%,20%and30%, the changes of the biomasswerealso simulated in this paper. It can provide the basis for forest management practice.
引文
刁军.广林九桉单木结构-功能模型的研究[D].北京:中国林业科学研究院,2010:22-23.
    关毓秀,张守攻.竞争指标的分类及评价[J].北京林业大学学报,1992,14(4):1-8.
    郭存珍.油松林生长周期调查分析[J].陕西农业科学,2009,6:114-115.
    国红,雷相东, Veronique Letort等.基于GreenLab的油松结构-功能模型[J].植物生态学报,2009,33(5):950-957.
    国红,雷相东,刁军.林木结构-功能模型研究综述[J].世界林业研究,2010,23(2):55-60.
    国红.基于GreenLab原理的油松结构-功能模型研究[D].北京:中国林业科学研究院,2010.
    国红,雷相东, Veronique Letort等.基于GreenLab原理构建油松成年树的结构-功能模型[J].植物生态学报,2011,35(4):422-430.
    康孟珍,De Reffye Philippe,胡包钢等.快速构造植物几何结构的子结构算法.中国图象图形学报,2004,1(9):79-86.
    雷相东,常敏,陆元昌,赵天忠.虚拟树木生长建模及可视化研究综述.林业科学,2006,41(11):124-130.
    李根前,唐德瑞,何景峰等.马尾松幼林邻体竞争效应及其在营林中的应用[J].陕西林业科技,1994,(3):43-47.
    李凯,项文化.湘中丘陵区12个树种比叶面积、SPAD值和种子干质量的比较.中南林业科技大学学报,2011,31(5):213-218.
    李轩然,刘琪璟,蔡哲等.千烟洲针叶林的比叶面积及叶面积指数.植物生态学报,2007,31(1):93-101.
    刘金福,洪伟,李俊清等.格氏拷林优势种竞争关系及其预测动态的研究[J].热带亚热带植物学报,2003,11(3):211-216.
    吕金枝,苗艳明,张慧芳等.山西霍山不同功能型植物叶性特征的比较研究.武汉植物学研究,2010,28(4):460–465.
    马履一,王希群.生长空间竞争指数及其在油松、侧柏种内竞争中的应用研究[J].生态科学,2006,25(5):385-389.
    欧阳浩楠,肖娅萍,孙蓉蓉等.三叶木通叶面积测量方法.安徽农学通报,2008,14(9):121-122.
    齐蕊.基于结构功能植物生长模型GreenLab的优化问题研究[D].中国科学院,2010.
    宋立军.围场坝上植物资源的初步调查[J].承德民族师专学报,2000,20(2):56-56.
    汤孟平,陈永刚,施拥军等.基于Voronoi图的群落优势树种种内种间竞争[J].生态学报,2007,27(11):4707-4716.
    唐守正,李勇.生物数学模型的统计学基础.科学出版社,2002.
    王本泉.松科-宝-油松[J].中国木材,1999,4:45-46.
    王峰.基于GreenLab原理的樟子松生长的功能-结构建模与应用[D].中国农业大学,2009.
    王希群,马履一.油松、侧柏林种内竞争特点的对比研究[J].生态科学,2006,25(6):481-484.
    王政权,吴巩胜,王军邦.利用竞争指数评价水曲柳落叶松种内种间空间关系[J].应用生态学报,2000,11(5):641-645.
    温秀军,王振亮,马占山.油松针叶叶量的研究[J].林业科学,1990,28(2):101-109.
    吴玉德,张鹏.基于Mapinfo的树木叶面积测定方法.林业调查规划,2005,30(6):23-25.
    徐化成.油松.北京:中国林业出版社,1993.
    俆少辉.不同采伐强度对闽南山地马尾松林下植被和土壤肥力的影响试验[J].林业调查规划,2008,33(4):136-139.
    杨东,杨秀琴.甘肃武都五凤山林区油松人工林的生物量和生产力研究.西北师范大学学报(自然科学版),2004,40(1):70-75.
    张林,罗天祥.植物叶寿命及其相关叶性状的生态学研究进展.植物生态学报,2004,28(6):844-852.
    Allen M. T., Prusinkiewicz P., Delong T. M., Using L-systems for modeling source-sink interactions,architecture and physiology of growing trees: the L-PEACH model[J]. New Phytologist,2005,166(3):869-880.
    Barlow P. W., Meristems, metamers and modules and the development of shoot and root systems. BotanicalJournal of the Linnean Society,1989,100:255-279.
    Barthélémy D., Caraglio Y., Costes E., Architecture, gradientsmorphogénétiques et age physiologique chezles végétaux. In: Bouchon. J.,Reffye de P., Barthelemy D., eds. Modélisation et simulation del’architecturedes végétaux. Paris, France: INRA éditions,1997:89-136.
    Barthélémy D., Caraglio Y., Plant architecture: a dynamic, multilevel and comprehensive approach to plantform, structure and ontogeny. Annals of Botany,2007,99:375-407
    Begon M., Harper J. L., Townsend C. R.,Ecology: Individuals, Populations, Communities[M]. Oxford:Blackwell Science,1996.
    Birch C. J., AndrieuB.,Fournier C., et al., Modelling kinetics of plant canopy architecture-concepts andapplications. European Journal of Agronomy,2003.19:519-533.
    Calegario N., Danielsb R. F., Maestri R., et al., Modeling dominant height growth based onnonlinearmixed-effects model: a clonal Eucalyptusplantation case study. Forest Ecology andManagement,2005,204:11-20.
    Clive V. J., WelhamR. T., Cindy S. O., Morphological plasticity of white clover(Trifolium repens L.) inresponse to spatial and temporal resource heterogeneity. Oecologia,2002,130(2):231-238.De Reffye P.H., Blaise F.,et al., Calibration of a Hydraulic Architecture-Based Growth Model of Cotton Plants[J].Agronomie,1999,19:265-280
    Cornelissen J. H. C., Diez P. C., Hunt R., Seedling growth, allocation and leaf attributes in a wide range ofwoody plant species and types. Journal of Ecology,1996,84:755-765.
    Corral R. J., Alvarez G. J., Oscar A., et al., The effect of competition on individual tree basal area growth inmature stands of Pinus cooperi blanco in Durango(Mexico)[J]. European Journal of Forest Research,2005,124(2):133-142.
    Costes E., Smith C., Renton M., Guédon Y., et al., MAppleT: simulation of apple tree development usingmixed stochastic and biomechanical models. Functional Plant Biology.2008,35:936-950.
    CournèdeP. H.,Kang M. Z., Mathieu A., et al., Structural factorization of plants to compute their functionaland architectural growth[J]. Simulation2006,82(7):427-438.
    Cournède P. H., Mathieu A., Houllier F., etal., Computing competition for light in the GREENLAB model ofplant growth: acontribution to the study of the effects of density on resource acquisition andarchitectural development[J]. Annals of Botany,2008,101(8):1207-1219.
    De Reffye P., Modélisation de l'architecture des arbres par des processus stochastiques. Simulation spatialedes modèles tropicaux sous l'effet de la pesanteur. Application au coffea robustaPh.D. thesis, France:Université Paris-Sud, Centre d'Orsay,1979.
    De Reffye P., Modèle mathématique aléatoire et simulation de la croissance et de l’architecture du caféierRobusta.1ère Partie. Café Cacao Thé,1981,25(2):83-104.
    De Reffye P., Cognee M., Jaeger M., et al., Modélisation stochastique de la croissance et de l’architecture ducotonnier.1. Tiges principales et branches fructifères primaries. Coton et Fibres Tropicales,1988,43(4):269-291.
    De Reffye P., ElgueroE., CostesE., Growth units construction in trees: a stochastic approach. ActaBiotheoretica,1991,39,325-342.
    De ReffyeP., HoullierF., BlaiseF., et al., A model simulating above-and below-ground tree architecture withagroforestry applications. Agroforestry Systems.1995,30,175-197.
    De Reffye P. H., Hu B. G.,Relevant qualitative and quantitative choices for building an efficient dynamicgrowth model: GreenLab case[C]. Plant growth modeling and applications,2003’internationalsymposium on plant growth modeling, simulation, visualization and their applications. Beijing:Tsinghua University Press,2003,87-107.
    Diao J., Lei X. D., Hong L. X., et al., Single leaf area estimation models based on leaf weight of eucalyptusin southern China,Journal of Forestry Research,2010,21(1):73-76.
    Diao J., De Reffye P., Lei X. D., et al., Simulation of the topological development of young eucalyptus usinga stochastic model and sampling measurement strategy. Computers and Electronics in Agriculture,2012,80:105-114.
    Dorado F. C., Ulises D. A., Marcos B. A., et al., A generalized height-diameter model including randomcomponents for radiata pine plantations in northwestern Spain. Forest Ecology and Management,2006,229:202-213.
    EllisonA. M., NiklasK. J., Branching patterns of Salicornia europaea (Chenopodiaceae) at differentsuccessionalstages: a comparison of theoretical and real plants. AmericanJournal of Botany.1988,75,501-512.
    Evers J. B., Vos J., Andrieu B., et al., Cessation of tillering in spring wheat in relation to light interceptionand red: far-red ratio[J].Annals of Botany,2006,97(4):649-658.
    Evans R. C., Turkingron R., Maintenance of morphological variation in a biotically patchy environment.New Phytologist,1988,109:369-376.
    Fehrmann L., Lehtonen A., Kleinn C., et al., Comparison of linear and mixed-effect regression modelsand ak-nearest neighbor approach for estimation of singletreebiomass. Canadian Journal of Forest Research,2008,38:1-9.
    Fisher J. B., HondaH., Computer simulation of branching pattern and geometry in terminalia(combretaceace), a tropical tree. Botanical Gazette.1977,138(4),377-384.
    Freeman D. C., GrahamJ. H., EmlenJ. M., Developmentalstability in plants: symmetries, stress andepigenesis. Genetica,1993,89:97-119.
    Godin C., Caraglio Y., A multiscale model of plant topological structures. Journal of Theoretical Biology,1998,191:1-46
    Godin C, Sinoquet H. Functional–structural plant modeling[J]. New Phytologist.2005,166:705-708.
    Gower S. T., Kucharik C. J., Norman J. M., Direct and indirect estimation of leafarea index, fAPAR, and netprimary production of terrestrial ecosystems. Remote Sensing of Environment,1999,70:29-51.
    Guo H., Lei X. D., Letort V., et al., A functional-structural model GreenLab for Pinus tabulaeformis. ChineseJournal of Plant Ecology,2009,33(5):950-957.
    Guo H., Lei X. D., Letort V., et al., A functional-structural model for adults of Pinus tabulaeformis based onGreenLab. Chinese Journal of Plant Ecology,2011,35(4):422-430.
    Guo H., Lei X. D., Cournede P., et al., Characterization of the effects of inter-tree competition onsource–sink balance in Chinese pine trees with the GreenLab model. Trees: Structure and Function,2012,26:1057-1067.
    Hallé F., Oldeman R. A., Tomlinson P. B., Tropical trees and forests: an architectural analysis. SpringerVerlag, Berlin,1978.
    HasenauerH., Dimensional relationships of open-grown trees in Austria. Forest Ecology and Management,1997,96,197-206.
    Hein S., Spiecker H., Crown and tree allometry of open-grown ash (Fraxinus excelsior L.) and sycamore(Acer pseudoplatanus L.). Agroforestry Systems,2008,73:205–218.
    Host G. E., Isebrands J. G., Thesseira G. W., et al.,Temporal and spatial scaling from individual trees toplantations: amodeling strategy[J]. Biomass and Bioenergy,1996,11(2-3):233-243.
    Host G. E., Rauscher H. M., Isebrands J. G., et al., The Microcomputer Scientific Software Series6. TheECOPHYS User’s Manual[M]. USDA Forest Service North Central Forest Experimental Station,1990.
    Host G. E., Stech H., Lenz K. E., et al.,Leaves to landscapes: using high performance computing to assesspatch-scale forest response to regional temperature and trace gas gradients[C]. In ‘Proceedings of the5th international workshop on functional–structural plant models’.(Eds P Prusinkiewicz, JHanan, BLane),2007:1-4.
    Hu B. G., De Reffye P. H., Zhao X., et al., GreenLab: towards a new methodology of plantstructural-functional model-structural aspect[C]. Plant growth modeling and applications,2003’international symposium on plant growth modeling, simulation, visualization and their applications.Beijing: Tsinghua University Press,2003,21-35.
    Hua J., Construction of plant growth modeling platform with computational experimentsPh.D. Thesis,Chinese Academy of Sciences,2012.
    Hui D. F., Wang J., LeX., et al., Influences of biotic and abiotic factors on the relationship betweentreeproductivity and biomass in China. Forest Ecology and Management,2012,264:72-80.
    KangM.Z., CournèdeP.H., De ReffyeP., et al., Analytic study of a stochastic plant architectural model:application to the GreenLab model. Mathematics and Computers in Simulation.2008,78:57-75.
    Kubo T., Kohyama T.,Abies population dynamics simulated using a functional-structural tree model[J].Ecological Research,2005(3),20:255-269.
    KurthW., Morphological models of plant growth: Possibilities and ecological relevance. EcologicalModelling.1994,75-76:299-308.
    Kurth W., Sloboda B.,Growth grammars simulating trees-an extension of L-systems incorporating localvariables and sensitivity[J]. Silva Fennica.1997,31(3):285-295.
    Kuuluvainen T., Tree architectures adapted to efficient light utilization-is there a basis for latitudinalgradients. Oikos,1992,65:275-284.
    LappiJ., Calibration of height and volume equations with randomparameters. For. Sci,1991,37:781-801.
    Lappi J., Bailey R.L., A height prediction model with randomstand and tree parameters: An alternative totraditional site index methods.For. Sci,1988,34:907-927.
    Le Dizès S., Cruiziat P., Lacointe A., et al.,A model for simulating structure-function relationships in walnuttree growth processes[J]. Silva Fennica,1997,31(3):313-328.
    Letort V., Cournède P. H., Mathieu A., et al., Parametric identification of a functional–structural tree growthmodel and application to beech trees (Fagussylvatica)[J].Functional Plant Biology,2008,35(10):951–963.
    Letort V., Heuret P., Zalamea P., et al.,Analysing the effects of local environment on the source-sink balanceof Cecropia sciadophylla: a methodological approach based on model inversion[J]. Annals of ForestScience,2012,69(2):167-180.
    LoiC., CournèdeP.H., Description of the GreenLab development model with stochastic L-systems andMonte-Carlo simulations. Technical report INRIA,2008.
    LopezG., FavreauR., SmithC., et al., Integrating simulation of architectural development and source-sinkbehavior of peach trees by incorporating Markov chains and physiological organ function submodelsinto L-PEACH. Functional Plant Biology,2008,35:761-771.
    Lu M.,Simulating cottonwood tree growth in flood plains using the LIGNUM modeling method[D].Columbia: University of Missouri-Columbia,2006.
    Ma Y. T., Li B. G., Zhan Z. G., et al., Parameter stability of the functional-structural plant modelGREENLAB as affected by variation within populations, among seasons and among growth stages.Annals of Botany,2007,99:61-73.
    M kel A., Valentine H. T., Crown ratio influences allometric scaling in trees. Ecology,2006,87:2967-2972.
    Marquardt D. W., Generalized inverse, ridge regression and biased linear estimation. Technometrics,1970,12:591-612.
    MathieuA., CournèdeP., BarthélémyD.,et al., Conditions for the Generation of Rhythms in a DiscreteDynamic System. Case of a Functional Structural Plant Growth Model[C]. in PMA06: T Fourcaud, XPZhang (Eds) Plant Growth Model, Simulation, Visualizationand their Application. IEEE ComputerSociety, Los Alamitos, California:2007,26-33
    Meng S. X., Huang S., Lieffers V. J., Wind speed and crown class influence theheight-diameter relationshipof lodgepole pine: Non-linear mixed effects modeling[J]. Forest Ecology and Management,2008,256:570-577.
    Niklas K. J., Size-dependent variations in plant growth rates and the “3/4-power rule”[J]. American Journalof Botany,1994,81:134-144.
    Nothdurft A., Kublin E., Lappi J. A non-linear hierarchical mixed model to describe tree height growth [J].European Journal Forest Research,2006,125:281-289.
    Pallas B., Christophe A., Cournède P. H, et al., Using a mathematical model to evaluate the trophic andnon-trophic determinants of axis development in grapevine. Functional Plant Biology,2009,36:156-170.
    Perttunen J., Nikinmaa E., Lechowicz M. J., et al.,Application of the functional-structural tree modelLIGNUM to sugar maple saplings (Acer saccharum Marsh) Growing in Forest Gaps[J]. Annals ofBotany,2001,88(3):471-481.
    Perttunen J., Siev nen R., Incorporating Lindenmayer systems for architectural development in afunctional-structural tree model[J]. Ecological modeling,2005,181(4):479-491.
    Perttunen J., Siev nen R., Nikinmaa E.,LIGNUM: A model combining the structure and the functioning oftrees[J]. Ecology of Modelling,1998,108(1-3):189-198.
    Perttunen J., Siev nen R., Nikinmaa E., et al.,LIGNUM: A tree model based on simple structural units[J].Annals of Botany.1996,77(1):87-98.
    Peters R.H., The ecological implications of body size. New York: Cambridge University Press[M],1983:197-198.
    PinheiroJ.C., BatesD.M., Mixed-Effects Models in S and S-PLUS. Springer,2000.
    Poorter H., Pepin S., Rijkers T., et al., Construction costs, chemical composition and payback time of high-and low-irradiance leaves. Journal of Experimental Botany,2006,57:355-371
    Prusinkiewicz P., Lindenmayer A., The algorithmic beauty of plants[M]. New York: Springer-Verlag,1990.
    PuntieriJ.G., GhirardiS., Growth-unit structure in trees: effects of branch category and position onNothofagus nervosa, N. obliqua and their hybrids (Nothofagaceae). Trees-Structure and Function,2010,24:657-665.
    R Development Core Team (2007) R: a language and environment for statisticalcomputing. R Foundation forStatistical Computing, Vienna, Austria. ISBN3-900051-07-0, Available at http://www.R-project.org.(last accessed date July28,2009).
    Rauscher H. M., Isebrands J. G., Host G. E., et al.,ECOPHYS: An ecophysiological growth process modelfor juvenile poplar[J]. Tree Physiology,1990,(7):255-281.
    Reader R. J., Wilson S. D., Belcher J. W., et al.,Plant competition in relation to neighbor biomass: anintercontinental study with Poapratensis[J]. Ecology,1994,75(6),1753–1760.
    Schulze E. D., Kelliher F. M., Korner C., et al., Relationship among maximum stomatalconductance,ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecologyscaling exercise. Annual Review of Ecology and Systematics,1994,25:629-660.
    SalminenH., JalkanenR., Modelling variation of needle density of Scots pine at highlatitudes. Silva Fennica,2006,40(2):183-194.
    Segura V., Denancé C., Durel C. E., et al., Wide range QTLanalysis for complex architectural traits in a1-year-old appleprogeny. Genome,2007,50:159-171.
    Siev nen R., Nikinmaa E., PerttunenJ., Evaluation of importance of sapwood senescence on tree growthusing the model LIGNUM[J]. Silva Fennica,1997,31(3):329-340.
    Siev nenR.., NikinmaaE., NygrenP., et al., Components of functional-structural tree models. Annals ofForest Science,2000,57,399-412.
    Siev nen R., Perttunen J., Nikinmaa E., et al.,Toward extension of a single tree functional–structural modelof Scots pine to stand level: effect of the canopy of randomly distributed, identical trees on developmentof tree structure[J]. Functional Plant Biology,2008,35(10):964-975.
    Song Y. H., Guo Y., and De Reffye P.H. plant morphological constructing based on organ biomassaccumulation[J]. Acta Ecologica Sinica,2003,23(12):2579-2586.
    Suzuki M., Hiura T., Allometric differences between current-year shoots and large branches of deciduousbroad-leaved tree species.Tree Physiol,2000,20(3):203-209.
    Tilman D., Resource Competition and Community Structure[M]. Princeton: PrincetonUniversity Press,1982.
    Valerio C., Youssef R., Emilio M. G., A simple model for estimating leaf area ofhazelnut from linearmeasurements. Scientia Horticulturae,2007,113:221-225.
    VosJ., EversJ.B., Buck-SorlinG.H., et al.,Functional-structural plant modelling: a new versatile tool in cropscience. Journal of experimental Botany.2010,61(8),2101-2115.
    Wang F., Kang M. Z., Lu Q., et al., A stochastic model of tree architecture and biomass partitioning:application to Mongolian Scots pines. Annals of Botany,2010,107:781-792.
    Wang F., Kang M. Z, Lu Q., et al., Calibration of topological development in the procedure of parametricidentification: application of the stochastic GreenLab model for Pinus sylvestris var. mongolica[C]. In:LiB.G., JaegerM., GuoY.(eds), Proceedings of the Third International Symposium on Plant GrowthModeling, Simulation, Visualization and Applications–PMA’09.IEEE Computer Society. Beijing,2010:26-33.
    WangF., KangM.Z., LuQ., et al.,A stochastic model of tree architecture and biomass partitioning: applicationto Mongolian Scots pines. Annals of Botany,2011,107:781-792.
    Wang F., Letort V., Lu Q., et al., A functional and structural Mongolian Scots Pine (Pinus sylvestris var.mongolica) model integrating architecture, biomass and effects of precipitation. PLOS ONE,2012,7(8):e43531.
    Wang, X. P., FangJ. Y., TangZ. Y., et al., Climaticcontrol of primary forest structure and DBH–heightallometry in Northeast China, ForestEcology and Management,2006,234(1-3):264-274.
    Waring R. H., Schroeder P. E., Oren R., Application of the pipe model theory topredict canopy leaf area.Canadian Journal of Forest Research,12:556-560.
    Weber P., Bugmann H., Fonti P., et al.,Using a retropective dynamic competition index to reconstruct forestsuccession[J]. Forest Ecology and Management,2008,254(1):96-106.
    Wernecke P., Müller J., Dornbusch T., et al., The virtual crop-modelling system "VICA" specified forbarley[C]. In: Vos J, Marcelis LFM, de Visser PHB, Struik PC and Evers JB, eds. Functional-structuralplant modelling in crop production. Dordrecht, the Netherlands: Springer,2007:53-64.
    White J., The plant as a metapopulation. Annual Review of Ecology andSystematics,1979,10:109-145.
    Wright I. J., Wearoby M., Cross-species relationship between seedling relative growth rate, nitrogenproductivity and root vs. leaf function in28Australianwoody species. Functional Ecology,2000,14:97-107.
    YanH.P., KangM.Z., De ReffyeP., et al.,A dynamic, architectural plant model simulating resource-dependentgrowth. Annals of Botany.2004,93:591-602.
    Zhan Z. G., Study on a structure-function model of plant growth and its calibration [D]. The dissertation ofdoctor,2001:25
    Zhan Z. G., de Reffye P. H., Houllier F., et al.,Fitting a structural-functional model with plant architecturaldata[C]. Plant Growth Modeling and Application. Beijing: Tsinghua University Press,2003:236-249.
    Zhang B. G., De Reffye P., et al., Analysis and modeling of the root system architecture of winter wheatseedlings. In: Hu B G, Jaeger M. Plant growth modeling and applications,2003’ internationalsymposium on plant growth modeling, simulation, visualization and their applications. Beijing.Tsinghua University Press,2003:321-328.
    Zhang W. P., Li B. G.,General structural model of crop root system based on the dual-scale automaton.[C].In: LiB.G., JaegerM., GuoY.(eds), Proceedings of the Third International Symposium on Plant GrowthModeling, Simulation, Visualization and Applications–PMA’09.IEEE Computer Society. Beijing,2010:161-164.
    ZhaoX., De ReffyeP., BarthélémyD., et al., Interactive simulation of plant architecture based on a dual-Scaleautomaton model. In: Hu, B.G., Jaeger, M.(eds.), Plant growth modeling and applications. ProceedingsPMA03:2003International symposium on plant growth modeling, simulation, visualization and theirapplications. Beijing: Tsinghua University Press,2003:144-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700