用户名: 密码: 验证码:
过表达肌浆网钙ATP酶2a对心肌细胞PI3K/Akt信号通路短期作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心力衰竭是各种心脏疾病发展的最终归宿,是导致患者死亡的主要原因。目前针对慢性心衰的治疗已有长足发展,但其五年死亡率仍居高不下。分子生物学研究提示心力衰竭心肌细胞中存在某些相关基因表达和调控异常,因此心衰被认为是一种多基因突变疾病。基因治疗为心力衰竭提供了新的治疗途径。肌浆网Ca2+转运障碍是各种心力衰竭的共同通路,肌浆网钙ATP酶2a (sarcoplasmic reticulum calcium ATPase 2a, SERCA2a)是调节细胞内Ca2+稳态的决定因素。既往研究表明,转基因过表达SERCA2a可以改善心力衰竭心肌细胞的功能、纠正Ca2+稳态失衡、延长存活时间和逆转心室肥厚等。为了更好的评价这种治疗方法,就必须探讨其保护心肌的分子机制。本实验室前期的研究工作显示转基因过表达SERCA2a可使心肌细胞内与提供能量有关的酶类表达增加,并纠正MHC亚型的异常表达。其他研究小组发现转基因过表达SERCA2a可以纠正心力衰竭时蛋白激酶B(Akt1)的异常表达。
     蒽环类抗生素广泛应用于各种恶性肿瘤的治疗,但其存在严重的心脏毒性。心力衰竭是此类药物心脏毒性的最终表现。研究显示,蒽环类药物影响心肌细胞SERCA2a蛋白的表达和功能,SERCA2a功能改变是此类药物导致心脏毒性的关键因素。另外蒽环类药物诱发心肌毒性与心肌细胞内Akt磷酸化水平降低有关。大量事实证明,多种心肌保护因子通过激活Akt通路抑制蒽环类药物的心肌毒性。
     Akt是一种蛋白质丝/苏氨酸激酶,心肌细胞主要表达Akt1亚型。胰岛素等各种生长因子通过磷酯酰肌醇3-激酶(Phosphatidylinositol 3-kinase, PI3K)激活Akt,Akt被激活后广泛参与调节心肌细胞生长、能量代谢和抗调亡等过程。Akt是细胞内信号传导通路网络的中心分子,短期适度激活Akt对心肌细胞有保护作用,而大量长期激活会促进心力衰竭的发生。转基因过表达SERCA2a可以改善心力衰竭动物的长期预后,而过表达SERCA2a可以纠正心衰心肌细胞Akt1的异常表达,因此我们推测过表达SERCA2a的长期有益作用可能与纠正Akt1通路的异常有关。
     本研究在体外培养的H9c2心肌细胞系和原代心肌细胞,采用重组腺病毒转基因瞬时过表达SERCA2a,观察过表达SERCA2a对正常心肌细胞PI3K/Akt信号通路的作用,并探讨此通路下游分子GSK3β和GLUT4活性改变情况,明确在正常心肌细胞过表达SERCA2a是否可以激活PI3K/Akt通路。首先,本研究采用HEK-293T细胞扩增重组腺病毒Ad-GFP和Ad-SERCA2a,并验证扩增后的腺病毒在体外可以有效感染目的细胞。利用Ad-GFP感染H9c2心肌细胞和MTT实验观察病毒感染对心肌细胞损伤程度,确定最佳感染复数(MOI)值,为后期实验奠定基础。其次,通过在体外培养的H9c2心肌细胞系和原代心肌细胞内转基因过表达SERCA2a,观察对Akt通路的影响。结果显示,在体外培养的H9c2心肌细胞过表达SERCA2a可以激活Akt,Akt磷酸化水平升高,是对照组的2.7倍(P<0.05);其下游底物GSK3β磷酸化水平升高,是对照组的3.1倍(P<0.05); GLUT4蛋白表达无明显变化,但通过免疫荧光染色发现有GLUT4由细胞浆移位至细胞膜的现象。进一步细胞膜蛋白分析显示,过表达SERCA2a组细胞膜GLUT4蛋白量增加,是对照组的2.1倍(P<0.05)。在原代心肌细胞过表达SERCA2a也可以激活Akt通路,Akt磷酸化水平升高,是对照组的2.1倍(P<0.05);其下游底物GSK3β磷酸化水平升高,是对照组的1.6倍(P<0.05);采用PI3K抑制剂LY294002可以阻断以上蛋白磷酸化水平改变,提示过表达SERCA2a通过PI3K激活Akt通路。最后,采用阿霉素诱导心肌细胞坏死,观察过表达SERCA2a对阿霉素诱导心肌损伤的影响。结果显示,阿霉素诱导心肌细胞坏死时,细胞LDH漏出量增加,细胞内Ca2+离子水平升高,SERCA2a蛋白表达降低。过表达SERCA2a可以抑制阿霉素诱导的心肌损伤,表现为心肌细胞死亡率降低,心肌细胞活性增加(P<0.05),心肌细胞内Ca2+离子水平降低(P<0.05),同时伴有Akt信号通路的激活。LY294002仅能部分阻断SERCA2a对阿霉素诱导心肌损伤的保护作用,提示过表达SERCA2a抑制阿霉素诱导的心肌损伤除激活PI3K/Akt信号通路发挥作用外,可能还存在其他的保护机制。
Heart failure is the end stage of various cardiac diseases and is a major cause of mortality. Although progress in conventional treatment has improved survival, its 5-year mortality rate is still high. Molecular biology studies have shown that heart failure is a multi-gene disease. Gene therapy for heart failure provides a new therapeutic approach. Sarcoplasmic reticulum Ca2+ transport impairment is a common pathway for varieties of heart failure. Sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) plays a key role in controlling intracellular Ca2+ handling. Previous studies showed that transgenic overexpression of SERCA2a was able to improve the function of myocardial cells of heart failure, correct the abnormal of Ca2+ homeostasis, extend survival time and reverse ventricular hypertrophy and so on. In order to better evaluate the treatment, to explore the molecular mechanisms of the treatment is necessary. Preliminary work in our laboratory shows that transgenic overexpression of SERCA2a can not only increase the expression of related enzymes that provide energy for the myocardial cells, but also correct the abnormal expression of MHC isoforms. In addition, other studies indicate transgenic overexpression of SERCA2a can correct myocardial protein kinase B (Akt1) abnormal expression in heart failure.
     Anthracycline antibiotics are widely used in the treatment of various malignancies, but they have serious cardiac toxicity. Heart failure is the final performance cardiac toxicity. It was investigated that the drugs impacted on the expression and function of myocardial SERCA2a protein and the change of SERCA2a function of these drugs is a key factor in cardiac toxicity. Anthracycline-induced cardiotoxicity is related to the decrease of Akt phosphorylation. Many facts have proven that a variety of myocardial protection factors through activating Akt pathway restrain the anthracycline cardiac toxicity.
     Akt is a protein serine/threonine kinase and Aktl is mainly in myocardial cell. Insulin and other growth factors activate Akt via PI3K. Akt activated extensively involved in the regulation of myocardial cell growth, the energy metabolism and resistance to apoptosis and other processes. Akt is the central elements within the cellular signal transduction networks, and the short-term moderate activated Akt has a protective effect on myocardial cells, while long-term activated one may promote heart failure. Transgenic overexpression of SERCA2a can improve the long-term prognosis in animal models of heart failure, while overexpression of SERCA2a can correct the abnormal expression of Aktl in myocardial cell of heart failure, we speculated that long-term beneficial effects of overexpression of SERCA2a may correct the abnormalities of Aktl pathway. In this study, the growth of cardiac cells is in vitro culture, and observed in normal cardiomyocytes PI3K/Akt signaling pathway effects by using recombinant adenovirus gene transient overexpression of SERCA2a. Morever, whether the downstream of GSK3βand GLUT4 molecular being activated is also investigated. First, HEK-293T cells were used to amplification of recombinant adenovirus Ad-GFP and Ad-SERCA2a, and verified that the amplified adenovirus can infect target cells effectively in vitro. Myocardial cell injury is observed by using Ad-GFP infected cardiomyocytes and MTT expremental to determine the optimal MOI in order to provide the basic material for the later experiments. Second, affected Akt pathway is observed througn overexpressing SERCA2a in cultured H9c2 myocardial cell lines and primary myocardial cells. The results showed that overexpression of SERCA2a in vitro can active Akt signaling pathway and result in the elevation of Akt phosphorylation level, which is 2.7 times as high as control group (P<0.05). Then the phosphorylation of downstream substrate GSK3βis also higher and it is 3.1 times as high as control (P<0.05). Although GLUT4 protein expression has on significant changes, the shift from the cytoplasm translocation to the plasm membrane was observed. Further analysis indicated membrane GLUT4 proteins increased in the groups of SERCA2a overexpression, which is 2.1 times as high as control (P<0.05). Overexpression of SERCA2a in primary myocardial cell also can active Akt signaling pathway and result in the elevation of Akt phosphorylation level, which is 2.1 times as high as control group (P<0.05). Then the phosphorylation of downstream substrate GSK3βis also higher and it is 1.6 times as high as control group (P<0.05). PI3K inhibitor (LY294002) blocked the phosphorylation level of the above changes, suggesting that SERCA2a activated Akt through PI3K signaling pathway. Finally, the use of adriamycin induced myocardial injury, the overexpression of SERCA2a observed decreased on the cardiac toxicity of doxorubicin. The results showed that Adriamycin induced myocardial necrosis, increase of cells LDH leakage and intracellular Ca2+ level and decrease of SERCA2a protein expression. Overexpression of SERCA2a could inhibit adriamycin-induced myocardial injury, manifested as myocardial cell death and increased cell survival of myocardial cells (P<0.05), myocardial cells reduce the level of Ca2+ level (P<0.05), accompanied by the activation of Akt signaling pathway. LY294002 only partially blocked by SERCA2a overexpression on adriamycin induced myocardial injury, suggesting that overexpression of SERCA2a inhibition of adriamycin induced myocardial injury via activation of PI3K/Akt signaling pathway, might have other protection mechanisms.
引文
1. Levy WC, Linker DT. Prediction of mortality in patients with heart failure and systolic dysfunction. Curr Cardiol Rep 2008,10:198-205.
    2. Rosen D, Decaro MV, Graham MG. Evidence-based treatment of chronic heart failure. Compr Ther 2007,33:2-17.
    3. Vinge LE, Raake PW, Koch WJ. Gene therapy in heart failure. Circ Res 2008, 102:1458-1470.
    4. Kamen A, Henry O. Development and optimization of an adenovirus production process. J Gene Med 2004,6:S184-S192.
    5. Park MT, Lee MS, Kim SH, et al. Influence of culture passages on growth kinetics and adenovirus vector production for gene therapy in monolayer and suspension cultures of HEK 293 cells. Appl Microbiol Biotechnol 2004, 65:553-558.
    6. Nadeau I, Kamen A. Production of adenovirus vector for gene therapy. Biotechnol Adv 2003,20:475-489.
    7. del MonteF, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 1999,100:2308-11
    8. Brazil DP, Park J, Hemmings BA. PKB binding proteins getting in on the Akt. Cell 2002,111:293-303.
    9. Lum BL, Gosland MP, Kaubisch S, et al. Molecular targets Ⅰ in oncology: implications of the multidrug resistance gene. Pharmacotherapy 1993, 13:88-109.
    10. Arai M, Tomaru K, Takizawa T,, et al. Nagai, Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits, J Mol Cell Cardiol 1998,30:243-254.
    11. Arai M, Yoguchi A, Takizawa T, et al. Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca2+ -ATPase gene transcription. Circ Res 2000,86:8-14.
    12. Gambliel HA, Burke BE, Cusack BJ, et al. Doxorubicin and C-13 deoxydoxorubicineffects on ryanodine receptor gene expression. Biochem Biophys Res Commun 2002,291:433-438.
    13. Boucek RJ Jr, Miracle A, Anderson M, et al. Persistent effects of doxorubicin on cardiac gene expression. J Mol Cell Cardiol 1999,31:1435-1446.
    14. Emanuelov AK, Shainberg A, Chepurko Y, et al. Adenosine A3 receptor-mediated cardioprotection against doxorubicin-induced mitochondrial damage. Biochem Pharmacol 2010,79:180-187.
    15. Singal PK, Li T, Kumar D, et al. Adriamycin-induced heart failure: mechanism and modulation. Mol Cell Biochem 2000,207:77-86.
    16. Kim KH, Oudit GY, Backx PH. Erythropoietin protects against doxorubicin induced cardiomyopathy via a phosphatidylinositol 3 kinase dependent pathway. J Pharmacol Exp Ther 2008,324:160-169.
    17. Fan GC, Zhou X, Wang X, et al. Heat shock protein 20 interacting with phosphorylated Akt reduces doxorubicin-triggered oxidative stress and cardiotoxicity. Circ Res 2008,103:1270-1279.
    18. Timolati F, Ott D, Pentassuglia L, et al. Neuregulin-1 beta attenuates doxorubicin induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. J Mol Cell Cardiol 2006, 41:845-854.
    19. Negoro S, Oh H, Tone E, et al. Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. Circulation 2001,103:555-561.
    20. Lai HC, Liu TJ, Ting CT, et al. Insulin-like growth factor-1 prevents loss of electrochemical gradient in cardiac muscle mitochondria via activation of PI 3 kinase/Akt pathway. Mol Cell Endocrinol 2003,205:99-106.
    21. del Monte F, Dalal R, Tabchy A,et al. Transcriptional changes following restoration of SERCA2a levels in failing rat hearts. FASEB J 2004, 1474-1476.
    22. Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005,24:7455-7464.
    23. Woodgett JR. Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 2005,17:150-157.
    24. Muslin AJ, DeBosch B. Role of Akt in cardiac growth and metabolism. Novartis Found Symp 2006,274:118-126.
    25. McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy:novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 2007,34:255-262.
    26. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 2006, 20:3347-3365.
    27. Hoshijima M, Chien K.R. Mixed signals in heart failure:cancer rules. J Clin Invest 2002,109:849-855.
    28. Frey N, Olson EN. CARDIAC HYPERTROPHY:The Good, the Bad, and the Ugly. Annu Rev Physiol 2003,65:45-79.
    1. Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy:the art of turning infectious agents into vehicles of therapeutics.Nat Med 2001,7:33-40.
    2. Nishikawa M, Huang L. Nonviral vectors in the new millennium:delivery barriers in gene transfer. Hum Gene Ther 2001,12:861-70.
    3. Ly H, Kawase Y, Yoneyama R, et al. Gene therapy in the treatment of heart failure. Physiology (Bethesda) 2007,22:81-96.
    4. Isner JM. Myocardial gene therapy. Nature 2002,415:234-239.
    5. Mitani K,Graham FL,Caskey CT, et al. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc Natl Acad Sci U S A 1995,92:3854-3858.
    6. Rissanen TT, Yla-Herttuala S. Current Status of Cardiovascular Gene Therapy. Mol Ther 2007,15:1233-1247.
    7. Kamen A, Henry O. Development and optimization of an adenovirus production process. J Gene Med 2004,6:S184-S192.
    8. Park MT, Lee MS, Kim SH, et al. Influence of culture passages on growth kinetics and adenovirus vector production for gene therapy in monolayer and suspension cultures of HEK 293 cells. Appl Microbiol Biotechnol 2004, 65:553-558.
    9. Nadeau I, Kamen A. Production of adenovirus vector for gene therapy. Biotechnol Adv 2003,20:475-489.
    10. Zhu J, Grace M, Casale J, et al. Characterization of replication-competent adenovirus isolates from large-scale production of a recombinant adenoviral vector. Hum Gene Ther 1999,10:113-21.
    11. Fallaux FJ, Bout A, van der Velde I, et al. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 1998,9:1909-1917.
    12. Salmon P, Trono D. Production and titration of lentiviral vectors. Curr Protoc
    Neurosci.2006, Nov Chapter 4:Unit 4.21.
    13. Sharma A, Tandon M, Bangari DS, et al. Adenoviral vector-based strategies for cancer therapy. Curr Drug ther.2009,4:117-138.
    14. Maurice JP, Hata JA, Shah AS, et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. J Clin Invest1999,104:21-29.
    15. Laitinen M, Hartikainen J, Hiltunen MO, et al. Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther 2000,11:263-270.
    16. Katovich MJ, Gelband CH, Reaves P,et al. Reversal of hypertension by angiotensin Ⅱ type 1 receptor antisense gene therapy in the adult SHR. Am J Physiol 1999,277:H1260-1264.
    17. Vale PR, Losordo DW, Milliken CE, et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001,103:2138-2143.
    18. Reilly JP, Grise MA, Fortuin FD, et al. Long-term (2-year) clinical events following transthoracic intramyocardial gene transfer of VEGF-2 in no-option patients. J Interv Cardiol 2005,18:27-31.
    19.薛惠斌.腺病毒CNHK200-hEndostatin的质量控制及大规模扩增、纯化的初步研究。2007,58-59.
    20. Mittereder N, March KL, Trapnell BC. Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol 1996, 70:7498-7509.
    21. Keegan JS.Cell scale-up and infection for the production of adenoviral gene therapy vectors.ViralVectorsandVaccinesWilliamsburgVirginia1999,Nov 1-4.
    22. Schoofs G, Monica TJ, Ayala J, et al. A high yielding serum-free, suspension cell culture process to manufacture recombinant adenoviral vectors for gene therapy. Cytotechnology 1998,28:81-89.
    1. Bers DM, Bassani JW, Bassani RA:Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle. Ann NY Acad Sci 1996,779:430-442.
    2. del MonteF, Harding SE, Schmidt U, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 1999,100:2308-11 Harding SE, Jones SM, O'Gara P,et al. Isolated ventricular myocytes from failing and non-failing humanheart:the relation of age and clinical status of patients to isoproterenol response. J Mol Cell Cardiol 1992,24:549-564.
    3. Gwathmey JK, Slawsky MT, Hajjar RJ,et al. Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J Clin Invest 1990,85:1599-1613.
    4. Schmidt U, del Monte F, Miyamoto MI, et al. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circulation 2000,101:790-796.
    5. Schmidt U, Hajjar RJ, Helm PA, et al.Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol 1998,30:1929-1937.
    6. 惠海鹏,李小鹰.腺相关病毒介导心肌肌浆网Ca2+-ATPase 2a基因转导治疗大鼠慢性心力衰竭。 中华心血管病杂志2006,34:357-362.
    7.付治卿,李小鹰,刘涛等.心肌肌浆网Ca^2+-ATP酶基因转导改善慢性心力衰竭犬心功能的研究.中国病理生理杂志 2008,24:1047-1050.
    8. Hajjar RJ, Kang JX, Gwathmey JK, et al. Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circulation 1997,95:423-429.
    9. del Monte F, Dalal R, Tabchy A, et al. Transcriptional changes following restoration of SERCA2a levels in failing rat hearts. FASEB J 2004, 1474-1476.
    10. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 2006,20:3347-3365.
    11. Shiojima I, Sato K, Izumiya Y, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 2005,115:2108-2118.
    12. Pouyssegur J, Dayan F, MazureNM. Hypoxia signaling in cancer and approaches to enforce tumour regression. Nature 2006,441:437-443.
    13. Matsui T, Rosenzweig A Convergent signal transduction pathways controlling cardiomyocyte survival and function:the role of PI 3-kinase and Akt. J Mol Cell Cardiol 2005,38:63-71.
    14. IzumiyaY, Shiojima I, Sato K, et al. Vascular endothelial growth factorblockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension 2006, 47:887-893.
    15. Matsui T, Nagoshi T, Rosenzweig A. Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2003,2:220-223.
    16. Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart. Exp Cell Res 1976,98:367-338.
    17. Brazil DP, Park J, Hemmings BA. PKB binding proteins getting in on the Akt. Cell 2002,111:293-303.
    18. Hescheler J, Meyer R, Plant S et al. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res 1991,69:1476-1486.
    19. Caldwell PT, Thorne PA, Johnson PD, et al. Trichloroethylene disrupts cardiac gene expression and calcium homeostasis in rat myocytes. Toxicol Sci 2008,104:135-143.
    20. Gross ER, Hsu AK, Gross GJ. The JAK/STAT pathway is essential for opioid-induced cardioprotection:JAK2 as a mediator of STAT3, Akt, and
    GSK-3 beta.Am J Physiol Heart Circ Physiol 2006,291:H827-834.
    21. Yano N, Ianus V, Zhao TC, et al. A novel signaling pathway for beta-adrenergic receptor-mediated activation of phosphoinositide 3-kinase in H9c2 cardiomyocytes Am J Physiol Heart Circ Physiol 2007,293:H385-393.
    22. Zhou K, Zhang L, Xi J, et al. Ethanol prevents oxidant-induced mitochondrial permeability transition pore opening in cardiac cells 2009,44:20-24.
    23. Fretwell L, Dickenson JM. Role of large-conductance Ca2+ -activated potassium channels in adenosine A1 receptor-mediated pharmacological preconditioning in H9c2 cells. Eur J Pharmacol 2009,618:37-44.
    24. Ihara Y, Urata Y, Goto S et al. Role of calreticulin in the sensitivity of myocardiac H9c2 cells to oxidative stress caused by hydrogen peroxide. Am J Physiol Cell Physiol 2006,290:C208-221.
    25. Aggeli IK, Beis I, Gaitanaki C. ERKs and JNKs mediate hydrogen peroxide-induced Egr-1 expression and nuclear accumulation in H9c2 cells. Physiol Res 2009 Aug 12.
    26. Kim KH, Oudit GY, Backx PH.Erythropoietin protects against doxorubicin-induced cardiomyopathy via a phosphatidylinositol 3-kinase-dependent pathway. J Pharmacol Exp Ther 2008,324:160-169.
    27. Xin H, Liu XH, Zhu YZ.Herba leonurine attenuates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells. Eur J Pharmacol 2009,612:75-79.
    28. Chakraborti S, Das S, Kar P, et al.Calcium signaling phenomena in heart diseases:a perspective. Mol Cell Biochem 2007,298:1-40。
    29. del Monte F, Williams E, Lebeche D, et al. Improvement in survival and cardiac metabolism after gene transfer of SR Ca2+-ATPase in a rat model of heart failure. Circulation 2001,104:1424-1429.
    30. Maier LS, Wahl-Schott C, Horn W, et al. Increased SR Ca2+cycling contributes to improved contractile performance in SERCA2a-overexpressing transgenic rats. Cardiovasc Res 2005,67:636-646.
    31. He H, Giordano FJ, Hilal-Dandan R, et al. Overexpression of the rat SR Ca2+-ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest 1997,100:380-389.
    32. Baker DL, Hashimoto K, Grupp IL, et al. Targeted overexpression of the SR Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res 1998,83:1205-1214.
    33. Hajjar RJ, Kang JX, Gwathmey JK, et al. Physiologicaleffects of adenoviral gene transfer of SR Ca2+-ATPase in isolated ratmyocytes. Circulation 1997, 95:423-439.
    34. Giordano FJ, He H, McDonough P,et al. Adenovirus-mediated gene transfer reconstitutes depressed SR Ca2+-ATPase levels and shortens prolonged cardiac myocyte Ca2+-transients. Circulation 1997,96:400-403.
    35. Hemmings BA. Akt signaling:linking membrane events to life and death decisions. Science 1997,275:628-630.
    36. Downward J. Mechanisms and consequences of activation of proteinkinase B/Akt. Curr Opin Cell Biol 1998,10:262-267.
    37. Taniyama Y, Ito M, Sato K, et al. Akt3 overexpression in the heart results in progression from adaptive to maladaptive hypertrophy. J Mol Cell Cardiol 2005,38:375-385.
    38. Catalucci D, Zhang DH, DeSantiago J et al. Akt regulates L-type Ca2+ channel activity by modulating Cavalphal protein stability. J Cell Biol 2009, 184:923-933.
    39. Clodfelder-Miller B, De Sarno P, Zmijewska AA, et al. Physiological and pathological changes in glucose regulate brain Akt and glycogen synthase kinase-3. J Biol Chem 2005,280:39723-39731.
    40. Pilcher HR. The ups and downs of lithium. Nature 2003,425:118-120.
    41. Jope RS. A bimodal model of the mechanism of action oflithium. Mol Psychiatr 1999,4:21-25.
    42. Kim L, Kimmel AR. GSK-3, a master switch regulating cell-fate specification and tumorigenesis. Curr Opin Genet Dev 2000,10:508-514.
    43. Seimi SK, Seinosuke K, Tsuyoshi S et al. Glycogen synthase kinase-3beta is involved in the process of myocardial hypertrophy stimulated by insulin-like growth factor-1. Circ J 2004,68:247-253.
    44. Barillas R, Friehs I, Cao-Danh H, et al. Inhibition of glycogen synthase kinase-3beta improves tolerance to ischemia in hypertrophied hearts. Ann Thorac Surg 2007,84:126-133.
    45. Cline GW, Petersen KF, Krssak M, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 1999,341:240-246.
    46. Berenguer M, Le Marchand-Brustel Y, Govers R. GLUT4 molecules are recruited at random for insertion within the plasma membrane upon insulin stimulation. FEBS Lett 2010,584:537-542.
    47. Lajoie C, Calderone A, Trudeau F, et al. Exercise training attenuated the PKB and GSK-3 dephosphorylation in the myocardium of ZDF rats. J Appl Physiol 2004,96:1606-1612.
    48. Kemi OJ, Ellingsen O, Ceci M et al. Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. J Mol Cell Cardiol 2007,43:354-361.
    49. Matsui T, Nagoshi T, Hong EG, et al. Effects of chronic Akt activation on glucose uptake in the heart. Am J Physiol Endocrinol Metab 2006, 290:E789-797.
    50. Liu F, Dallas-Yang Q, Castriota G et al. Development of a novel GLUT4 translocation assay for identifying potential novel therapeutic targets for insulin sensitization. Biochem J 2009,418:413-420.
    1. Lum BL, Gosland MP, Kaubisch S, et al. Molecular targets Ⅰ in oncology: implications of the multidrug resistance gene. Pharmacotherapy 1993, 13:88-109.
    2. Outomuro D, Grana DR, Azzato F, et al. Adriamycin-induced myocardial toxicity:new solutions for an old problem? Int J Cardiol 2007,117:6-15.
    3. Tokarska-Schlattner M, Zaugg M, Zuppinger C, et al. New insights into doxorubicin induced cardiotoxicity:the critical role of cellular energetics. J Mol Cell Cardiol 2006,41:389-405.
    4. Arai M, Tomaru K, Takizawa T, et al.Nagai, Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits, J Mol Cell Cardiol 1998,30:243-254.
    5. Arai M, Yoguchi A, Takizawa T, et al. Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca2+ -ATPase gene transcription. Circ Res 2000,86:8-14.
    6. Gambliel HA, Burke BE, Cusack BJ, et al.Doxorubicin and C-13 deoxydoxorubicineffects on ryanodine receptor gene expression. Biochem Biophys Res Commun 2002,291:433-438.
    7. Boucek RJ Jr, Miracle A, Anderson M, et al. Persistent effects of doxorubicin on cardiac gene expression. J Mol Cell Cardiol 1999,31:1435-1446.
    8. Emanuelov AK, Shainberg A, Chepurko Y,et al. Adenosine A3 receptor-mediated cardioprotection against doxorubicin-induced mitochondrial damage. Biochem Pharmacol 2010,79:180-187.
    9. Fujio Y, Nguyen T, Wencker D, et al. Akt promotes survival of cardiomyocytes in vitro and protects against ischemiareperfusion injury in mouse heart. Circulation 2000,101:660-667.
    10. Miao W, Luo Z, Kitsis RN, et al. Intracoronary, adenovirusmediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. J Mol Cell Cardiol 2000,32:2397-2402.
    11. Matsui T, Tao J, Del Monte F, et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 2001,104:330-335.
    12. TaniyamaY, Walsh K. Elevated myocardial Akt signaling ameliorates doxorubicin induced congestive heart failure and promotes heart growth. J Mol Cell Cardiol 2002,34:1241-1247.
    13. Singal PK, Li T, Kumar D, et al. Adriamycin-induced heart failure: mechanism and modulation. Mol Cell Biochem 2000,207:77-86.
    14. Kim KH, Oudit GY, Backx PH. Erythropoietin protects against doxorubicin induced cardiomyopathy via a phosphatidylinositol 3 kinase dependent pathway. J Pharmacol Exp Ther 2008,324:160-169.
    15. Fan GC, Zhou X, Wang X, et al. Heat shock protein 20 interacting with phosphorylated Akt reduces doxorubicin-triggered oxidative stress and cardiotoxicity. Circ Res 2008,103:1270-1279.
    16. Timolati F, Ott D, Pentassuglia L, et al. Neuregulin-1 beta attenuates doxorubicin induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. J Mol Cell Cardiol 2006, 41:845-854.
    17. Negoro S, Oh H, Tone E,et al. Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. Circulation 2001,103:555-561.
    18. Lai HC, Liu TJ, Ting CT, et al. Insulin-like growth factor-1 prevents loss of electrochemical gradient in cardiac muscle mitochondria via activation of PI 3 kinase/Akt pathway. Mol Cell Endocrinol 2003,205:99-106.
    19. Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 2007, 49:330-352.
    20. Sawyer DB, Fukazawa R, Arstall MA, et al. Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Circ Res 1999, 84:257-65.
    21. Spallarossa P, Garibaldi S, Altieri P et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 2004,37:837-846.
    22. Li K, Sung RY, Huang WZ et al. Thrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin. Circulation 2006, 113:2211-2220.
    23. Zhang J, Clark JR Jr, Herman EH, et al.Doxorubicin-induced apoptosis in spontaneously hypertensive rats:differential effects in heart, kidney and intestine, and inhibition by ICRF-187. J Mol Cell Cardiol 1996, 28:1931-1943.
    24. Keung EC, Toll L, Ellis M,et al. L-type cardiac calcium channels in doxorubicin cardiomyopathy in rats:morphological, biochemical, and functional correlations. J Clin Invest 1991,87:2108-2113.
    25. Menna P, Salvatorelli E, Minotti G. Doxorubicin degradation in cardiomyocytes. J Pharmacol Exp Ther 2007,322:408-419.
    26. Singal PK, Panagia V. Direct effects of Adriamycin on the rat heart sarcolemma. Res Commun Chem Pathol Pharmacol 1984,43:67-77.
    27. Saeki K, Obi I, Ogiku N, et al. Doxorubicin directly binds to the cardiac-type ryanodine receptor. Life Sci 2002,70:2377-89
    28. Boucek RJ Jr, Olson RD, Brenner DE, et al. The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps. A correlative study of cardiac muscle with isolated membrane fractions. J Biol Chem 1987,262:15851-15856.
    29. del Monte F, Harding SE, Schmidt U,, et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 1999,100:2308-2311.
    30. Datta SR, Dudek H, Tao X et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997,91:231-241.
    31. Suhara T, Mano T, Oliveira BE, et al.Phosphatidylinositol 3-kinase/Akt signaling controls endothelial cell sensitivity to Fas-mediated apoptosis via regulation of FLICE-inhibitory protein (FLIP). Circ Res 2001,89:13-19.
    32. Ozes ON, Mayo LD, Gustin JA, et al. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase.Nature 1999,401: 82-85.
    33. Kohn AD, Summers SA, Birnbaum MJ, et al. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996,271:31372-31378.
    34. Cross DA, Alessi DR, Cohen P et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature1995,378:785-789.
    35. Deprez J, Vertommen D, Alessi DR, et al.Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 1997,272:17269-17275.
    36. Gottlob K, Majewski N, Kennedy S, et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase Genes Dev 2001,15:1406-1418.
    37. Fujio Y, Nguyen T, Wencker D, et al. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 2000,101:660-7.
    38. Yu J, Zhang HF, Wu F et al. Insulin improves cardiomyocyte contractile function through enhancement of SERCA2a activity in simulated ischemia/reperfusion. Acta Pharmacol Sin 2006,27:919-926.
    39. Matsui T, Tao J, del Monte F, et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 2001, 104:330-335.
    40. Takaseya T, Ishimatsu M, Tayama E et al. Mechanical unloading improves intracellular Ca2+ regulation in rats with doxorubicin-induced cardiomyopathy. J Am Coll Cardiol 2004,44:2239-2246.
    41. Kim YK, Kim SJ, Yatani A, et al. Mechanism of enhanced cardiac function in mice with hypertrophy induced by overexpressed Akt. J Biol Chem 2003,278:47622-47628.
    42. Doble BW, Woodgett JR.GSK-3:Tricks of the trade for a multi-tasking kinase. J Cell Sci 2003,116:1175-1186.
    43. Mora A, Sakamoto K, McManus EJ, et al.. Role of the PDK1-PKB-GSK3 pathway in regulating glycogen synthase and glucose uptake in the heart. FEBS Lett 2005,579:3632-3638.
    44. Michael A, Haq S, Chen X, et al. Glycogen synthase kinase-3b regulates growth, calcium homeostasis, and diastolic functions in the heart. J Biol Chem 2004,279:21383-21393.
    45. Hirotani S, Zhai P, Tomita H, et al. Inhibition of glycogen synthase 3b during heart failure is protective. Circ Res 2007,101:1164-1174.
    46. Zhai P, Gao S, Holle E, et al. Glycogen synthase kinase-3a reduces cardiac growth and pressure overload-induced cardiac hypertrophy by inhibition of extracellular signal regulated kinases. J Biol Chem 2007,282:33181-33191.
    1. Staal SP, Hartley JW, RoweWP. Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc Natl Aca Sci 1977,74:3065-3067.
    2. Jones PF, Jakubowicz T, Pitossi FJ,et al. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily.Proc Natl Aca Sci 1991,88:4171-4175.
    3. Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT-a major therapeutic target. Biochim Biophys Acta 2004, 1697:3-16.
    4. Peyrollier K, Hajduch E, Gray A, et al. A role for the actincytoskeleton in the hormonal and growth-factor-mediated activation of protein kinase B.Biochem J 2000,352:617-622.
    5. Nicholson KM, Anderson NG The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002,14:381-395.
    6. Datta SR, Brunet A, Greenberg ME. Cellular surviva:1 a play in threeAkts.Gen Dev 1999,13:2905-2927.
    7. Cantley LC. The Phosphoinositide 3-Kinase pathway. Science 2002, 296:1655-1657.
    8. CofferPJ, Jin J, Woodgett JR. Protein kinase B (c-Akt):amultifunctional mediator of phosphatidylinositol 3-kinase activation.Biochem J 1998,335: 1-13.
    9. Viglietto G, MottiML, Bruni P,et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent inhibtorofp27kiplby PKB/Akt-mediated phosphorylation in breast cancer.Nature Med 2002,8:1136-1144.
    10. Burnham CA, Shokoples SE, Tyrrell GJ. Invasion of HeLa cells by group B streptococcus requires the phosphoinositide-3-kinase signalling pathway and modulates phosphorylation of host-cell Akt and glycogen synthase kinase-3. Microbiology.2007,153:4240-4252.
    11. Yano S, Tokumitsu H, Soderling TR. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 1998, 396:584-587.
    12. Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases.Annu RevBiochem 1998,67:481-507.
    13. Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival bythe serine-threonine protein kinase Akt. Science 1997,275:661-664.
    14. Andjelkovie M, Alessi DR, Meier R, et al. Role of translocation in the activation and function of protein kinase B. J Biol Chem 1997, 272:31515-31524.
    15. Meier R, Alessi DR, Cron P, et al. Mitogenic activation, phosphorylation and nuclear translocation of protein kinase B. J Biol Chem 1997,272: 30491-30497.
    16. Maroko PR, Kjekshus JK, Sobel BE, et al. Factors influencing infarct size following experimental coronary artery occlusions. Circulatlon 1971, 43:67-82.
    17. Matsui T, Rosenzweig A. Convergent signal transduction pathways controlling cardiomyocyte survival and functional:the role of PI3K and Akt. J Mol Cell Cardiol 2005,38:63-71.
    18. Matsui T, Li L, Del Monte F, et al.Adenoviral gene transfer of activated hosphatidylinositol 3'-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 1999,100:2373-2379.
    19. Matsui T, Tao J, Del Monte F, et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 2001, 104:330-335.
    20. Mocanu MM, Bell RM, Yellon DM. P13 kinase and not p42/p44 appears to be implicated in the protection conferred by ischemic preconditioning. Mol Cell Cardiol 2002,34:661-668.
    21. Andrew Tsang, Derek J, Hausenloy Yellon, et al. Postconditioning:A Form of "Modified Reperfusion" Protects the Myocardium by Activating the Phosphatidylinositol 3-Kinase-Akt Pathway.2004,95:230-232。
    22. Jonassen AK, Sack MN,Mjos OD, et al. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell—survival signaling. Circ Res 2001,89:1191-1198.
    23. Brar BK, Stephanou A, Knight R, et al. Activation of protein kinase B/Akt by urocortin is essential for its ability to protect cardiac cells against hypoxia /reoxygenation induced cell death. Mol Cell Cardiol 2002,34:483-492.
    24. Bell RM, Yellon DM.Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart:the role of PI3K, Akt and eNOS. Mol Cell Cardiol 2003,35:185-193.
    25. Parsa CJ, Matsumoto A, Kim J, et al. A novel protective effect of erythropoietin in the infracted heart.Clin Invest 2003,112:999-1007.
    26. Shioi T, Kang PM, Douglas PS, et al.The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 2000, 19:2537-2548.
    27. Matsui T, Li L. Phenotypic spectrum caused by tranenic overexpression of activated Akt in the heart. J BiolChem 2002,277:22896-22901.
    28. Shioi T, Mcmullen JR, Kang PM, et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol 2002,22:2799-2809.
    29. Reissk, Cheng W, Ferber A, et al. Overexpression of insulinlike growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl Acad Sci 1996,93:8630-8635.
    30. Nefi Semerl GG, Boddi M, ModestiPA, et al. Increased cardic sympathetic activity and irsulinlike growth factor-1 formation are associated with physiological hypertrophy in athletes. Circ Res 2001,89:977-982.
    31. Gao Song-dan, LI Hong-wei, LI Ai-ling, et al. Akt mediates neonatal rat cardiomyocyte hypertrophy induced by hydrogen peroxide.Basic& Clinical Medicine 2008,28:149-152.
    1. Wu AH, Cody RJ. Medical and surgical treatment of chronic heart failure. Curr Probl Cardiol 2003,28:229-260.
    2. Sadik A, Yousif M, McElnay JC. Pharmaceutical care of patients with heart failure. Br J Clin Pharmacol 2005,60:183-193.
    3. Dulin B R, Krum H. Drug therapy of chronic heart failure in the elderly:the current state of clinical-trial evidence. Curr Opin Cardio 2006,21:393-399.
    4. Faris R, Flather MD, Purcell H, et al. Diuretics for heart failure. Cochrane Database Syst Rev 2006,25:CD003838.
    5. Gillespie ND. The diagnosis and management of chronic heart failure in the older patient. Br Med Bull 2006,75-76:49-62.
    6. Gupta S, Neyses L. Diuretic usage in heart failure:a continuing conundrum in 2005. Eur Heart J 2005:644-649.
    7. Fenton M, Burch M.Understanding chronic heart failure. Arch Dis Child 2007,92:812-816.
    8. Ansari M, Massie B. Heart Failure:How big is the problem? Who are the patients? What does the future hold? Am Heart J 2003,146:1-4.
    9. Cranney A. Is there a new role for angiotensin-converting-enzyme inhibitors in elderly patients? CMAJ 2007,177:891-892.
    10. O'Connor CM, Arumugham P. Inotropic drugs and neurohormonal antagonists in the treatment of HF in the elderly. Clin Geriatr Med 2007, 23:141-153.
    11. Jost A, Rauch B, Hochadel M, et al. Beta-blocker treatment of chronic systolic heart failure improves prognosis even in patients meeting one or more exclusion criteria of the MERIT-HF study. Eur Heart J 2005, 26:2689-2697.
    12. Dulin BR, Hass SJ, Abraham WJ et al. Do elderly systolic heart failure patients benefit from beta blockers to the same extent as the non-elderly? Meta-analysis of> 12,000 patients in large-scale clinical trials. Am J Cardiol 2005,95:896-898.
    13. Ahmed A. Digoxin and reduction in mortality and hospitalization in geriatric heart failure:importance of low doses and low serum concentrations. J Gerontol A Biol Sci Med Sci 2007,62:323-329.
    14. Cayley WE Jr. Selections from current literature:digoxin in chronic heart failure. Family Practice.2004,21:469-475.
    15. Dec GW. Digoxin remains useful in the management of chronic heart failure. Med Clin North Am 2003,87:317-337.
    16. Ahmed A, Rich MW, Love TE, et al. Digoxin and reduction in mortality and hospitalization in heart failure:a comprehensive post hoc analysis of the DIG trial. Eur Heart J 2006,27:178-186.
    17. Ahmed A, Rich MW, Love TE, et al. Digoxin and reduction in mortality and hospitalization in heart failure:a comprehensive post hoc analysis of the DIG trial. Eur Heart J 2006,27:178-186.
    18. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999,341:709-717.
    19. Pitt B, Remme WJ, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003,348:1309-1321.
    20. Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult. Circulation 2005,20; 112:e154-235.
    21. Hulsmann M, Berger R, Mortl D, et al. Influence of age and in-patient care on prescription rate and long-term outcome in chronic heart failure:a data-based substudy of the EuroHeart Failure Survey. Eur J Heart Fail 2005,7:657-661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700