用户名: 密码: 验证码:
流化床催化裂化汽油加氢改质催化剂及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生产低硫、低烯烃和高辛烷值的清洁汽油是国家保持能源经济可持续发展的必然要求。我国将于2011年在全国范围内实施《轻型车污染物排放限值及测量方法(中国Ⅳ阶段)》标准,要求汽油中烯烃体积分数≯18%,芳烃体积分数≯35%,硫含量≯50μg/g。在我国成品汽油80%以上来自FCC装置,FCC汽油中的硫含量占汽油中硫含量的90%以上,FCC汽油具有较高的烯烃含量30-55vol.%,较高的硫含量为150-1500μg/g。
     本课题要解决全馏份催化裂化汽油脱硫,是在保证辛烷值损失较小(RON≤1)的前提下实现。为此必须结合不同催化剂和原料油的特点对改质工艺优化组合,我们得到以下结论:
     1采用两步法改质过程:
     (1)Ni-Al2O3(DQG0905)脱硫催化剂用于催化裂化汽油加氢改质评价140 h。反应后,硫含量从288μg/g降低到71μg/g,加氢脱硫率75%;烯烃含量从33.2 vol.%降低到26.2vol.%,降烯烃率21%;辛烷值损失3.3个单位。La2O3-HZSM-5(DQG0904)芳构化催化剂用于催化裂化汽油加氢改质评价220 h。反应后,硫含量从288μg/g降低到184μg/g,加氢脱硫率为36%;烯烃含量从33.2 vol.%降低到19.9 vol.%,降烯烃率40%;芳烃含量从21.1 vol.%升高到26.1 vol.%;改质后辛烷值从92.9升高到93.3
     (2)采用先芳构化(DQG0904)后脱硫(DQG0905)的组合顺序,用于催化裂化汽油加氢改质评价660 h。反应后,硫含量从242μg/g降低到73μg/g,加氢脱硫率70%;烯烃含量从36.8 vol.%降低到24.9 vol.%,降烯烃率34%;芳烃含量从18.9.vol.%升高到19.9 vol.%;改质后辛烷值从87.8升高到89.4
     2 CoMo-MgOAl2O3作为脱硫催化剂用于催化裂化汽油的加氢改质,考察了不同条件下催化剂的催化性能。结果显示在反应温度为240-260℃、4.0-6.0h-1,2Mpa的条件下硫含量可降低到<50μg/g、RON损失<1.0,活性稳定性能优良。
     3以钛酸四丁酯为钛源,采用浸渍法研制了一系列TiO2改性的Ni-Mo/HZSM-5催化剂,通过系统表征,并在连续微反固定床装置上评价了其全馏分催化裂化汽油加氢脱硫性能。结果表明,ZiO2改性可以弱化MoO3和HZSM-5之间的相互作用,抑制Al2(MoO4)3的形成,从而使催化剂脱硫活性大大提高。
Production of low sulfur, low olefin and high-octane number clean gasoline is energy economy to maintain its essential requirement for sustainable development. In China, "Limits and Measurement Methods for Emissions from Light-Duty vehicles (Phase IV)" standards will be executed on 2011, in which less than 18vol.%of olefin content,35 vol.%of aromatic content, and 50μg/g of sulfur content in gasoline are required to meet the No. IV emission standards. FCC gasoline constitutes approximate 80%of the total gasoline pool and sulfur content of FCC gasoline accounted for more than 90%of the total value. FCC gasoline consists of great value of olefin (30~55 vol.%) and sulfur (150-1500μg/g).
     The key issue of this article will focuses on the realization of desulfurization of full-range FCC gasoline by means of the little loss of octane number(RON≤1). Thus, The article have to combine different characteristics of catalysts and feedstock composition on the upgrading process optimization. Conclusions from the experiments are summarized as follow:
     1 Adopt to two-step hydro-upgrading process:
     (1) NiS04-Al203 (DQG0905) desulfurization catalyst was prepared and used in the FCC gasoline hydro-upgrading for 140 h. After hydrotreatment, the sulfur decreases from 288 to 71μg/g, with a 75%conversion rate of hydrodesulfurization (HDS); Olefin decreased from 33.2vol.%to 26.2vol.%, with a 21%conversion rate of hydrodeolefinization (HDO); The RON of product lost 3.3 compared with feed. La2O3-HZSM-5(DQG0904) Aromatization catalyst was prepared and used in the FCC gasoline hydro-upgrading for 220 h. After hydrotreatment, the sulfur decreases from 288 to 184μg/g, with a 36%conversion rate of HDS; the olefin decreased from 33.2vol.%to 19.9vol.%, with a 40%conversion rate of HDO; the aromatic content increased from 21.1 vol.%to 26.1 vol.%; the RON of gasoline has only a slight change from 92.9 to 93.3 after the upgrading process.
     (2) Applying the sequence that aromatization(DQG0904) followed by desulfurization(DQG0905), hydrotreatment was performed for hydro-upgrading of FCC gasoline for 660h. After hydrotreatment, the sulfur decreases from 242 to 73μg/g, with a 70% conversion rate of HDS; the olefin content decreased from 36.8vol.%to 24.9vol.%, with a 34%conversion rate of HDO; the aromatic increased from 18.9.1vol.%to 19.9vol.%; the RON of gasoline has change from 87.8 to 89.4 after the upgrading process.
     2 CoMo-MgOAl2O3 as desulfurization catalyst is used to study different conditions on catalytic performance and evaluat hydro-upgrading of FCC gasoline. The results show that 240-260℃,4.0-6.0 h-1,2.0Mpa conditions can reduce the sulfur content to< 50μg/g, RON loss of< 1.0, excellent activity and stability.
     3 A series of TiO2-modified Ni-Mo/HZSM-5 catalysts were prepared by impregnation method with tetrabutyl titanate as a titanium source, and characterized and evaluated by hydrodesulfurization (HDS) activity for full-range fluid catalytic cracking (FCC) gasoline in a continuous-flow fixed-bed micro-reactor. The results show that the coverage of TiO2 on HZSM-5 can weaken the interaction between MoO3 and HZSM-5 and inhibites the formation of Al2(MoO4)3, so that the catalyst desulfurization activity increases substantially.
引文
[1]Fredrick C. Sulfur reduction:what are the options. Hydrocarbon Process,2002, 81 (2):45-50.
    [2]Hatanaka S, Yamada M, Sadakane 0. Hydrodesulfurization of catalytic cracked gasoline.1. Inhibiting effects of olefins on HDS of alkyl(benzo)thiophenes contained in catalytic cracked gasoline. Ind Eng Chem Res,1997,36(5):1519-1523.
    [3]Hatanaka S, Yamada M, Sadakane 0. Hydrodesulfurization of catalytic cracked gasoline.2. The difference between HDS active site and olefin hydrogenation active site. Ind Eng Chem Res,1997,36(12):5110-5117.
    [4]Hatanaka S, Yamada M, Sadakane 0. Hydrodesulfurization of catalytic cracked gasoline.3. Selective catalytic cracked gasoline hydrodesulfurization on the Co-Mo/ γ-A1203 catalyst modified by coking pretreatment, Ind Eng Chem Res,1998,37 (5):1748-1754.
    [5]Kaufmann T G, Kaldor A, Stuntz G F, Kerby M C, et al. Catalysis science and technology for cleaner transportation fuels, Catal Today,2000,62(1):77-90.
    [6]Okamoto Y, Ochiai K, Kawano M, et al. Effects of support on the activity of Co-Mo sulfide model catalysts, Appl Catal A:Gen,2002,226(1-2):115-127.
    [7]Greeley J P, Zaczepinski S. Selective cat naphtha hydrof ining with minimal octane loss. NPRA Annual Meeting, San Antonio Texas,1999:31.
    [8]Desai P H, Gerritsen L A, Inoue Y. Low cost production of clean fuels with stars catalyst technology. NPRA Annual Meeting, San Antonio, Texas,1999:40.
    [9]Halbert T R, Brignac G B, Greeley J P, et al. Technology options for meeting low sulfur mogas targets. NPRA Annual Meeting, Washington,2000:11.
    [10]ExxonMobil,December2001. http://www. exxonmobil. com/Refiningtechnologies/fuels/m_nscanfining. html.
    [11]Osamu S, Yoichi S, Ryozi 0. Desulphurization method for catalytically cracked gasoline. EP,0745660.1996.
    [12]Kasztelan S, Morel F, Le Loarer J L, et al. Improving motor fuel quality-using a new generation of hydrotreatment catalysts. NPRA Annual Meeting, San Antonio, Texas,1999: 56.
    [13]Nocca J L, Cosyns J, Debuisschert Q, et al. The domino interaction of refinery processes for gasoline quality attainment. NPRA Annual Meeting, Washington,2000:61.
    [14]李大东,胡云剑,石玉林,等.一种生产低硫汽油的方法.CN,1465668.2002.
    [15]李明丰,夏国富,褚阳,等.催化裂化汽油选择性加氢脱硫催化剂RSDS-1的开发.石油炼制与化工,2003,34(7):1-4.
    [16]伊西青.清洁汽油生产现状及技术进展.石油与天然气化工,2005,34(3):187-191.
    [17]Shih S S, Keville K M, Lissy D N. Gasoline upgrading process. US,5326462.1994.
    [18]Shih S S, Owens P J, Palit S, et al. Mobil's OCTGAIN Process:FCC gasoline desulfurization reaches a new performance level. NPRA Annual Meeting, San Antonio, Texas, 1999:30.
    [19]Martinez N P, Salazar J A, Tejada J, et al. Gasoline pool sulfur and octane control with ISAL. Vision Tecnologica,2000,7(2):77-82.
    [20]Martinez N P, Salazar J A, Tejada J, et al. Meet gasoline pool sulfur and octane targets with the ISAL process. NPRA Annual Meeting, Washington,2000:52.
    [21]涂先红,方向晨,赵乐平.FCC汽油加氢脱硫降烯烃技术进展.当代化工,2006,35(2):114-116.
    [22]胡永康,赵乐平,李扬,等.纳米ZSM-5沸石在OTA汽油降烯烃技术中的应用.中国有色金属学报,2004,14(1):317-322.
    [23]胡永康,赵乐平,李扬,等.FDO全馏分催化裂化汽油芳构化烷基化降烯烃技术的开发.炼油技术与工程,2004,34(1):1-4.
    [24]马伯文,清洁燃料生产技术.北京:中国石化出版社,2001:187-188.
    [25]李大东,石玉林,胡云剑,等.一种汽油深度脱硫降烯烃的方法[P].CN,1465666.2002.
    [26]Khare G P, Engelbert D R, Cass B W. Transport desulfurization process utilizing a sulfur sorbent that is both f luidizable and circulatable and a method of making such sulfur sorbent. US,5914292.1999.
    [27]Khare G P. Process for the production of a sulfur sorbent. US patent 6,184,176, 2001.
    [28]Khare G P. Desulfurization with zinc titanate sorbents. US patent 6338794,2002.
    [29]Irvine R L. Process for desulfurizing gasoline and hydrocarbon feedstocks. US patent 5,730,860.1998.
    [30]Dominic M, Irvine R L, Benson B A, et al. Irvad process-low cost breakthrough for low sulfur gasoline. NPRA Annual Meeting, San Antonio, Texas,1999.
    [31]Song C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today,2003,86(1-4):211-263.
    [32]Shan H H, Li C Y, Yang C H, et al. Mechanistic studies on thiophene species cracking over USY zeolite, Catal Today,2002,77(1-2):117-121.
    [33]Murata S, Murata K, Kidena K, et al. A Novel Oxidative Desulfurization System for Diesel Fuels with Molecular Oxygen in the Presence of Cobalt Catalysts and Aldehydes. Energy Fuels,2004,18(1):116-121.
    [34]Forte P. Process for the removal of sulfur from petroleum fractions. US,5582714, 1996.
    [35]Milenkovic A, Schulz E, Meille V, et al. Selective Elimination of Alkyldibenzothiophenes from Gas Oil by Formation of Insoluble Charge-Transfer Complexes. Energy Fuels,1999,13(4):881-887.
    [36]Alexander B D, Huff G A, Pradhan V R, et al. Sulfur removal process. US,6024865. 2000.
    [37]Alexander B D, Huff G A, Pradhan V R, et al. Multiple stage sulfur removal process. US,6059962.2000.
    [38]Huff G A, Alexander B D, Rundell D N, et al. Sulfur removal process. US,6048451. 2000.
    [39]Zhang W P, Bao X H, Guo X W. et al. A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite[J]. Catal Letter,1999,60 (1-2):89-94.
    [40]王学勤,王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究Ⅰ.不同晶粒大小沸石的合成及HZSM-5沸石的积炭过程[J].石油学报(石油加工)1994,10(1):38-43.
    [41]王学勤,王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究Ⅱ.沸石的SiO2/A12O3比、酸性质与催化剂失活的关系[J].石油学报(石油加工)1994,10(1):44-48.
    [42]Kerr G T. The synthesis and properties of two catalytically important zeolites. Catal Rev Sci Eng,1981,23(2):281-291.
    [43]Nastro A, Colella C, Aiello R. Synthesis of ZSM-5 type zeolites in the system (sodium, potauinm) oxide-alumina-silica-water without and with tetrapropyl ammonium. Stud Surf Sci Catal,1985,24(1):39-46.
    [44]Grose R W, Flanigen E M. Novel zeolite composition and process for preparing and using same. US,4257885.1981.
    [45]Mostowicz R, Bezak J M. Factors influencing the crystal morphology of ZSM-5 type zeolite. Stud Surf Sci Catal,1985,24(2):65-72.
    [46]Plank C J, Rosinski E J, Rubin M K. Method for producing zeolites. US,4175114. 1979.
    [47]Dessau R M, Schmitt K D, Kerr G T, et al. On the presence of internal silanol groups in ZSM-5 and the annealing of these sites by steaming. J Catal,1987,104(2):484-489.
    [48]Kim D J, Chung H S. Synthesis and characterization of ZSM-5 zeolite from serpentine. Applied Clay Science,2003,24(1-2):69-77.
    [49]杨付.超细HZSM-5的改性、表征及催化汽油改质催化剂的研制:(博士学位论文).大连:大连理工大学,2003.
    [50]张维萍,韩秀文,包信和.超细分子筛的合成、结构特性及在催化中的应用.分子催化,1999,13(5):393-399.
    [51]王学勤,王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究Ⅰ.不同晶粒大小沸石的合成及HZSM-5沸石的积炭过程.石油学报(石油加工),1994,10(2):38-43.
    [52]王学勤.纳米ZSM-5沸石的合成、表征和催化性能研究:(博士学位论文).大连:大连理工大学,1997.
    [53]Pu S B, Inui T. Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2,7-dimethylphthalene isomerization. Zeolites,1996, 17(4):334-339.
    [54]Yanmamura M, Chaki K, Wakatsuki T, et al. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization. Zeolites, 1994,14(8):643-649. [55] Zhang W, Bao X, Guo X, et al. A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite. Catal Lett,1999,69(1-2):89-94.
    [56]郭洪臣.在改性HZSM-5沸石上乙苯乙烯选择乙基化合成对二乙苯的研究:(博士学位论文).大连:大连理工大学,1997.
    [57]王祥生,王学勤,郭洪臣.超细沸石粉末一种新催化材料[J].石油学报(石油加工),1994,38(1): 10-15.
    [58]孙琳,叶娜,王祥生等.晶粒度对ZSM-5沸石上C4液化气低温芳构化反应的影响[J].化学通报,2007,8,633-636.
    [59]李福芬,贾文浩,陈黎行等.丁烯在纳米HZSM-5催化剂上的催化裂解反应[J].催化学报,2007,28(6):567~571.
    [60]王祥生,王学勤,郭洪臣.超细沸石粉末一种新催化材料.化工工艺研究进展.化学工业出版社.1998,1-8.
    [61]赵晓波,郭新闻,王祥生.改性纳米HZSM-5催化剂在FCC汽油改质中的应用[J].石油学报(石油加工),2006,22(6):20-23.
    [62]王学勤,王祥生,郭新闻.超细颗粒五元环型沸石.CN,1240193.2000.
    [63]陈俊武,曹汉昌编著.催化裂化工艺与工程.北京:中国石化出版社,1991
    [64]朱根权,夏道宏.催化裂化过程中硫化物的分布及转化规律.石油化工高等学校学报.2000,13(2): 40-44
    [65]殷长龙,夏道宏.催化裂化汽油中类型硫含量分布.燃料化学学报,2001,29(3):256—258
    [66]Yung K Y and Vreugderhil W. Resolve Technology for FCC Gasoline Sulfur Reduction. Catalysis/Catalysis Courier-Courier,39, March 2000.
    [67]汪文虎,秦延龙编著.烃类物理化学数据手册.北京:烃加工出版社,1988
    [68]此数据在中国石油天然气总公司抚顺石化分公司石油二厂研究所分析得到,2002
    [69]Venuto P B, Habib E T. Fluid catalytic cracking, Catal Rev-Sci Eng,1978,18 (1): 1
    [70]黄国雄,李承烈,刘凡编著.烃类异构化.北京:中国石化出版社,1992
    [71]张剑秋.降低汽油烯烃含量的催化裂化新材料探索.石油化工科学研究院博士学位论文,2001
    [72]陶家洵等 编著.现代化学基础.北京:清华大学出版社,1999
    [73]Shalvoy R B, Reucroft P J. Characterization of a sulfur-resistant methanation catalyst by XPS[J].J. Vac. Sci. Technol,1979,16(2):567-569
    [74]Paweewan B, Barrie P J, Gladden LF. Coking during ethene conversion on ultrastable zeolite Y[J]. Appl. Catal., A,1998,167(2):353-362
    [75]Choudhary V R, Sivadinarayana C, Devadas P, et al. Characterization of coke on H-gallosilicate (MFI) propane aromatization catalyst. Influence of coking conditions on nature and removal of coke[J]. Microporous Mesoporous Mater,1998,21(1-3):91-101
    [76]Martin N, ViniegraM, Lima E, et al. Coke characterization on Pt/A1203-beta-zeolite reforming catalysts[J]. Ind. Eng. Chem. Res.,2004,43(5):1206-1210
    [77]Bibby D M, Milestone N B, Patterson J E, et al. Coke formation in zeolite ZSM-5. J. Catal.1986,97(2):493-502
    [78]Zhao X B, Guo X W, Wang X S. Characterization of modified nanoscale ZSM-5 catalyst and its application in FCC gasoline upgrading process[J]. Engery Fuels,2006,20 (4):1388~ 1391
    [79]Zhao X B, Guo X W, Wang X S. Effect of hydrothermal treatment temperature on FCC gasoline upgrading properties of the modified nanoscale ZSM-5 catalyst [J]. Fuel Processing Technology,2007,88(3):237-241
    [80]赵晓波.改性纳米HZSM-5在低品质轻油改质中的应用研究:[博士学位论文].大连:大连理工大学,2006
    [81]Escobar J, Toledo J, Cortes M A, et al. Highly active sulfided CoMo catalyst on nano-structuredTi02[J]. Catal. Today,2005,106(1-4):222-226
    [82]Ramirez J, Macias G. The Role of titania in supported Mo, Co, NiMo, and NiW hydrodesulfurizat ion catalysts:analysis of past and new evidences [J]. Catal. Today,2004, 98 (5):19-30
    [83]魏昭彬,辛勤.CoMo/Al203和CoMo/TiO2-Al203加氢脱硫催化剂的研究[J].催化学报,1994,15(3):161~166
    [84]Li B, Li S J, Li N, et al. Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenation and aromatization[J].Micropor Mesopor Mater, 2006,88(1-3):244-253
    [85]李斌,陈会英,李士杰,等.浸渍法制备的Mo/ZSM-5催化剂中的Mo的分布状态[J].催化学报,2005,26(9):769~774
    [86]Yin C L, Zhao R Y, Liu C G. Hydrotreating of cracked naphtha over Ni/HZSM-5 catalyst [J]. Energy Fuels,2003,17(5):1356-1359
    [87]Liu Y, Ma X B, Wang S P, et al. The nature of surface acidity and reactivity of MoO3/SiO2 and MoO3/TiO2-SiO2 for transesterification of dimethyl oxalate with phenol:A comparative investigation [J]. Appl.Catal. B:Envir.,2007,77(1-2):125~134
    [88]Haber J, Machej T, Ungier L, et. al. ESCA studies of copper oxides and copper molybdates[J]. J. Solid State Chem,1978,25(3):207~218
    [89]Patterson T A, Carver J C, Leyden D E, et al. Surface study of cobalt-molybdena-alumina catalysts using X-ray photolelectron-spectroscopy[J]. J. Phys. Chem,1976,1700 (4):80~87
    [90]Nefedov V I, Firsov M N, Shaplygin I S. Electronic-structures of MRHO2, MRH2O4, RHMO4 and RHMO6 on the basis of x-ray spectroscopy and ESCA data[J]. J. Electron Spectrosc. Relat. Phenom,1982,23(1):59-62
    [91]Anwar M, Hogarth C A, Bulpett R. The correlation of various properties of thin-films of MoO3 and the mixed-oxide systems Mo03-In2O3 andMoO3 and SiO2[J]. J. Mater. Sci,1990,25(11): 4918-4928
    [92]Wei Z B, Jiang S S, Xin Q, et al. The reduction behavior of Mo/Ti02-Al203 catalyst [J].Catal. Lett,1991,11(3-6):365~374
    [93]Zhang W P, Ma D, Han X W, et al. Methane Dehydro-aromatization over Mo/HZSM-5 in the Absence of Oxygen:A Multinuclear Solid-State NMR Study of theInteraction between Supported Mo Species and HZSM-5 Zeolite with Different Crystal Sizes[J]. J. Catal,1999, (188):393~402
    [94]魏昭彬,辛勤,郭燮贤.加氢脱硫催化剂研究:Ti02调变Al2O3载体对MoO3物化行为的影响[J].催化学报,1991,12(4):255-260
    [95]罗国华,王学勤,王祥生.焦化苯中的噻吩与乙醇在HZS-5沸石上的反应[J].催化学报,1998,19(1):53-57
    [96]Okamoto Y, Tomioko H, Katoh Y, et al. Surface-structure and catalytic activity of M0O3-Al2O3 catalysts in the Hydrodesulfurization of thiophene studied by x-ray photoelectron-spectroscopy[J]. J. Phys. Chem,1980,8(4):1833~1886
    [97]魏昭彬,魏成东,辛勤.Mo03/TiO2-Al2O3催化剂表面结构的LRS研究[J].物理化学学报,1992,8(2):261-265
    [98]魏昭彬,陈怡萱,李文钊.Pd-Cu0/Ti02的还原和再氧化行为的研究[J].物理化学学报,1988,4(1):8-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700