用户名: 密码: 验证码:
水处理功能化介孔二氧化钛晶体纤维的制备、表征及其光催化活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以水中溶解氧为氧源,n型半导体,特别是TiO2为催化剂的光催化氧化是近廿年来水处理领域的研究热点之一。但常规的纳米TiO2悬浮相体系存在着催化剂易失活、易凝聚、难回收及光能利用率低等固有弊端,负载型的固定化技术在解决催化剂回收难问题的同时,又不可避免地带来光量子效率低和催化剂易脱落等不足,悬浮相和固定化技术各自固有的弊端业已成为光催化技术走向实用的瓶颈。
     本文基于改进溶胶-凝胶法开发了两种TiO2纤维制备的新方法,结合干法纺丝和水蒸气活化热处理工艺,分别获得了Si掺杂TiO2纤维和纯的TiO2连续纤维。作为水处理功能化光催化新材料,特有的形态优势使其具有使用中耐水流冲击负荷,使用后易于固液分离等特点,为有效解决上述实用化难题提供了全新的途径。采用XRD、SEM、FT-IR、DSC-TG、UV-Vis DRS、XPS及N2吸附-脱附等多种现代分析表征手段对所制备的TiO2晶体纤维进行了结构解析。结合水中难降解偶氮染料X-3B为探针污染物的光催化实验结果,较为系统的研究了不同纤维产物的晶体结构、吸光特点、表面织构等理化特性,探讨了纤维结构与催化性能之间的构效关系,研究结果为研制具有实用化前景的光催化水处理新材料提供科学依据和技术储备。本文的实验内容主要分三个部分:
     第一部分,以钛酸四丁酯为Ti源,正硅酸乙酯为Si源,采用改进的无模板剂的溶胶-凝胶法,结合离心纺丝工艺成功制备了Si掺杂介孔TiO2连续纤维。纤维产物直径为10-20μm,由具有丰富介孔结构的锐钛矿TiO2纳米晶构成。实验条件下,Si的引入可以形成Ti-O-Si网络结构,这是获得连续纤维的一个至关重要的因素。通过调节Si的掺杂量(Si/Ti摩尔比:0-0.20)和热处理温度,可以控制纤维的晶型晶貌、比表面积、孔结构和催化效能。研究发现,适量Si的掺杂可以在优化TiO2纤维的表面织构,增强热稳定性和晶型稳定性的同时显著提高其光催化活性。其中,当Si/Ti摩尔比为0.15,经700℃热处理后的TiO2纤维(0.15STF-700)具有最大的比表面积和孔容,分别为127.7 m2·g-1和0.25cm3·g-1。同时也显示出最佳的光催化活性:经紫外光照射75 min后,X-3B的降解率达到99.6%;经太阳光照射3 h后,X-3B的降解率和矿化率分别达到94.7%和58.9%。研究表明,自制Ti02纤维易于分离回收和循环利用,具有良好的光化学稳定性和机械稳定性,经6次重复利用后对底物的降解率依然保持在90%以上。水处理杀菌实验结果则显示,Si掺杂介孔Ti02纤维不仅在紫外光照射下具有良好的杀菌效果,而且在无光照条件下具有一定的抑菌性。
     第二部分,以自制的TiO2晶体纤维(0.15STF-700)为原材料,用1.5%的HF水溶液和5%的稀HN03水溶液作为改性剂,对纤维进行了表面改性,实现了F、N两种元素的有效共掺杂,获得了具有丰富双(介)孔结构和表面羟基的改性纤维。该纤维通过静电引力和表面离子交换对阴离子染料X-3B表现出优良的吸附效能,单纯的吸附去除率即可达84%,为通过优化预吸附富集过程强化自制纤维的光催化作用提供了实验依据。实验表明,改性处理在大幅提高紫外光催化活性的同时显示出同样优异的可见光催化活性,可见光照射45 min后X-3B的降解率即可达98%,从而为研制开发宽频和可见光响应俱佳的实用新型光催化纤维材料提供了简便宜行的方法。
     第三部分,以钛酸四丁酯为钛源,聚乙烯毗咯烷酮(PVP)为交联模板剂,冰醋酸为稳定剂和螯合剂,通过优化纺丝体系的可纺性,采用改进的溶胶-凝胶法方便快捷地制备了新型的Ti02晶体纤维前驱体。流变性实验结果,该纺丝体系属于假塑性流体,PVP的加入有助于控制TiO2凝胶的粘度,当表观粘度在数Pa·s范围内即可经干法纺丝制得直径约40μm且均匀有致的前驱体纤维;另一方面,PVP不仅可以有效降低TiO2的相转变温度,而且可以通过后续的热分解产生大量的介孔结构,增大纤维产物的孔容和比表面积。实验条件下,采用独特的程序升温热处理工艺,可抑制金红石相晶粒的快速生长,获得结晶良好且比例适中的锐钛矿/金红石混晶。实验表明,该混晶结构的Ti02晶体纤维具有优异的紫外光活性,光照120 min后50 mg·L-1的X-3B的降解率可达到95%。研究结果为制备介孔Ti02混晶型纤维提供了简单高效的方法。
Photocatalytic oxidation of n-type semiconductor using dissolved oxygen in water as O source, has already become a research focus in water treatment field in the last twenty years. However, the conventional nano-TiO2 suspended system has many inherent drawbacks, such as easy deactivation, easy agglomeration owned, difficult separation and low light utilization efficiency. The technology of mounting TiO2 on supports can solve the problem, but bring about low photo quantum efficiency and easy shedding. The above factors limit the application of photocatalytic technology.
     In this paper, Si-doped and pure TiO2 fibers were synthesized by two kinds of processes based on modified sol-gel method combined with dry spinning and steam-activated heat treatment, which provided a bran-new way to solve the above problems availably for its advantages in morphology and specialty in endure current strike burthen. The prepared samples were deeply investigated by XRD, SEM, FT-IR, DSC-TG, UV-Vis DRS, XPS and N2 adsorption-desorption et al. Combined with the photocatalytic experimental results, we discussed the effects of crystal structure, absorption characteristics and surface texture for the photoactivity. This paper was divided into three parts as follows:
     In the first section, Si-doped mesoporous TiO2 continuous fibers were prepared by improved sol-gel method using tetrabutyl titanate and tetraethyl orthosilicate as Ti and Si source followed by centrifugal spinning. The fibers with uniform diameters about 10-20μm were consisted of nanoparticles and abundant mesopores. The addition of silica was a crucial factor for obtaining long fibers because of the formation of Ti-O-Si networks. The crystal phase, crystal morphorlogy, surface area and pore structure were controlled by varying the contents of silica and heat treatment temperatures. It was found that the proper addition of Si could improve the surface texture and enhance the thermal stability and crystal stability. When Si/Ti molar ratio was 0.15, the product heated at 700℃retained the maximal surface area and pore volume of 127.7 m2·g-1 and 0.25 cm3·g-1 respectively. It displayed the highest photoactivity of all, and the degradation rate of X-3B in aqueous solution reached 99.6% after 75 min under UV irradiation. Also, the degradation rate and the mineralization rate of X-3B were 94.7% and 58.9% after 3 h under solar irradiation, respectively. In addition, the degradation rate was also more than 90% after 6 cycles. Furthermore, the results of bactericidal test showed that TiO2 fibers not only possess bactericidal properties under UV light but also antimicrobial properties in dark.
     In the second section, F, N-modified fibers were prepared, which were consisted of double-mesopore structure and surface hydroxyl groups, using 0.15STF-700 as raw material, HF and HNO3 as modifiers. And they exhibited high adsorption efficiency with removal of X-3B being over 84% through electrostatic force and ion exchange. Furthermore, collaborative photocatalysis between TiO2 and adsorbed pollutants, which resulted a substantial increase in UV-active, occurred and led to visible light response with the degradation rate of X-3B being 98% after 45 min.
     In the third section, TiO2 crystal fibers were prepared using tetrabutyl titanate as Ti source, polyvinylpyrrolidone (PVP) as template and acetic acid as stabilizer and chelating agent through a novel and facile sol-gel method. On the one hand, PVP could improve the viscosity of TiO2 gel to obtain the precursor fibers with uniform diameters about 40μm by dry spinning, while the apparent viscosity reached several Pa·S and the gel belonged to pseudoplastic fluid by rotational viscometer. On the other hand, PVP could lower phase transition temperature and produce abundant mesopores through the follow-up thermal decomposition, which was helpful for increasing surface area and pore volume. The unique stage-temperature-programmed technique, heat preservation at 500℃and up to 700℃, could suppress the growth of rutile particles and obtain mixed form of anatase and rutile with suitable proportion. The photocatalytic results showed that the fibers with mixed crystal exhibited high photocatalytic activity and the degradation rate of X-3B (50 mg·L-1) reached 95% after 120 min under UV irradiation.
引文
[1]张立德,牟季美.纳米材料科学[M].辽宁:辽宁科技出版社,1994:1-4.
    [2]Fujishuma A, Honda K.. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature,1972,238 (5358):37-38.
    [3]Carey J.H., Lawrence J., Tosine H.M.. Photodech lorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bull. Environ. Contam. Toxicol.,1976,16 (3):697-701.
    [4]Frank S.N., Bard A.J.. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. J. Phys. Chem.,1977,81 (15):1484-1486.
    [5]Perkas N., Palchik O., Brukental I., et al. A mesoporous Iron-titanium oxide composite prepared sonochemically [J]. J. Phys. Chem. B,2003,107:8772-8778.
    [6]Kim S., Choi W.. Visible-light-induced photocatalytic degradation of 4-Chlorophenol and phenolic compounds in aqueous suspension of pure titania: demonstrating the existence of a surface-complex-mediated Path [J]. J. Phys. Chem. B, 2005,109:5143-5149.
    [7]Yusuf M.M., IMAI H., Ashima H.H.. Preparation of mesoporous titania by templating with polymer and surfactant and its characterization [J]. J. Sol-Gel. Sci. Techn.,2003,28:97-104.
    [8]Konstantinou I.K., Albanis T.A.. TiO2-assisted photocatalytic degradation of azo dyes inaqueous solution:kinetic and mechanistic investigations [J]. Appl. Catal. B: Environ.,2004,49:1-14.
    [9]包南,王吉顺,邓丛蕊,等.负载型TiO2固定相光催化氧化法降解水中呋码唑酮[J].中国环境科学,1998,18(5):458-462.
    [10]loddo V., Marci G, Palmisano L., et al. Preparation and characterization of Al2O3 supported TiO2 catalysts employed for 4-nitrophenol photodegradation in aqueous medium [J]. Mat. Chem. Phys.,1998,53:217-224.
    [11]Kung H.H., Kc E.I.. Preparation of oxide catalysts and catalyst supports-a review of recent advances [J]. J. Chem. Engin.,1996,64:203-214.
    [12]包南,张锋,马志会,等.TiO2纤维制备与应用研究进展[J].化工进展,2007,26(3):346-350.
    [13]高镰,郑珊,张青红,等.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002.
    [14]Tanaka K., Capule M.F.V., Hisanaga T.. Effect of crystallinity of titanium dioxide on its photocatalytic action [J]. Chem. Phys. Lett.,1991,187 (122):73-76.
    [15]Linsebigler A.L., Lu G.Q., Yates J.T.. Interfacial photochemistry, fundamentals and applications [J]. Chem. Rev.,1995,95:735-758.
    [16]沈伟韧,赵文宽,贺飞,等.Ti02光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-361.
    [17]范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化反应研究进展[J].科学通报2001,46(4):265-273.
    [18]Bickley I.B., Gonzalez-Carreno T., Lees J.S., et al. Structural investigation of titanium dioxide photocatalysts [J]. J. Solid. State. Chem.,1991,92:178-190.
    [19]Gratzel M.. Heterogeneous photochemical electron transfer [M]. Baton Rouge: CRC press, FL,1998.
    [20]Harbour J.R., Hair M.L., Radical intermediates in the photosynthetic generation of hydrogen peroxide with aqueous zinc oxide dispersions [J]. J. Phys. Chem.,1979,6: 250-258.
    [21]Tanner R.E., Liang Y., Altman E.I.. Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2 (001) [J]. Surf. Sci.,2002,506 (3):251-271.
    [22]Anpo M., Shima T., Kodama S., et al. Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2:size quantization effects and reaction intermediates [J]. J. Phys. Chem.,1987,91:4305-4310.
    [23]Samuel V., Muthukumar P., Gaikwad S.P., et al. Synthesis of mesoporous rutile TiO2 [J]. Mater. Lett.,2004,58 (5):2514-2519.
    [24]Watanabe T., Fujishima A., Honda K.. Solar-Hydrogen Energy Systems [M]. Oxford,1979:137-169.
    [25]Terres-martinez C.L., Kho R., Mian O.I., et al. Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals [J]. J. Colloid Interface Sci.,2001,240 (2):525-532.
    [26]Kim S.B., Hwang H.T., Hong S.C.. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst [J]. Chemosphere,2002, 48:437-444.
    [27]Lin H.F., Valsaraj K.T.. Atitania thin film annular photocatalytic reactor for the degradation of polycyclic aromatic hydrocarbons in dilute water streams [J]. J. Hazard. Mater.,2003,99 (2):203-219.
    [28]Pelizzetti E., Maurino V., Minero C., et al. Photocatalytic degradation of atrazine and other s-triazine herbicides [J]. Environ. Sci. Technol.,1990,24 (10):1559-1565.
    [29]Ollis D.F., Pelizzetti E., Serpone N.. Photocatalyzed destruction of water contaminants [J]. Environ. Sci. Technol.,1991,25 (9):1522-1529.
    [30]Sauer M.L., Ollis D.F.. Catalyst deactivation in gas-solid photocatalysis [J]. J. Catal.,1996,163 (1):215-217.
    [31]Hilmi A., Luong J.H.T., Nguyen A.L.. Utilization of TiO2 deposited on glass plates for removal of metals from aqueous wastes [J]. Chemosphere,1999,38 (4): 865-874.
    [32]薛向东,金奇庭.Ti02光催化降解水中污染物的研究进展[J].中国给水排水,2000,17:26-29.
    [33]史月萍,杨祝红,冯新,等.掺铂二氧化钛纤维光催化降解氯仿的研究[J].催化学报,2003,24(9):663-668.
    [34]Litter M.I.. Heterogeneous photocatalysis:Transition metal ions in photocatalytic systems [J]. Appl. Catal. B:Environ.,1999,23 (2-3):89-114.
    [35]Prairie M.R., Evens L.R., Stange B.M., et al. An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic chemicals [J]. Environ. Sci. Technol.,1993,27 (9):1776-1782.
    [36]Wang Z.H., Zhuang Q.X.. Photocatalytic reduction of pollutant Hg (II) on doped WO3 dispersion [J]. J. Photoch. Photobio. A:Chem.,1993,75 (2):105-111.
    [37]Ferguson M.A., Hoffmann M.R., Hering J.G.. TiO2-photocatalyzed As (III) oxidation in aqueous suspensions:Reaction kinetics and effects of adsorption [J]. Environ. Sci. Technol.,2005,39(6):1880-1886.
    [38]Frank S.N., Bard A.J.. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 powder [J].J. Am. Chem. Soc.,1977,99(1):303-304.
    [39]Jo W.K., Park K.H.. Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application [J]. Chemosphere,2004,57 (7):555-565.
    [40]Pichat P., Disdier J., Hoang-Van C., et al. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis [J]. Catal. Today,2000,63 (2-4): 363-369.
    [41]Ao C.H., Lee S.C.. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level [J]. Appl. Catal. B:Environ.,2003,44 (3):191-205.
    [42]Ao C.H., Lee S.C.. Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level [J].J. Photochem. Photobiol. A:Chem.,2004,161 (2-3):131-140.
    [43]Sakatani Y., Ando H., Okusako K., et al. Metal ion and N co-doped TiO2 as a visible-light photocatalyst [J]. J. Mater. Res.,2004,19 (7):2100-2108.
    [44]Li D., Ohashi N., Hishita S., et al. Origin of visible-light-driven photocatalysis:A comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations [J]. J. Solid. State. Chem., 2005,178 (11):3293-3302.
    [45]Ibusuki T., Takeuchi K.. Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis [J]. J. Mol. Catal.,1994,88 (1):93-102.
    [46]Ibusuki T.,Takeuchi K.. Photocatalytic oxidation of NOx using composite sheets containing TiO2 and a metal compound [J]. Chemosphere,2003,51 (9):855-860.
    [47]Yamashita H., Ichihashi Y, Anpo M., et al. Photocatalytic decomposition of NO at 275 K on titanium oxides included within Y-zeolite cavities:The structure and role of the active sites [J]. J. Phys. Chem.,1996,100 (40):16041-16044.
    [48]Yamashita H., Ichihashi Y, Harada M., et al. Photocatalytic degradation of 1-octanol on anchored titanium oxide and on TiO2 powder catalysts [J]. J. Catal., 1996,158(1):97-101.
    [49]Kiihn K.P., Chaberny I.F., Massholder K., et al. Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light [J]. Chemosphere,2003, 53 (1):71-77.
    [50]Fujishima A., Rao T.N., Tryk D.A.. Titanium dioxide photocatalysis [J]. J. Photochem.Photobiol. C,2000,1 (1):1-21.
    [51]Peller J.R., Whitman R.L., Griffith S., et al. TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light [J]. J. Photochem. Photobiol. A:Chem.,2007,186 (2-3):212-217.
    [52]McCullagh C, Robertson J.M.C., Bahnemann D.W., et al. The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms:A review [J].Res. Chem. Intermed.,2007,33 (3-5):359-375.
    [53]Cai R., Hashimoto K., Itoh K., et al. Photokilling of malignant cells with ultrafine TiO2 powder [J]. Bull. Chem. Soc. Jpn.,1991,64 (4):1268-1273.
    [54]Wang R., Hashimoto K., Fujishima A., et al. Light-induced amphiphilic surfaces [J]. Nature,1997,388 (6641):431-432.
    [55]Heller A.. Chemistry and applications of photocatalytic oxidation of thin organic films [J].Acc. Chem. Res.,1995,28 (12):503-508.
    [56]Liu T.X., Li X.Z., Li F.B.. Enhanced photocatalytic activity of Ce3+ -TiO2 hydrosols in aqueous and gaseous phases [J]. J. Chem. Engin.,2010,157 (2-3): 475-482.
    [57]Chin S.S., Lim T.M., Chiang K., et al. Factors affecting the performance of a low-pressure submerged membrane photocatalytic reactor [J]. J. Chem. Engin.,2007, 130(1):53-63.
    [58]丁震,冯小刚,陈晓东,等.金属泡沫镍负载纳米TiO2光催化降解甲醛和VOCs [J].环境科学,2006,27(9):1814-1819.
    [59]Li H., Zhao G.L., Chen Z.J., et al. Low temperature synthesis of visible light-driven vanadium doped titania photocatalyst [J]. J. Solid. State. Chem.,2010, 344 (2):247-250.
    [60]Rehman S., Ullah R., Butt A.M., et al. Strategies of making TiO2 and ZnO visible light active [J]. J. Hazard. Mater.,2009,170 (2-3):560-569.
    [61]Choi A., Termin W., Hoffmann M.R.. The role of metal ion dopants in quantum-sized TiO2:Correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem.,1994,98 (51):13669-13679.
    [62]Imoberdorf G.E., Vella G, Sclafani A., et al. Reactors, Kinetics, and Catalysis Radiation model of a TiO2-coated, quartz wool, packed-bed photocatalytic reactor [J]. J. AIChE,2009,56 (4):1030-1040.
    [63]Jiang H.B., Zhang G.L., Huang T., et al. Photocatalytic membrane reactor for degradation of acid red B wastewater [J]. J. Chem. Engin.,2010,156 (3):571-577.
    [64]Fujiki Y, Oota Y.. Manufacture of titania fiber [P]. Japanese Patent,55-136126, 1980-10-23.
    [65]Noda K., Morita Y, Aramaki Y. Production of titania fibers [P]. Japanese Patent, 01-246139,1989-10-02.
    [66]Hori N., Matsunami Y, Kagohashi W.. Potassium titanate filament and production of titania fiber using the same filament [P]. Japanese Patent,02-164722, 1990-06-25.
    [67]刘玉明.KDC法合成钛酸钾纤维的研究[J].无机材料学报,1994,9(1):83-88.
    [68]王福平,姜兆,华宋英,等.KDC法合成钛酸钾纤维的反应机制研究[J].硅酸盐学报,1999,27(4):471-476.
    [69]杨祝红,暴宁钟,刘畅,等.TiO2纤维的制备及其光催化活性研究[J].高等学校化学学报,2002,23(7):1371-1374.
    [70]刘泽,李永祥,吴冲若,等.水热法制备二氧化钛晶须[J].硅酸盐学报1998,26(3):392-394.
    [71]杨祝红,暴宁钟,郑仲,等.用溶剂热处理法制备TiO2纤维及其光催化降解甲基橙的活性[J].催化学报,2002,23(6):539-542.
    [72]吴孟强,陈艾,周旺,等.水热晶化法合成TiO2晶须[J].硅酸盐学报,2001,29(6):587-590.
    [73]王昭,毛峰,黄祥平,等.二氧化钛纳米棒自组装纤维的水热一步合成及其光催化性能[J].材料科学与工程学报,2009,27(1):96-99.
    [74]周武艺,张世英,唐绍裘,等.纤维TiO2的制备及光催化应用研究进展[J].中国陶瓷工业,2004,11(6):56-59
    [75]Kamiya K., Tanimoto K., Yoko T.. Preparation of TiO2 fibers by hydrolysis and polycondensation of Ti(O-i-C3H7)4 [J]. Mater. Sci. Lett.,1986,5:42.
    [76]Koike H., Oki Y., Takeuchi Y. Titania fiber and its production [P]. Japanese Patent,10-325021,1998-08-12.
    [77]Koike H., Oki Y., Takeuchi Y. Method for producing a catalyst component-carrying titania fiber [P]. US Patent,6162759,2000-12-19.
    [78]Koike H., Oki Y., Takeuchi Y. Fiber, method for producing the fiber and methd for using the fiber [P]. US Patent,6086844,2000-07-11.
    [79]Zhan S.H., Chen D.R., Jiao X.L. et al. Long TiO2 hollow fibers with mesoporous walls:Sol-Gel combined electrospun gabrication and photocatalytic properties [J]. J. Phys. Chem. B,2006,110:11199-11204
    [80]Zhan S.H., Chen D.R., Jiao X.L. et al. Mesoporous TiO2/SiO2 composite nanofibers with selective photocatalytic properties [J]. Chem. Commun.,2007: 2043-2045
    [81]Li D., Xia Y.N.. Electrospinning of nanofibers:Reinventing the wheel [J]. Adv. Mater.,2004,16 (14):1151-1170
    [82]Pan H., Li L.M., Hu L., et al. Continuous aligned polymer fibers produced by a modified electrospinning method [J]. Polymer,2006,47 (14):4901-4904.
    [83]Kim Y.B., Cho D., Park W.H.. Enhancement of mechanical properties of TiO2 nanofibers by reinforcement with polysulfone fibers [J].Mater. Lett.,2010,64 (2): 189-191.
    [84]Zhang S.Y., Chen Z.H., Li Y.L., et al. Photocatalytic degradation of methylene blue in a sparged tube reactor with TiO2 fibers prepared by a properly two-step method [J]. Catal. Commun.,2008,9 (6):1178-1183.
    [85]Zhang S.Y., Chen Z.H., Li Y.L., et al. Preparation of TiO2 fibers by two-step synthesis method and their photocatalytic activity [J]. Mater. Chem. Phys.,2008,107 (1):1-5.
    [86]刘和义,许东,包南,等.二氧化钛纤维的制备方法[P].中国专利,ZL200410024265.1,2006-01-04.
    [87]Ishikawa T., Yamaoka H., Harada Y., et al. A general process for in situ formation of functional surface layers on ceramics [J]. Nature,2002,416:64-67.
    [88]Matsunaga T., Yamaoka H., Ohtani S.I., et al. High photocatalytic activity of palladium-deposited mesoporous TiO2/SiO2 fibers [J]. Appl. Catal. A:Gen.,2008,351 (2):231-238.
    [1]Corma A.. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem. Rev.,1997,97 (6):2373-2419.
    [2]Fujishima A., Rao T.N., Tryk D.A.. Titanium dioxide photocatalysis [J]. J. Photochem.Photobiol. C,2000,1 (1):1-21.
    [3]Qi X.H., Wang Z.H., Zhuang Y.Y., et al. Study on the photocatalysis performance and degradation kinetics of X-3B over modified titanium dioxide [J]. J. Hazard. Mater. B,2005,118 (1-3):219-225.
    [4]Augugliaro V., Loddo V., Marci G.., et al. Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions [J]. J. Catal.,1997,166 (2):272-283.
    [5]Sayilkan F., Erdemoglu S., Asilturk M., et al. Photocatalytic performance of pure anatase nanocrystallite TiO2 synthesized under low temperature hydrothermal conditions [J]. Mater. Res.Bull.,2006,41 (12):2276-2285.
    [6]Xia X.H., Liang Y., Wang Z., et al. Synthesis and photocatalytic properties of TiO2 nanostructures [J]. Mater. Res. Bull.,2008,43 (8-9):2187-2195.
    [7]Zhang H.M., Quan X., Chen S., et al. Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability [J]. Environ. Sci. Technol.,2006,40 (19):6104-6109.
    [8]Yu J.G., Yu H.G, Cheng B., et al. Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method [J]. J. Photochem. Photobiol. A,2006,182 (2):121-127.
    [9]Iida M., Sasaki T., Watanabe M.. Titanium dioxide hollow microspheres with an extremely thin shell [J]. Chem. Mater.,1998,10 (12):3780-3782.
    [10]Wang L.Z., Sasaki T., Ebina Y, et al. Fabrication of controllable ultrathin hollow shells by layer-by-layer assembly of exfoliated titania nanosheets on polymer templates [J]. Chem. Mater.,2002,14 (11):4827-4832.
    [11]Horikoshi S., Saitou A., Hidaka H., et al. Environmental remediation by an integrated microwave/UV illumination method. V. Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-B under UV/vis radiation [J]. Environ. Sci. Technol.,2003,37 (24): 5813-5822.
    [12]Al-Ekabi H., Serpone N.. Kinetics studies in heterogeneous photocatalysis. I.Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix [J]. J. Phys. Chem.,1988,92 (20):5726-5731.
    [13]Mukai S.R., Nishihara H., Shichi S., et al. Preparation of porous TiO2 cryogel fibers through unidirectional freezing of hydrogel followed by freeze-drying [J]. Chem. Mater.,2004,16 (24):4987-4991.
    [14]Chen Q., Cui J.W., Song P., et al. Study on the gelation and heat-treatment of TiO2 fibers prepared by the hydrolysis of Ti(OC4H9)4 [J]. J. Inorg. Mater.,1991,6 (2): 249-255.
    [15]Yin S., Fujishiro Y., Wu J.H., et al. Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions [J]. J. Mater. Process. Technol.,2003,137 (1-3 SPEC):45-48.
    [16]Bao N.Z., Feng X., Yang Z.H., et al. Highly efficient liquidphase photooxidation of an azo dye methyl orange over novel nanostructured porous titanate-based fiber of self-supported radially aligned H2Ti8O17·1.5H2O nanorods [J]. Environ. Sci. Technol., 2004,38 (9):2729-2736.
    [17]Bao N.Z., Shen L.M., Yanagisawa K.. Textural and catalytic properties of combinational micro-mesoporous octatitanate fibers prepared by solvothermal soft chemical process [J].J. Phys. Chem. B,2004,108 (43):16739-16745.
    [18]He M., Lu X.H., Feng X., et al. A simple approach to mesoporous fibrous titania from potassium dititanate [J]. Commun,2004,10 (19):2202-2203.
    [19]Yang Z.H., Bao N.Z., Liu C., et al. Preparation of titanium dioxide fibers and their photocatalysis reactivity [J]. Chem. J. Chin. Univ.,2002,23 (7):1371-1374.
    [20]Madhugiri S., Sun B., Smirniotis P.G., et al. Electrospun mesoporous titanium dioxide fibers [J]. Micropor. Mesopor. Mater.,2004,69 (1-2):77-83.
    [21]Zhan S.H., Chen D.R., Jiao X.L.. Long TiO2 hollow fibers with mesoporous walls:sol-gel combined electrospun fabrication and photocatalytic properties [J].J. Phys. Chem. B,2006,110 (23):11199-11204.
    [22]Ishikawa T., Yamaoka H., Harada Y., et al. A general process for in situ formation of functional surface layers on ceramics [J]. Nature,2002,416 (6876):64-67.
    [23]Matsunaga T., Yamaoka H., Ohtani S.I., et al. High photocatalytic activity of palladium-deposited mesoporous TiO2/SiO2 fibers [J]. Appl. Catal. A:Gen.,2008,351 (2):231-238.
    [24]Bao N., Ma Z.H., Zhang F., et al. [P]. CN:ZL200620081025.X.
    [25]Spurr R.A., Myers H.. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer [J].Anal. Chem.,1957,29 (5):760-762.
    [26]Bao N., Wang J.S., Deng C.R., et al. Immobilized photocatalytic oxidation of furaltadone in aqueous solution [J]. Chin. Environ. Sci.,1998,18 (5):458-462.
    [27]Tsevis A., Spanos N., Koutsoukos P.G., et al. Preparation and characterizations of anatase powders [J]. J. Chem. Soc. Faraday. Trans.,1998,94 (2):295-300.
    [28]Periyat P., Baiju K.V., Mukundan P., et al. High temperature stable mesoporous anatase TiO2 photocatalyst achieved by silica addition [J]. Appl.Catal. A:Gen.,2008, 349 (1-2):13-19.
    [29]Yoshinaka M., Hirota K., Yamaguchi O.. Formation and sintering of TiO2 (anatase) solid solution in the system TiO2-SiO2 [J]. J. Am. Ceram. Soc.,1997,80 (10):2749-2753.
    [30]Cheng P., Zheng M.P., Jin Y.P., et al. Preparation and characterization of silica-doped titania photocatalyst through sol-gel method [J]. Mater. Lett.,2003,57 (20):2989-2994.
    [31]Shibata H., Ohkubo T., Kohno H., et al. Preparation and photocatalytic activity of titania particulate film with mesostructured silica as binder [J]. J. Photochem. Photobiol. A,2006,181 (2-3):357-362.
    [32]Dutoit D.C.M., Schneider M., Baiker A.. Titania-silica mixed oxides. I. Influence of sol-gel and drying conditions on structural properties [J]. J. Catal.,1995,153 (1): 165-176.
    [33]Liu Z.F., Tabora J., Davis R.J.. Relationships between microstructure and surface acidity of Ti-Si mixed oxide catalysts [J]. J. Catal,1994,149 (1):117-126.
    [34]Kochkar H., Figueras F.. Synthesis of hydrophobic TiO2-SiO2 mixed oxides for the epoxidation of cyclohexene [J]. J. Catal.,1997,171 (2):420-430.
    [35]Fu X.Z., Clark L.A., Yang Q., et al. Enhanced photocatalytic performance of titania-based binary metal oxides:TiO2/SiO2 and TiO2/ZrO2[J]. Environ. Sci. Technol., 1996,30 (2):647-653.
    [36]Castillo R., Koch B., Ruiz P., et al. Influence of the amount of titania on the texture and structure of titania supported on silica [J]. J. Catal.,1996,161 (2): 524-529.
    [37]Music S., Gotic M., Ivanda M., et al. Chemical and micro structural properties of TiO2 synthesized by sol-gel procedure [J]. Mater. Sci. Eng. B,1997,47 (1):33-40.
    [38]Schraml-Marth M., Walther K.L., Wokaum A., et al. Porous silica gels and TiO2/SiO2 mixed oxides prepared via the sol-gel process:characterizationby spectroscopic techniques [J]. J. Non Cryst. Solids,1992,143 (C):93-111.
    [39]Kiwi J., Gratzel M.. Characterization of (SiW12O40)4-/Ti02 suspensions and their activity in the evolution of hydrogen from water [J]. J. Phys. Chem.,1987,91 (27): 6673-6677.
    [40]Bacsa R.R., Kiwi J.. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid [J]. Appl. Catal. B: Environ.,1998,16 (1):19-29.
    [41]Gao X.T., Wachs I.E.. Titania-silica as catalysts:molecular structural characteristics and physico-chemical properties [J]. Catal. Today,1999,51 (2): 233-254.
    [42]Linsebigler A.L., Lu G.Q., Yates J.T.. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chem. Rev.,1995,95 (3):735-758.
    [43]包南,马志会,孟凡琳,等.三维二氧化钛纤维层光催化净水处理装置[P].中国专利,ZL200720021917.5.
    [44]Hu C., Tang Y., Jiang Z., et al. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2 [J]. Appl. Catal. A:Gen.,2003,253 (2): 389-396.
    [45]Hurum D.C., Agrios A.G., Gray K.A.. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR [J]. J. Phys. Chem. B,2003, 107 (19):4545-4549.
    [46]Riegel G., Bolton J.R.. Photocatalytic efficiency variability in TiO2 particles [J]. J. Phys. Chem.,1995,99 (12):4215-4224.
    [47]Li Y.J., Li X.D., Li J.W., et al. TiO2-coated active carbon composites with increased photocatalytic activity prepared by a properly controlled sol-gel method [J]. Mater. Lett.,2005,59 (21):2659-2663.
    [1]Fujishuma A, Honda K.. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature,1972,238 (5358):37-38.
    [2]Pruden A.L., Ollis D.F.. Photoassisted heterogeneous catalysis:The degradation of trichloroethylene in water [J]. J. Catal.,1983,82 (2):404-417.
    [3]黄惠莉,黄妙良,蔡阿娜,等.二氧化钛光催化降解处理染料废水[J].化工环保,2002,22(2):84-87.
    [4]路平,邓南圣.β-环糊精在二氧化钛对偶氮染料光催化脱色的应用[J].水处理技术,2003,31(1):35-37.
    [5]Sahoo C., Gupta A.K., Pal A.. Photocatalytic degradation of methyl red dye in aqueous solutions under UV irradiation using Ag+ doped TiO2 [J]. Desalination,2005, 181 (3):91-100.
    [6]Kim S., Choi W.. Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: Demonstrating the existence of a surface-complex-mediated path [J]. J. Phys. Chem. B,2005,109 (11):5143-5149.
    [7]Ishikawa T., Yamaoka H., Harada Y., et al. A general process for in situ formation of functional surface layers on ceramics [J]. Nature,2002,416 (6876):64-67.
    [8]包南,张锋,马志会,等.TiO2纤维制备与应用研究进展[J].化工进展,2007,26(3):346-350.
    [9]Bao N., Wei Z.T., Ma Z.H., et al. Si-doped mesoporous TiO2 continuous fibers: preparation by centrifugal spinning and photocatalytic properties [J]. J. Hazard. Mater.,2010,174 (1-3):129-136.
    [10]Gole J.L., Stout J.D., Burda C. et al. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale [J]. J. Phys. Chem. B,2004,108 (4):1230-1240.
    [11]Iwasaki M., Hara M., Kawada H., et al.. Cobalt ion-doped TiO2 photocatalyst response to visible light [J]. J. Colloid Interface Sci.,2000,224 (1):202-204.
    [12]Bumpas J.A., Tricker J., Andrzejewski K., et al. Remediation of water [J]. Appl. Catal. B:Environ.,2008,84 (3-4):448-456.
    [24]Fang J., Wang F., Qian K., et al. Bifunctional N-doped mesoporous TiO2 photocatalysts [J]. J. Phys. Chem. C,2008,112 (46):18150-18156.
    [25]Park H., Choi W.. Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors [J]. J. Phys. Chem. B,2004,108 (13):4086-4093.
    [26]Cho Y., Choi W., Lee C.H., et al. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2 [J]. Environ. Sci. Technol.,2001,35 (5):966-970.
    [27]Yang J., Chen C.C., Ji H.W., et al. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation:photoelectrocatalytic study by TiO2-film electrodes [J]. J. Phys. Chem. B,2005,109:21900-21907.
    [28]Bao N., Sun J., Wei Z.T., et al. Degradation of biorefractory furaltadone in aqueous solution by ozonation [J]. J. Chem. Technol. Biotechnol.,2008,83: 1347-1352.
    [29]Li D., Haneda H., Labhsetwar N., et al. Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies [J]. Phys. Chem. Lett.,2005,401 (4-6):579-584.
    [30]Li D., Haneda H., Hishita S., et al. Visible-light-driven N-F-codoped TiO2 photocatalysts.1. synthesis by spray pyrolysis and surface characterization [J]. Chem. Mater.,2005,17 (10):2588-2595.
    [31]Vorres K.S., Dutton F.B.. The fluorides of titanium:X-ray powder data and some other observations [J]. J. Am. Chem. Soc.,1955,77 (7):2019-2019.
    [32]Wang Q., Chen C.C., Zhao D., et al. Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation [J]. Langmuir,2008,24 (14):7338-7345.
    [33]敦惠娟,魏雨,宋秀芹,等.层层纳米自组装锆基色谱填料的表面性质研究[J].高等学校化学学报,2005,26(11):2040-2042.
    [34]Ma T.Y., Zhang J.X., Yuan Z.Y.. Hierarchically meso-/macroporous titanium tetraphosphonate materials:Synthesis, photocatalytic activity and heavy metal ion adsorption [J]. Micropor. Mesopor. Mater.,2009,123:234-242.
    [35]Rubio J., Oteo J.L., Villegas M., et al. Characterization and sintering behaviour of submicrometre titanium dioxide spherical particles obtained by gas-phase hydrolysis of titanium tetrabutoxide [J]. J. Mater. Sci.,1997,32 (3):643-652
    [36]Dutoit D.C.M., Schneider M., Baiker A.. Titania-silica mixed oxides. I. Influence of sol-gel and drying conditions on structural properties [J]. J. Catal.,1995,153 (1): 165-176.
    [37]Xie C., Xu Z.L., Yang Q.J., et al. Enhanced photocatalytic activity of titania-silica mixed oxide prepared via basic hydrolyzation [J]. Mater. Sci. Eng. B, 2004,112 (1):34-41.
    [38]Perez-Hernandez R., Mendoza-Anaya D., Fernandez M.E., et al. Synthesis of mixed ZrO2-TiO2 oxides by sol-gel:Microstructural characterization and infrared spectroscopy studies of NOx [J]. J. Mol. Catal. A:Chem.,2008,281 (1-2):200-206.
    [39]黄冬根,廖世军,党志.氟掺杂锐钛矿型TiO2溶胶的制备、表征及催化性能[J].化学学报,2006,64(17):1805-1811.
    [40]Duran A., Serna C., Fornes V., et al. Structural considerations about SiO2 glasses prepared by sol-gel [J]. J. Non-Cryst. Solids,1986,82 (1-3):69-77.
    [41]Minero, C., Maurino, V., Mariella, G, et al. Photocatalytic transformation of organic compounds in the presence of inorganic anions.1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide -fluoride system [J]. Langmuir,2000,16 (6):2632-2641.
    [42]Haubrich J., Quiller R.G., Benz L., et al. In situ ambient pressure studies of the chemistry of NO2 and water on rutile TiO2 (110) [J]. Langmuir,2010,26 (4): 2445-2451.
    [43]Vohra M., Kim S., Choi W.. Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium [J]. J. Photochem. Photobiol. A, 2003,160 (1-2):55-60.
    [44]Asahi, R., Morikawa, T., Ohwaki, T., et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293 (5528):269-271.
    [45]Chen C.C., Zhao W., Li J.Y., et al. Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous TiO2 dispersion [J]. Environ. Sci. Technol.,2002,36:3604-3611.
    [1]Zhang Q.H., Gao L., Guo J.K.. Effect of hydrolysis conditions on morphology and crystallization of nanosized TiO2 powder [J]. J. Eur. Ceram. Soc.,2000,20 (12): 2153-2158.
    [2]Sclafani A., Palmisano L., Schiavello M.. Influence of t he preparation met hods of titanium dioxide on t he photocatalytic degradation of phenolin aqueous dispersion [J]. J. Phys. Chem.,1990,94 (2):829-832.
    [3]Ohno T., Tokieda K., Higashida S., et al. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene [J]. Appl. Catal. A:Gen., 2003,244:383-391.
    [4]Wu C., Yue Y., Deng X., et al. Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations [J]. Catal. Today,2004,93-95:863-869.
    [5]Zhang Q.H., Gao L., Guo J.K.. Effect s of calcination on t he photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis [J]. Appl. Catal. B: Environ.,2000,26 (3):207-215.
    [6]Fomhals A.. US patent:1975[P],1934:504.
    [7]Li D., Xia Y.N.. Fabrication of titania nanofibers by electrospinning [J]. Nano Lett., 2003,3 (4):555-560.
    [8]Li D., McCann J.T., Graft M., et al. Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania [J]. Chem. Phys. Lett.,2004,394 (4-6):387-391.
    [9]Ostermann R., Li D., Yin Y.D., et al. V2O5 nanorods on TiO2 nanofibers:a new class of hierarchical nanostructures enabled by electrospinning and calcinations [J]. Nano Lett.,2006,6 (6):1297-1302.
    [10]Watthanaarun J., Pavarajarn V., Supaphol P.. Titanium (IV) oxide nanofibers by combined sol-gel and electrospinning techniques:preliminary report on effects of peparation conditions and secondary metal dopant [J]. Sci. Technol. Adv. Mater.,2005, 6 (3-4):240-245.
    [11]Madhugiri S., Sun B., Smirniotis P.G., et al. Electrospun mesoporous titanium dioxide fibers [J]. Microporous Mesoporous Mater.,2004,69 (1-2):77-83.
    [12]Zhan S.H., Chen D.R., Jiao X.L., et al. Long TiO2 hollow fibers with mesoporous walls:sol-gel combined electrospun fabrication and photocatalytic properties [J]. J. Phys. Chem.B,2006,110 (23):11199-11204.
    [13]Viswanathamurthi P., Bhattarai N., Kim C.K., et al. Ruthenium doped TiO2 fibers by electrospinning [J]. Inorg. Chem. Commun.,2004,7 (5):679-682.
    [14]Yuan R.S., Fu X.Z., Liu P., et al. Influence of solvents on morphology of TiO2 fibers prepared by template synthesis [J]. Scripta Mater.,2006,55 (11):1003-1006.
    [15]Hasegawa I., Fukuda Y., Kajiwara M.. An improved procedure for fabricating SiO2-TiO2-Phenolic resin hybrid fibers as precursors for long Si-Ti-C fibers by sol-gel processing [J]. J. Eur. Ceram. Soc.,1997,17 (12):1467-1473.
    [16]Kim Y.B., Cho D., Park W.H.. Enhancement of mechanical properties of TiO2 nanofibers by reinforcement with polysulfone fibers [J]. Mater. Lett.,2010,64: 189-191.
    [17]Foster L.J.R., Tighe B.J.. Centrifugally spun polyhydroxybutyrate fibres: accelerated hydrolytic degradation studies [J]. Polym. Degrad. Stab.,2005,87 (1): 1-10.
    [18]Sandou T., Oya A.. Preparation of carbon nanotubes by centrifugal spinning of coreshell polymer particles [J]. Carbon,2005,43 (9):2013-2032.
    [19]Sedaghat A., Taheri-Nassaj E., Naghizadeh R.. An alumina mat with a nano microstructure prepared by centrifugal spinning method [J]. J. Non-Cryst. Solids, 2006,352(26-27):2818-2828.
    [20]包南,马志会,张峰,等.二氧化钛溶胶旋转甩丝装置[P].中国专私,ZL200620081025.X.
    [21]Bao N., Wang J.S., Deng C.R., et al. Immobilized photocatalytic oxidation of furaltadone in aqueous solution [J]. Chin. Environ. Sci,1998,18 (5):458-462.
    [22]Scheirs J., Bigger S.W.. The application of simultaneous chemiluminescence and thermal analysis for studying the glass transition and oxidative stability of poly (N-vinyl-2-pyrrolidone) [J]. J. Polym. Sci. B:Polym. Phys.,1993,31 (3):287-297.
    [23]Doeuff S., Henry M., Sanchez C..Gel route to TiO//2 photoanodes [J]. Mat. Res. Soc. Symp. Proc.,1986,73:653-658.
    [24]Ahmad Z., Wang S.H., Mark J.E.. Preparation and properties of poly (phenyleneterephthalamide)-silica ceramers with interphase bonding from aminophenyltrimethoxysilane [J]. Mat. Res. Soc. Symp. Proc.,1994,346:127-134.
    [25]Wang S.H., Ahmad Z., Mark J.E.. A polyamide-silica composite prepared by the sol-gel process [J]. Polym. Bule.,1993,31:323-330.
    [26]Zheng M.P., Gu M.Y., Jin Y.P.. Effects of PVP on structure of TiO2 prepared by the sol-gel process [J]. Mater. Sci. Eng. B,2001,87 (2):197-201.
    [27]Wang W.J., Gu M.Y., Jin Y.P.. Effect of PVP on the photocatalytic behavior of TiO2 under sunlight [J]. Mater. Lett.,2003,57 (21):3276-3281.
    [28]Spurr R.A., Myers H.. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer [J]. Anal. Chem.,1957,29 (5):760-762.
    [29]李从举,翟国钧,付中玉,等.TiO2纳米纤维无纺布的制备及光催化性能研究[J].无机化学学报,2006,22(11):2061-2064.
    [30]郭亚涤,余煜玺,程璇,等.先驱体转化法原位制备TiO2膜层SiO2纤维[J].硅酸盐学报,2009,37(11):1873-1879.
    [31]Chang G.Q., Zheng X., Chen R.Y., et al. Silver nanoparticles filling in TiO2 hollow nanofibers by coaxial electrospinning [J]. Acta Phys.-Chim. Sin.,2008,24 (10):1790-1796.
    [32]Zheng M.P., Gu M.Y., Jin Y.P.. Studies on preparation and properties of TiO2/PVP nano-composites by sol-gel method [J]. Acta Metal. Sin.,1999,35 (11): 1224-1228.
    [33]Zheng M.P., Gu M.Y., Jin Y.P.. Preparation, structure and properties of TiO2-PVP hybrid films [J]. Mater. Sci. Eng. B,2001,77 (1):55-59.
    [34]曾庆冰.溶胶-凝胶法TiO2涂层碳纤维增强铝基复合材料[J].金属学报,1997,33(9):1002-1008.
    [35]Nakamoto K.. Infrared and raman spectra of inorganic and coordination compounds [M]. Wiley, New York,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700