用户名: 密码: 验证码:
原位SiC结合刚玉基材料抗氧化与抗侵蚀性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以矾土基高铝刚玉颗粒为骨料,电熔白刚玉细粉和α-Al_2O_3微粉为基质,将Si引入到刚玉基材料中去,于1450℃埋碳条件下合成了原位SiC结合刚玉基复合材料,研究复合材料的常温物理性能、高温机械性能和抗氧化性,并重点研究其抗侵蚀性。探讨了SiC、SiAlON和Al粉对原位SiC结合刚玉材料组成、结构和性能的影响。结果表明:
     (1)在刚玉材料中加入Si粉,材料在1450℃保温3h埋碳条件下烧结良好。Si与气氛中的CO和N_2原位反应生成纤维状、粒状SiC和SiAlON等,形成了非氧化物结合,为反应烧结。复合材料具有较高的高温强度和良好的抗热震性,1400℃的高温抗折强度为9~12MPa;△T=1100℃(水冷一次)的残余强度和强度保持率为11~19MPa和35~64%。随Si加入量增加,非氧化物生成量增加,高温抗折强度和抗热震性略有提高。
     (2)在加入2~8%Si粉的基础上,再加5%SiC粉和5%β-SiAlON粉可提高材料的高温抗折强度和抗热震性,且加入SiC可明显提高抗热震性,加入β-SiAlON可显著提高高温抗折强度。在加5%Si粉的基础上,加入1~3%的Al粉,试样于1400℃高温抗折强度显著提高(提高至21MPa),且保持了优良的抗热震性。
     (3)原位SiC结合刚玉基材料具有良好的抗氧化性,其在1000℃和1500℃下的抗氧化性均随Si加入量的增加而提高,且1500℃的抗氧化性略好于1000℃的。这是由于:在1000℃下,少量非氧化物发生氧化,氧化产物为SiO_2和Al_2O_3;1500℃下,非氧化物先氧化生成SiO_2和Al_2O_3,SiO_2和Al_2O_3进一步反应生成莫来石,并形成莫来石致密层,阻止氧气进入试样内部。在加5%Si粉的基础上加入Al粉,试样1000℃和1500℃的抗氧化性略有提高。
     (4)原位SiC结合刚玉基材料对碱度为1.1的高炉渣具有良好的抗侵蚀性(1500℃),侵蚀层厚度≤2.6mm。在加2~8%Si粉的基础上,再加入5%SiC和5%β-SiAlON,材料中非氧化物的量增加,抗侵蚀性明显提高,渣侵蚀厚度最低降至1.0mm左右。在加5%Si粉的基础上,再加入1~3%Al粉,材料的抗侵蚀性略有提高,侵蚀层厚度从2.5mm降至1.9mm。
     (5)原位SiC结合刚玉基材料的抗侵蚀机理为:高温下材料基质中的SiC和SiAlON等非氧化物氧化生成SiO_2和Al_2O_3,SiO_2和Al_2O_3与熔渣CaO与SiO_2以及基质中的Al_2O_3反应生成低熔相钙长石(CAS_2),使材料逐渐被熔蚀;熔渣侵蚀刚玉颗粒时CaO与Al_2O_3反应生成高熔点的CA_6晶体在颗粒表面固定下来,阻挡了进一步侵蚀。侵蚀过程中CaO大量消耗,致使渣粘度增大,削弱了其侵蚀渗透能力。渗透层中仍存在一定量的非氧化物,由于非氧化物难被熔渣润湿,且原位生成的非氧化物填充在气孔里,堵塞了熔渣渗透的主要通道。因此,随Si或Al加入量增加以及外加SiC和SiAlON,材料中非氧化物的量增加,抗侵蚀性明显提高。
In-situ SiC bonded Al_2O_3 based materials are prepared by using bauxite based corundum (as aggregates), fused corundum (as fines), ultra fineα-Al_2O_3 and silicon powder as starting materials and fired at 1450℃in carbon embedded condition. The physical properties, high temperature mechanical properties, oxidation resistance and corrosion resistance have been studied. The effects of SiC, SiAlON and Al addition on the phase composition, microstructure and properties of in-situ SiC bonded corundum based materials have been discussed in this thesis. The results indicated that:
     (1) When the silicon powder is added into Al_2O_3 based materials, after forming and firing at 1450℃for 3 hours in carbon embedded condition, the specimens are well sintered. Si reacted with CO and N_2 to in-situ formed fibrous or granular SiC and SiAlON. The sintering mechanism of the composites is nonoxides bonded reaction sintering. These composite materials possess high hot temperature strength and good thermal shock resistance, the hot modulus of ruputure (HMOR) at 1400℃is 9~12MPa; the residual strength ratio after one thermal shock atΔT=1100℃(water cooling) is 35~65% and residual strength is 10.8~18.8MPa.
     (2) On the basis of 2~8% Si addition, 5% SiC and 5% SiAlON addition can increase HMOR and TSR. SiC addition would contribute to increase in TSR noticeably and SiAlON addition would contribute to increase in HMOR. When 5% Si and 1~3% Al are simultaneously addition, HMOR increases noticeably (maximum 21.0MPa) and TSR is relatively good.
     (3) The in-situ SiC bonded Al_2O_3 baesd materials exhibit good oxidation resistance, and the oxidation resistance performance was improved at 1000℃and 1500℃along with the addition of Si. The oxidation resistance at 1500℃is better than that of at 1000℃, it is because oxidation productions, SiO_2 and Al_2O_3, of non-oxide materials formed dense mullite protective layer at 1500℃, which inhibite the penetration of O_2. On the basis of adding 5% Si, the oxidation resistance would be improved slightly with further addition of Al.
     (4) The composite materials exhibit good corrosion resistance at 1500℃, the thickness of corrosion layer is less than 2.6mm. On the basis of adding 2~8% Si, the corrosion resistance would be improved obviously with further addition of 5% SiC andβ-SiAlON, because of the increased amount of nonoxide. The thickness of corrosion layer is less than 1.0mm. On the basis of adding 5% Si, the corrosion resistance would be improved slightly with further addition of 1~3% Al. The thickness of corrosion layer is decreases from 2.5mm to 1.9mm.
     (5) The corrosion mechanism is: SiC and SiAlON reacted with O_2 and the production were SiO_2 and Al_2O_3. CaO reacted with SiO_2 and Al_2O_3 to form CAS2, then the matrix was corroded because the melting point of CAS2 is very low, CaO reacted with Al_2O_3 grains to form CA_6, and the corrosion retarded because of the high melting point of CA_6. Viscosity of slag increased because of CaO consumed quickly, then the corrosion and penetration ability of slag were rapidly decreased. There were certain amount nonoxide materials in the penetration layer, they existed in the hole and blocked the entrance of slag penetrating. With further addition of Si, Al, SiC or SiAlON, nonxides content increases in the matrix, so the corrosion resistance is improved obviously.
引文
[1]韩孝永.铁水预处理技术浅析.宽厚板,2007,13(2):22-25.
    [2]刘伟,王希波,蔡国庆,李海峰.混铁车用新型Al_2O_3-SiO_2-C砖的研制和应用.耐火材料,2003,37(4):223-225,232.
    [3]张芸,盛开勋,陈俊宏.Al_2O_3-SiC-C砖基质组成对抗渣性的影响.鞍山钢铁学院学报,1998,21(3):5-7.
    [4]杉田清著,张绍林,马俊译.钢铁用耐火材料-向高温挑战的记录.北京:冶金工业出版社,第一版,2004:168-169.
    [5]卢一国.混铁车用Al_2O_3-SiO_2-C砖.国外耐火材料(译自耐火物),1995,12:8-15.
    [6]徐国涛,杜鹤桂.铁水预处理用耐火材料的研究与进展.钢铁研究,1998,2:55-59.
    [7]韩宏刚,范万臣.首钢鱼雷罐渣线砖分析与研究.第4届中国金属学会青年学术年会论文集,463-366.
    [8]K.Ichikawa.溶剂对铁水预处理用耐火材料的作用.第二届国际耐火材料学术会议论文集,北京:1992.
    [9]吴学真.铁水预处理用ASC砖的使用及其损毁机理.耐火材料,1997,31(2):82-84.
    [10]西尾英昭.混铁车用Al_2O_3-SiC-Cれんか.耐火物,1995,47(4):167-176.
    [11]#12
    [12]#12
    [13]#12
    [14]#12
    [15]麻生诚二.混铁车用Al_2O_3-SiC-Cれんかの改善.耐火物,1991,43(6):275-283.
    [16]山口明良.耐火物の在り方への-私见.耐火物,1997,49(3):148-154.
    [17]洪彦若,孙加林.非氧化物复合耐火材料.北京:冶金工业出版社,第一版,2004:1.
    [18]刘新红,叶方保,石凯,贾全利.金属复合Al_2O_3基耐火材料的研究进展.耐火材料,2007,41(2),137-140.
    [19]薛文东,孙加林,熊尾贞,等.塑性相结合刚玉复合材料的力学性能.耐火材料,2001,35(6): 311-313.
    [20]孙加林,洪彦若,陈献明.金属在耐火材料中的作用.2002年昆山耐火材料会议文集,昆山,2002:213-219.
    [21]Hong Yanruo,Sun Jialin,Xue Wendong,et al.Study on corundum-SiC containing metal plastic phase refractory.J Australasian Ceram Soc,2002,38(1):11-14.
    [22]李改叶,李楠.Si粉含量对Al_2O_3-SiC材料抗氧化性能的影响.耐火材料,2004,38(6):439-440.
    [23]李改叶.Al_2O_3-SiC复合材料结构与性能的研究:[武汉科技大学硕士学位论文].武汉,2004.
    [24]陈花朵.Al/Si复合Al_2O-3-SiC材料的组成、结构和性能研究:[郑州大学硕士学位论文].郑州,2008.
    [25]刘新红.Si/Al复合Al_2O_3基材料组成、结构和性能研究:[郑州大学博士学位论文].郑州,2008.
    [26]李新士,党金海,刘加善,等.单质硅加入量对铝碳材料力学性能利抗氧化性能的影响.耐火材料,2006,40(1):77-78.
    [27]刘国齐,王金相,杨彬,等.Si粉利Al粉对N_2保护热处理铝碳材料性能和显微结构的影响.耐火材料,2005,39(4):241-245.
    [28]阮国智,李楠,张智慧.热处理温度对Al_2O_3-SiC-Al复合材料性能和结构的影响.耐火材料,2006,40(3):169-172.
    [29]杨晓春,姚春战,高阳,等.金属-氮化物结合滑板的研制与应用.耐火材料,2003,37(5):271-273,281
    [30]Liu Guoqi,LiHongxia,Yang Bin,et al.The influence of heat-treating atmospheres on Al_2O_3-C materials with Al addition.Proc of UNITECR'05,USA,2005:87-91.
    [31]刘国齐,王金相,杨彬,等.热处理气氛对添加铝粉的铝碳材料性能和结构的影响.耐火材料,2005,39(1):26-30.
    [32]刘新彧,孙庚辰,石干.铝炭滑板的高温强度、断裂行为和氧化过程与添加物Al、Si的关系.耐火材料,1995,29(2):79-82,87.
    [33]宋永政.加入Si(Al)粉对Al_2O_3-SiAlON复合材料性能的影响:[郑州大学硕士学位论文].郑州,2007.
    [34]聂洪波.铝碳滑板材料的高温使用性能研究:[郑州大学硕士学位论文].郑州,2005.
    [35]石凯.Al/Si复合Al_2O_3-C材料的高温性能、显微结构及研制:[郑州大学博士学位论文].郑 州,2007.
    [36]Zhang Hui,Teng Guoqiang,Wang Jinxiang,etal.Effect of metal addition on properties of corundum-based puring plug.Proc of UNITECR'05,USA,2005:368-371.
    [37]于燕文.VOD炉用高钙镁钙材料抗渣侵蚀及抗水化性能研究:[天津大学博士学位论文].天津,2005.
    [38]郁国城.碱性耐火材料理论基础.上海:上海科学技术出版社,1982.
    [39]李一为,王习东,傅元坤,丁伟中.铝镁浇注料的抗渣侵蚀机理.耐火材料,2002,36(1):24-26.
    [40]蒋明学,李勇.陈肇友耐火材料论文选.北京:冶金工业出版社,1998.
    [41]前田荣造.炉渣向碱性耐火材料的渗透.耐火物,1989,41(1):726.
    [42]魏明坤,张丽鹏,张广军.碳化硅耐火材料的发展与性能.硅酸盐通报,2001,20(3):37-40,54.
    [43]陈祖熊.Sialon的结构、性质与应用.材料导报,1993,7(1):29-32.
    [44]张伟娜.冶金多晶硅的电学性能研究:[大连理工大学硕士学位论文].大连,2007.
    [45]王新福,黄振武.SiC晶须的形成及对Al_2O_3-C制品强度的影响.耐火材料,1994(2):76-79.
    [46]王天明,邹宗树,窦叔菊.添加剂及温度对Al_2O_3-C质耐火材料中SiC晶须形成的影响.炼钢,1996(1):25-27.
    [47]张殿军,王会先.不同碱度的精炼渣对刚玉-尖晶石浇注料的侵蚀行为.耐火材料,2002,36(4):215-217.
    [48]李红霞.耐火材料手册.北京:冶金工业出版社,2007.
    [49]刘新彧,Andreas Buhr,Gunter Buchel,R P Racher.博耐特(Bonite)——一种新型的合成致密CA_6耐火原料.耐火材料,2006,40(1):60-64.
    [50]Tulliani JM,PagesG,Fantozzi G,et al.Dilatometry as a tool to study a new synthesis for calcium hexaluminate.J Therm Analys and Calorimet,2003,72:1135-1140.
    [51]苏新禄,叶方保,周宁生,钟香崇,张三华.含β-SiAlON的MgO-Al_2O_3浇注料的抗渣侵蚀性.耐火材料,2004,38(3):172-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700