用户名: 密码: 验证码:
丝蛋白基表面活性剂制备工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质同时含有亲水性和疏水性基团,理论上应该具有理想的表面活性性能。然而,由于极性或非极性氨基酸在每一种蛋白质肽链中分布的不规则性或特异性,以及蛋白质空间结构和空间结构作用力如二硫键的影响,绝大多数天然蛋白质因疏水性基团被包裹在致密稳固的蛋白质分子内部而无法表现出其表面活性性能。另外由于蚕丝蛋白结构中结晶区与非结晶区的影响,蚕丝蛋白根本不能溶于水。为了研究蚕丝蛋白表面活性性能,本文首先利用超声波、盐溶方法制得水溶性蚕丝蛋白,使蚕丝蛋白表面活性性能研究成为可能。研究了另一种使蚕丝蛋白溶于水的方法:利用物理(温度压力)与化学(催化剂硫酸)结合的手段,溶解废茧、废丝,研究了溶解创新工艺与溶解液的表面活性。为了进一步优化蚕丝蛋白表面活性性能,我们利用化学修饰的手段在蚕丝蛋白氨基酸残基化学活性位点上引入长碳链基团,进行了酰化修饰。得出以下结论:
     1、建立了新的水溶性丝胶蛋白和丝素蛋白制备工艺,研究了其表面活性性能。废茧、废丝在除杂精选的基础上,利用90倍体积水、超声波协同作用15min,在95℃作用25min,经过冷冻干燥,制备了丝胶蛋白。制备丝胶蛋白后的废茧、废丝在沸腾的5mol/L氯化钙溶液中溶解,盐溶时间15min、液固比8:1,再经过6小时加压脱盐,利用冷冻干燥,制备了丝素蛋白。SDS-PAGE电泳表明制备的丝胶蛋白分子量具有连续性,丝素蛋白的分子量相对集中。丝胶、丝素表现出了不同程度的表面活性。
     2、以废丝、废茧为原料,在一定温度、压力等外力作用下,硫酸做催化使废茧、废丝溶解,创新了蚕丝溶解工艺,研究了溶解产物(多肽)溶液的表面活性性能。溶解工艺:硫酸浓度26%,时间20min,温度(压力)120℃(0.2MPa),液固比110。在最优条件下进行验证性实验,测得的溶解度为99.99 %。
     3、蚕丝水解液表面活性性能:CMC=0.6g/L,此时表面张力为29.5 mN/m;蚕丝水解液的乳化性接近90%;蚕丝水解液乳化稳定性随浓度变化比较平缓;有一定的发泡力和泡沫稳定性,且在硬水与软水中的发泡力和泡沫稳定性相当,因此具有一定的抗硬水的能力;HLB值为11时乳化性能最好,说明蚕丝水解液是具有一定亲油性的表面活性剂;润湿时间为74.5秒;去污力达到55%。
     4、利用化学修饰的手段对水解产物进行酰化修饰,引入了长链基团,在此基础上研究了修饰产物的表面活性性能。化学修饰最佳工艺:多肽15 mL,椰子油酰氯3 mL,pH为12,温度为55℃,丙酮为7 mL。在此条件下的平均转化率92.5%。表面活性性能:CMC=0.8g/L,此时表面张力为27.6 mN/m;修饰产品在CMC浓度下的乳化性接近100%;修饰产物乳化稳定性随浓度变化很小;有很好的发泡力和泡沫稳定性,且在硬水与软水中的发泡力和泡沫稳定性相当。
     5、在测定溶液表面张力的基础上,研究了N-椰油酰基多肽的胶束形成的标准热力学函数、分子吸附动力学及其影响因素。以期待对学术、实际应用提供参考价值。
     利用盐溶的方法得到的水溶性蚕丝蛋白,其表面活性性能表现的不是十分良好。利用高温、高压物理条件以及硫酸作为催化剂得到的水溶性蚕丝蛋白,在表面活性性能方面有一定提高但是还存在很多缺陷。经过化学修饰后的产物表现出良好而全面的表面活性性能,有效改善了蚕丝蛋白的表面活性。为有效利用废茧、废丝,制备安全无毒、绿色的蛋白质表面活性剂提供了有效途径。
Proteins composed of polar and nonpolar amino acid connected by peptide bonds, should be a kind of ideal surfactants. However, because of particular structure of protein and coiling fold of polypeptide chain, most of proteins can't show their surface active properties as the nonpolar groups of proteins are covered in the compact and steady protein molecules. We use salt dissolving, hydrolysis, chemical modification method to study the surface properties of silk protein. Conclusion is listed below :
     1.This paper established the preparation technology of the sericin and silk fibroin. The best optimized conditions of the sericin: V(water):V(silk waste)=90:1, ultrasonic time 15min, Temperature 95℃, temperature time 25min. The silk sericin protein was prepared using the freeze-drying technology. The best optimized conditions of the silk fibroin protein: V(CaCl2, 5mol/L):V(silk waste)=8:1, the salt dissolve time 15min, desalting time(pressure) 6h. The silk fibroin protein was prepared using the freeze-drying technology. SDS-PAGE gel electrophoresis showed that the molecular weight of the silk sericin protein is continuous and the molecular weight of the silk fibroin protein is single. silk sericin protein and the silk fibroin protein showed different degree of surface activity.
     2.Silk protein hydrolysis was studied in this paper under the condition of external force. The best technological conditions: hydrolysis temperature 120℃(0.2MPa), the concentration of sulphuric acid 26%, time 20min, the liquid-solid ratio110:1, yield 99.99%.
     3 . Silk hydrolysate active surface properties:CMC0.6g/L,γ29.5 mN/m, the emulsification 90%, emulsion stability 85%, foam ability 81%, foam stability 85%, HLB 11, Wetting time 74.5s, detergency 55%.
     4.Silk protein chemical modification process: dodecanoyl chloride 3mL, composite amino acids15mL, acetone 7mL, pH12,reaction temperature55℃, reaction time 4h. The average production of N- dodecanoyl composite amino acids is 92.5% under the optimum synthesis conditions. It shows good surfactant properties. CMC0.8g/L,γ27.6.5mN/m, the emulsification 90%, emulsion stability 85%, foam ability 81%, foam stability 85%, HLB 11, Wetting time 74.5s, detergency 55%.
     5.We study the formation of molecular thermodynamic functions, standard of adsorption dynamics and its influencing factors.
     The silk protein that is prepared using the method of salt soluble is not very good in active surface properties. And the silk protein that is prepared using the method of hydrolysis has a certain increase in surface properties, but also has many defects. The silk proteins after chemical modification shows good and overall surface properties, effectively improves the surface properties of silk protein. This method provides an effective way of effectively using waste cocoons, discard silk, non-toxic, and preparing of green protein surfactant.
引文
[1] Watson J.D and Crick F.H.C. Genetical implications of the structure of deoxyribonucleic acid[J].Nature, 1953,171(4361):964~967.
    [2] Eisenberg D. The discovery of theα-helix andβ-sheet, the principal structural features of proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(20):11207~11210
    [3] Levy E.D, Pereira-Leal J.B, Chothia C and Teichmann S.A. 3D complex: A structural classification of protein complexes[J]. PLoS Computational Biology, 2006,2(11):1395~1406.
    [4] Vollrath F. Untangling the spider's web[J].Trends in Ecology and Evolution, 1988,3(12):331~335.
    [5] Dicko C, Knight D, Kenney J.M and Vollrath F. Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects [J]. Biomacromolecules,2004,5(6):2105~2115.
    [6] Becker N, Oroudjev E, Mutz S, Cleveland J.P, Hansma P.K and Hayashi C.Y et al. Molecular nanosprings in spider capture-silk threads[J]. Nature Materials,2003,2(4):278~283.
    [7] Candelas G.C and Cintron J.J. A spider fibroin and its syn- thesis [J].Journal of Experimental Zoology,1981,216:1~6.
    [8] Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K and Mizuno S. Silk Fibroin of Bombyx mori Is Secreted, Assembling a High Molecular Mass Elementary Unit Consisting of H-chain, L-chain, and P25, with a 6:6:1 Molar Ratio[J]. Journal of Biological Chemistry,2000,275(51): 40517~40528.
    [9] Dickerson R.E, Drew H.R, Conner B.N, Wing R.M, Fratini A.V and Kopka M.L. The anatomy of A-,B-,and Z-DNA[J].Science, 1982,216(4545): 475~485.
    [10] Winkler S and Kaplan D.L. Molecular biology of spider silk[J]. Reviews in Molecular Biotechnology,2000,74:85~93.
    [11] Weber A.L and Miller S.L. Reasons for the occurrence of the twenty coded protein amino acids [J].Journal of Molecular Evolution,1981,17(5):273~284.
    [12] Brooks A.E, Steinkraus H.B, Nelson S.R and Lewis R.V. An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia[J].Biomacromolecules,2005,6 (6):3095~3099.
    [13] Freddi G, Mossotti R and Innocenti R. Degumming of silk fabric with several proteases[J].Journal of Biotechnology,2003,106(1): 101~112.
    [14] Gosline J.M, Guerette P.A, Ortlepp C.S and Savage K.N. The mechanical design of spider silks: From fibroin sequence to mechanical function[J].Journal of Experimental Biology,1999,202:3295~3303.
    [15] Bolin K.A and Millhauser G.L.αand 310: The split personality of polypeptide helices[J]. Accounts of Chemical Research,1999,32(12): 1027~1033.
    [16] Rossmann M.G and Argos P. Protein folding[J].Annual Review of Biochemistry,1981,50:497~532.
    [17] Dickerson R.E, Drew H.R, Conner B.N, Wing R.M, Fratini A.V and Kopka M.L. The anatomy ofA-,B-,and Z-DNA[J].Science,1982,216(4545):475~485
    [18] Thiel B.L and Viney C.βSheets and spider silk[J].Science,1996,273 (5281):1480~1481.
    [19] Tsukada M, Shiozaki H, Goto Y and Freddi G. Physical properties of silk fibers treated with ethylene glycol diglycidyl ether by the pad/batch method[J]. Journal of Applied Polymer Science,1993,50(10):1841~1849.
    [20] Tsukada M, Shiozaki H, Crighton J.S and Kasai N. Reductions in rate of yellowing following irradiation of poly[N(n-butoxymethyl) methacrylamide]-grafted silk fibers[J].Journal of Applied Polymer Science,1993,48(1):113~120.
    [21] Tsukada M, Gotoh Y, Shiozaki H, Freddi G and Crighton J.S. Physical characteristics of silk fibers modified with dibasic acid anhydrides[J]. Journal of Applied Polymer Science,1994,51(2):345~352.
    [22] Cai Z.S and Qiu Y.P. Using an aqueous epoxide in Bombyx mori silk fabric finishing[J]. Textile Research Journal,2003,73(1):42~46.
    [23] Chen G.Q, Guan J.P, Xing T.L and Zhou X. Properties of silk fibers modified with diethylene glycol dimethacrylate[J]. Journal of Applied Polymer Science,2006, 102(1) :424~428.
    [24] Luo J. A sodium acetate/acetic acid buffer system for the low-temperature dyeing of silk fabrics[J]. Journal of the Society of Dyers and Colourists,1991,107(4):141~143.
    [25] Patel R.B, Patel N, Patel S.K and Patel K.C. Studies on synthesis of some acid dyes and their application on various fibres[J]. Asian Journal of Chemistry,2001, 13(2):449~454.
    [26] Sheikh M.R.K, Farouqui F.I, Modak P.R, Hoque M.A and Yasmin Z. Dyeing of Rajshahi silk with basic dyes: Effect of modification on dyeing properties[J]. Journal of the Textile Institute,2006,97(4):295~300.
    [27] Seu G. The dyeing of silk with heterocyclic disperse azo-dyes[J]. Dyes and Pigments,1993,23(4):267~273.
    [28] Lewis D.M and Broadbent P.J. A universal dye for all fibres - Are disperse dyes capable of fulfilling this vision[J]. Journal of the Society of Dyers and Colourists,1997,113(5-6):159~164.
    [29] Mousa A.A and Youssef Y.A. Dyeing of nylon 6 and silk fabrics with a model disulphide bis(ethylsulphone) reactive disperse dye[J]. Coloration Technology,2003,119(4): 225~229.
    [30] Aspland J.R. A series on dyeing Chapter 10/part 2: the application of ionic dyes to ionic fibres: nylon, silk and wool and their sorption of anions[J]. Textile Chemist and Colorist,1993,25(3):55~59.
    [31] Waheed S and Alam A. Studies of some natural dyes[J]. Journal of the Chemical Society of Pakistan,2004,26(3):255~263.
    [32] Tsukada M, Goto Y, Freddi G, Shiozaki H and Ishikawa H. Chemical modification of silk with itaconic anhydride[J]. Journal of Applied Polymer Science,1992,45(10):1719~1725.
    [33] Tsukada M, Goto Y, Freddi G and Shiozaki H. Chemical modification of silk with aromatic acid anhydrides[J]. Journal of Applied Polymer Science,1992,45(7):1189~1194.
    [34] Freddi G, Tsukada M, Kato H and Shiozaki H. Dyeability of silk fabrics modified with dibasic acid anhydrides[J]. Journal of Applied Polymer Science,1994,52(6): 769~773.
    [35] Tsukada M, Freddi G, Massafra M.R and Beretta S. Structure and properties of tussah silk fibers graft-copolymerized with methacrylamide and 2-hydroxyethyl methacrylate[J]. Journal of Applied Polymer Science, 1998,67(8):1393~1403.
    [36] Freddi G, Ishiguro Y, Kasai N, Crighton J.S and Tsukada M. Properties of poly(styrene)-grafted silk fibers and molecular weight of poly(styrene)[J]. Journal of Applied Polymer Science,1996,61(12): 2197~2205.
    [37] Demura M, Kitamura A, Shibamoto A and Asakura T. Water sorption, membrane potentials, and ion permeability of styrene-grafted Bombyx mori silk fibroin membrane[J]. Journal of Applied Polymer Science,1988,36(3): 535~543.
    [38] Burcharth F, Hahnpedersen J, Andersen B and Andersen J.R. Inguinal hernia repair with silk or polyglycolic acid sutures: A controlled trial with 5-years' follow-up [J]. World Journal of Surgery,1983,7(3): 416~418.
    [39] Vollrath F, Barth P, Basedow A, Engstrom W and List H. Local tolerance to spider silks and protein polymers in vivo[J]. In Vivo,2002,16(4): 229~234.
    [40] Bayraktar E.K and Hockenberger A.S. Investigating the knot performance of silk, polyamide, polyester, and polypropylene sutures[J].Textile Research Journal,2001,71(5):435~440.
    [41] Horan R.L, Collette A.L, Lee C, Antle K, Chen J.S and Altman G.H. Yarn design for functional tissue engineering[J]. Journal of Biomechanics, 2006,39(12):2232~2240.
    [42] Altman G.H, Horan R.L, Bramono D.S, Simmons Q, Chen J.S and Mortarino E et al. Biological and biomechanical assessment of a long-term bioresorbable silk-derived surgical mesh in an abdominal body wall defect model [J]. Journal of the American College of Surgeons,2007,205(3): S53~S54.
    [43] Jin H.J, Fridrikh S.V, Rutledge G.C and Kaplan D.L. Electrospinning Bombyx mori Silk with Poly(ethylene oxide)[J]. Biomacromolecules,2002,3 (6):1233~1239.
    [44] Gruen L and Grabel L. Concise Review: Scientific and Ethical Roadblocks to Human Embryonic Stem Cell Therapy[J]. Stem Cells,2006,24 (10):2162~2169.
    [45] Li C.M, Vepari C, Jin H.J, Kim H.J and Kaplan D.L. Electrospun silk-BMP-2 scaffolds for bone tissue engineering[J].Biomaterials, 2006,27(16):3115~3124.
    [46] Meinel L, Fajardo R, Hofmann S, Langer R, Chen J and Snyder B et al. Silk implants for the healing of critical size bone defects[J]. Bone,2005,37(5):688~698.
    [47] Allmeling C, Jokuszies A, Reimers K, Kall S and Vogt P.M. Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit[J].Journal of Cellular and Molecular Medicine,2006, 10(3):770~777.
    [48] Allmeling C, Jokuszies A, Reimers K, Kall S, Choi C.Y and Brandes G et al. Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration[J]. Cell Proliferation,2008,41(3): 408~420.
    [49] Wang X.Q, Kluge J.A, Leisk G.G and Kaplan D.L. Sonication-induced gelation of silk fibroin for cell encapsulation[J]. Biomaterials, 2008,29(8):1054~1064.
    [50] Motta A, Migliaresi C, Faccioni F, Torricelli P, Fini M and Giardino R. Fibroin hydrogels for biomedical applications: Preparation, characterization and in vitro cell culture studies[J]. Journal of Biomaterials Science Polymer Edition,2004, 15(7):851~864.
    [51] Fini M, Motta A, Torricelli P, Glavaresi G, Aldini N.N and Tschon M et al. The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel[J]. Biomaterials,2005,26(17):3527~3536.
    [52] Tamada Y. New process to form a silk fibroin porous 3-D structure[J]. Biomacromolecules,2005,6(6):3100~3106.
    [53] Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R and Kaplan D et al. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds[J]. Biotechnology and Bioengineering, 2004,88(3):379~391.
    [54] Mauney J.R, Nguyen T, Gillen K, Kirker-Head C, Gimble J.M and Kaplan D.L, Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds[J]. Biomaterials,2007,28(35):5280~5290.
    [55] Hofmann S, Hagenmuller H, Koch A.M, Muller R, Vunjak-Novakovic G and Kaplan D.L et al. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds[J]. Biomaterials,2007,28(6): 1152~1162.
    [56] Jin H.J, Park J, Valluzzi R, Cebe P and Kaplan D.L. Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide)[J]. Biomacromolecules,2004,5(3):711~717.
    [57] Lovett M, Cannizzaro C, Daheron L, Messmer B, Vunjak-Novakovic G and Kaplan D.L. Silk fibroin microtubes for blood vessel engineering[J]. Biomaterials,2007,28(35) :5271~5279.
    [58] Tamada Y.Sulfation of silk fibroin by sulfuric acid and anticoagulant activity[J].Journal of Applied Polymer Science,2003,87 (14):2377~2382.
    [59] Tamada Y. Sulfation of silk fibroin by chlorosulfonic acid and the anticoagulant activity[J].Biomaterials,2004,25(3):377~383.
    [60] Gotoh K, Izumi H, Kanamoto T, Tamada Y and Nakashima Bioscience H. Sulfated fibroin, a novel sulfated peptide derived from silk, inhibits human immunodeficiency virus replication in vitro[J].Biotechnology and Biochemistry,2000,64(8):1664~1670.
    [61] Taddei P, Arosio C, Monti P, Tsukada M, Arai T and Freddi G. Chemical and physical properties of sulfated silk fabrics[J]. Biomacromolecules, 2007,8(4):1200~1208.
    [62] Monti P, Freddi G, Arosio C, Tsukada M, Arai T and Taddei P. Vibrational spectroscopic study of sulphated silk proteins[J].Journal of Molecular Structure,2007,834:202~206.
    [63] Sofia S, McCarthy M.B, Gronowicz G and Kaplan D.L. Functionalized silk-based biomaterials for bone formation[J].Journal of Biomedical Materials Research,2001,54(1):139~148.
    [64] Yanagisawa S, Zhu Z.H, Kobayashi I, Uchino K, Tamada Y and Tamura T et al. Improving cell-adhesive properties of recombinanant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms[J].Biomacromolecules,2007,8(11): 3487~3492.
    [65] Gotoh Y,Niimi S,Hayakawa T and Miyashita T. Preparation of lactose-silk fibroin conjugates and their application as a scaffold for hepatocyte attachment[J]. Biomaterials,2004,25(6):1131~1140.
    [66] Furuzono T, Ishihara K, Nakabayashi N and Tamada Y.Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine. I. Graft-polymerization onto fabric using ammonium persulfate and interaction between fabric and platelets[J].Journal of Applied Polymer Science,1999, 73(12):2541~2544.
    [67] Furuzono T,Ishihara K, Nakabayashi N and Tamada Y. Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine. II. Graft-polymerization onto fabric through 2-methacryloyloxyethyl isocyanate and interaction between fabric and platelets[J].Biomaterials,2000,21(4):327~333.
    [68] Cao B and Mao C. Oriented nucleation of hydroxylapatite crystals on spider dragline silks[J].Langmuir,2007,23(21):10701~10705.
    [69] Kino R, Ikoma T, Yunoki S, Monkawa A, Matsuda A and Kagata G et al. Biodegradation of multilayer silk fibroin and hydroxyapatite composite material[J].Bioceramics,2006,309-311:1169~1172.
    [70] Kino R, Ikoma T, Monkawa A, Yunoki S, Munekata M and Tanaka J et al. Deposition of bone-like apatite on modified silk fibroin films from simulated body fluid[J]. Journal of Applied Polymer Science,2006,99: 2822~2830.
    [71] Huang J, Wong C, George A and Kaplan D.L. The effect of genetically engineered spider silk-dentin matrix protein chimeric protein on hydroxyapatite nucleation[J].Biomaterials,2007, 28(14) :2358~2367.
    [72] Zhang Y.Q, Zhou W.L, Shen W.D, Chen Y.H, Zha X.M and Shirai K et al. Synthesis, characterization and immunogenicity of silk fibroin-L- asparaginase bioconjugates[J]. Journal of Biotechnology,2005,120(3): 315~326.
    [73] Fang H.Y, Chen J.P, Leu Y.L and Wang H.Y. Characterization of pilocarpine-loaded chitosan[J].Chemical and Pharmaceutical Bulleti- n,2006,54(2):156~162.
    [74] Cappello J, Crissman J.W, Crissman M, Ferrari F.A, Textor G and Wallis O et al. In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs[J]. Journal of Controlled Release,1998,53(1~3):105~117.
    [75] Tsukada M, Freddi G, Minoura N and Allara G. Preparation and application of porous silk fibroin materials[[J]. Journal of Applied Polymer Science,1994,54(4):507~514.
    [76] Katayama H, Issiki M and Yoshitomi H. Application of fibroin in controlled release tablets containing theophylline[J].Biological and Pharmaceutical Bulletin,2000,23(10):1229~1234.
    [77] Bayraktar O, Malay O, Ozgarip Y and Batigun A. Silk fibroin as a novel coating material for controlled release of theophylline[J]. European Journal of Pharmaceutics and Biopharmaceutics,2005,60:373~381.
    [78] Hofmann S, Foo C.T.W.P, Rossetti F, Textor M, Vunjak-Novakovic G and Kaplan D.L et al. Silk fibroin as an organic polymer for controlled drug delivery[J].Journal of Controlled Release,2006,111(1~2):219~227.
    [79] Wang X, Zhang X, Castellot J, Herman I, Iafrati M and Kaplan D.L. Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses[J].Biomaterials,2008,29(7) : 894~903.
    [80] Wang X, Wenk E, Hu X, Castro G.R, Meinel L and Wang X et al. Silk coatings on PLGA and alginate microspheres for protein delivery[J].Biomaterials,2007,28(28):4161~4169.
    [81] Wang X.Q, Wenk E, Matsumoto A, Meinel L, Li C.M and Kaplan D.L. Silk microspheres for encapsulation and controlled release[J].Journal of Controlled Release,2007,117(3):360~370.
    [82] Hermanson K.D, Harasim M.B, Scheibel T and Bausch A.R. Permeability of silk microcapsules made by the interfacial adsorption of protein [J].Physical Chemistry Chemical Physics,2007,9(48) : 6442~6446.
    [83] Izumi Y. Studies on the Silk-Palladium Catalyst.I Preparation and Stability[J].Bulletin of theChemical Society of Japan,1959,32(9): 932~936.
    [84] Izumi Y. Studies on the Silk-Palladium Catalyst.III. Physicochemical Character–ization[J].Bull- etin of the Chemical Society of Japan,1959,32(9):942~945.
    [85] Akamatsu A, Izumi Y and Akabori S. Studies on the Silk-platinum Catalyst. I. Its Preparation and Activity[J].Bulletin of the Chemical Society of Japan,1961,34(8):1067~1072.
    [86] Akamatsu A, Izumi Y and Akabori S. Studies on the Silk-platinum Catalyst. II. General Properties [J].Bulletin of the Chemical Society of Japan,1961,34(9):1302~1306.
    [87] Akamatsu A, Izumi Y and Akabori S. Studies on the Silk-Rhodium Catalyst[J].Bulletin of the Chemical Society of Japan,1962,35(10): 1706~1711.
    [88] Sajiki H, Ikawa T and Hirota K. Markedly chemoselective hydrogenation with retention of benzyl ester and N-Cbz functions using a heterogeneous Pd-fibroin catalyst[J].Tetrahedron Letters,2003,44 (46):8437~8439.
    [89] Sajiki H, Ikawa T, Yamada H, Tsubouchi K and Hirota K. Preparation of silk fibroin-supported Pd(0) catalyst for chemoselective hydrogenation: Reduction of palladium(II) acetate by methanol on the protein[J].Tetrahedron Letters,2003, 44(1):171~174.
    [90] Peksen B.B, Uzelakcil C, Gunes A, Malay O and Bayraktar O. A novel silk fibroin-supported iron catalyst for hydroxylation of phenol[J]. Journal of Chemical Technology and Biotechnology,2006 ,81(7):1218~1224.
    [91] Yao Y.Y, Chen W.X, Zhao B.Y and Lu S.S. Preparation and catalytic activity of bioactive fibers[J]. Chinese Journal of Polymer Science,2006,24(5):441~447.
    [92] Yao Y.Y, Chen W.X, Lu S.S and Zhao B.Y. Binuclear metallophthalocyanine supported on treated silk fibres as a novel air-purifying material[J].Dyes and Pigments,2007,73(2):217~223.
    [93] Demura M, Komura T and Asakura T. Membrane potential of Bombyx mori silk fibroin membrane induced by an immobilized enzyme reaction [J].Bioelectrochemistry and Bioenergetics,1991,26(2):167~175.
    [94] Demura M, Asakura T, Nakamura E and Tamura H. Immobilization of peroxidase with a Bombyx mori silk fibroin membrane and its application to biophotosensors[J].Journal of Biotechnology,1989,10(2): 113~119.
    [95] Slotta U, Tammer M, Kremer F, Koelsch P and Scheibel T. Structural analysis of spider silk films[J].Supramolecular Chemistry,2006,18: 465~471.
    [96] Junghans F, Morawietz M, Conrad U, Scheibel T, Heilmann A and Spohn U. Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm[J].Applied Physics A-Materials Science and Processing,2006,82(2): 253~260.
    [97] Huang L.M, Wang H.T, Hayashi C.Y, Tian B.Z, Zhao D.Y and Yan Y.S. Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers[J].Journal of Materials Chemistry,2003,13(4):666~668.
    [98] Xu Q, Li J.B, Peng Q, Wu L.L and Li S.P. Novel and simple synthesis of hollow porous silica fibers with hierarchical structure using silk as template[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2006,127(2-3):212~217.
    [99] He J.H and Kunitake T. Preparation and thermal stability of gold nanoparticles in silk-templated porous filaments of titania and zirconia [J].Chemistry of Materials,2004,16(13):2656~2661.
    [100] Zhou Y, Chen W.X, Itoh H, Naka K, Ni Q.Q and Yamane H et al. Preparation of a novel core-shell nanostructured gold colloid-silk fibroin bioconjugate by the protein in situ redox technique at room temperature[J].Chemical Communications ,2001,(23):2518~2519.
    [101] Putthanarat S, Eby R.K, Naik R.R, Juhl S.B, Walker M.A and Peterman E et al. Nonlinear optical transmission of silk/green fluorescent protein (GFP) films[J].Polymer,2004,45(25):8451~8457.
    [102] Carey P.R, Fast P, Kaplan H, Pozsgay M. Molecular structure of the protein crystal from Bacillus thuringiensis: a Raman spectroscopic study[J].Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1986,872(3):169~176.
    [103] Wang H, Zhang Y, Shao H and Hu X. Electrospun ultra-fine silk fibroin fibers from aqueous solutions[J]. Journal of Materials Science,2005,40 (20):5359~5363.
    [104] Gulrajani M.L, Gupta S.V, Gupta A and Suri M. Degumming of silk with different protease enzymes[J]. Indian Journal of Fibre and Textile Research,1996,21: 270~275.
    [105] Hino T, Tanimoto M and Shimabayashi S. Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere[J].Journal of Colloid and Interface Science,2003,266(1):68~73.
    [106] Nam J and Park Y.H. Morphology of regenerated silk fibroin: effects of freezing temperature, alcohol addition, and molecular weight[J]. Journal of Applied Polymer Science,2001,81(12): 3008~3021.
    [107] Srinivasan Damodaran. Amino acids, peptides, and proteins in food chemistry[M]. New York: Marcel Dekker, 2001, 385.
    [108] Hajime Mori, Masuhiro Tsukada. New silk protein: modification of silk protein by gene engineering for production of biomaterials. Reviews in Molecular Biotechnology [J],2000,7 4:95~103.
    [109] Marcelo CL, Kim YG, Kaine JL. Specialization and proliferation of primary keratinocyte cultures. Evidence of a functioning in vitro epidermal cell systerm [J] 1978,79:356~361.
    [110] M. Tsukada,Y. Gotoh,G Freddi,M .Matsumura, H .Shiozaki and H.Ishikawa.J.Appl. Polym.Sci.,1992, 44:2203.
    [111]殷福珊,金秀蓉,刘学民,剂再超,求教峰.新型脂肪醇胺化催化剂的开发[J].无锡轻工大学学报,1995,14(1)57~61.
    [112]赵国玺.表面活性剂物理化学[M].北京,北京大学出版社,1984,P80.
    [113]赵国玺.表面活性剂物理化学[M].北京,北京大学出版社,1991,P86.
    [114] GB/T 11276-2007,表面活性剂临界胶束浓度的测定[S].北京:中国标准出版社,2008.
    [115] GB/T 7462-1994,表面活性剂发泡力的测定改进Ross-Miles法[S].北京:中国标准出版社,1995.
    [116] GB/T 11983-2008,表面活性剂润湿力的测定浸没法[S].北京:中国标准出版社,2009.
    [117] GB/T 13174-2008,衣料用洗涤剂去污力及循环洗涤性能的测定[S].北京:中国标准出版社,2009.
    [118] McBain JW, Martin J T. Chem Soc[J], 1914, 105:957.
    [119] McBain J W, Salmon C S. J Am Chem Soc[J], 1920, 43:426.
    [120]孙崇荣.蛋白质分子基础[M].北京,高等教育出版设, 1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700