用户名: 密码: 验证码:
由苯丙氨酸衍生物凝胶剂形成的超分子有机凝胶及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由凝胶因子(Gelator)形成的有机小分子凝胶日益引起人们的关注。这些凝胶因子在分子结构上的共同特点是具有可形成氢键、π-π堆积、配位键等非共价作用的位点,在一定的介质中,凝胶因子分子之间在这些非共价力的作用下自发地聚集、组装成有序的纤维结构,这些纤维能进一步形成缠结的三维网络结构,从而将溶剂小分子锁定在三维网络结构中。由于其性质具有介于固、液体之间这一特性,被广泛应用在催化、纳米材料的模板、药物分子的控制释放载体、手性分离等领域。
     本文合成了N-十八烷基-N'-马来酰基-L-苯丙氨酸(ODMA-L-Phe)凝胶因子,对其在有机溶剂中凝胶化性能及自组装机理进行了研究。合成了N-十八烷基丁二酸(ODSA)凝胶因子,并研究了其在可聚合溶剂中的自组装性能。合成了N-十八烷基-N'-丁二酰基-L-丙氨酸(ODSA-L-Ala)、N-十八烷基-N'-马来酰基-L-丙氨酸-N”-偶氮苯(ODSA-L-Ala-AZ)、N-十八烷基-N'-丁二酰基-L-苯丙氨酸(ODSA-L-Phe)凝胶因子,并对它们在有机溶剂中的凝胶性能进行了研究。合成了N-十八烷基马来酸(ODMA)可聚合凝胶因子,利用其在可聚合有机溶剂中的自组装,原位UV固化制备了胆固醇分子印迹聚合物,并考察了其对胆固醇的吸附性能。本论文包括以下主要内容:
     (1)由BOC-L-苯丙氨酸、十八胺和马来酸酐为原料,分别经缩合、去保护和酰胺化反应得到N-十八烷基-N'-马来酰基-L-苯丙氨酸可聚合凝胶因子(ODSA-L-Phe)。利用场发射扫描电镜(FE-SEM)、偏光显微镜(POM)对该凝胶因子在溶剂中自组装聚集体形态进行了表征。利用~1H-NMR及园二色谱(CD)对ODSA-L-Phe在有机溶剂中自组装机理进行了研究。
     (2)以丁二酸酐、十八胺为原料合成了N-十八烷基丙胺酸(ODSA)凝胶因子。对凝胶因子在可聚合溶剂中的凝胶性能进行了测试。利用偏光显微镜(POM)表征了该凝胶因子在有机溶剂中的聚集形态。并用先凝胶,再在常温下VU聚合的方法制备了苯乙烯-甲基丙烯酸甲酯的共聚物。
     (3)合成了N-十八烷基-N′-丁二酰基-L-丙氨酸(ODSA-L-Ala)、N-十八烷基-N′-丁二酰基-L-丙氨酸-N”-偶氮苯(ODSA-L-Ala-AZ)、N-十八烷基-N'-丁二酰基-L-苯丙氨酸(ODSA-L-Phe)凝胶因子系列凝胶因子,并对它们在有机溶剂中的凝胶性能进行了研究。
     (4)合成了分子结构中带有双键的N-十八烷基马来酸(ODMA)可聚合凝胶因子。利用该凝胶因子能够在可聚合溶剂,如甲基丙烯酸-β-羟乙酯(HEMA)、甲基丙烯酸(MAA)和二甲基丙烯酸聚乙二醇(200)酯(PEG200DMA)及其混合溶剂中自组装形成稳定的超分子有机凝胶,以3-胆固醇酰氧基-丙酸作为模板分子,在常温下将该凝胶进行原位UV光聚合制备胆固醇分子印迹聚合物。并进一步对该印迹聚合物对胆固醇的吸附进行了研究。
In recent years,supramolecular hydrogels formed by the self-assembly of gelator have received wide interests because of their potential application.Gel aggregates are formed in solvents through intermolecular hydrogen bonding,π-πstacking and other non-covalent bond interations and turn them into macromolecular gel,then solvent molecules are trapped into three-dimension network.Gelators could be applied on catalyzer, nanomaterials,drug carriers and other fields because of its properties between the liquids and solids.
     In this paper,several gelators were synthesized,including chrial gelator N-octadecyl-N'-maleoyl-L-phenylalanine(ODMA-L-Phe),polymerizable gelator N-octadecyl maleamic acid(ODMA),gelator N-octadecyl succinic acid(ODSA) and series of gelators based on Phenylalanine or Analine.The mechanism of ODMA-L-Phe self-assembly in organic solvents was investigated using ~1H-NMR and Circular Dichroism (CD).Preparation of cholesteryl-molecular imprinted polymer using ODMA and the adsorption experiments of cholesterol were carded out.The properties of ODSA self-assembly in polymerizable solvents were investigated.The gel properties of the other gelators were characterized also.
     This paper are consisted of several sections as the following:
     (1)N-octadecyl-N'-maleoyl-L-phenylalanine(ODMA-L-Phe) was synthesized through the condensation,deprotection and acidylation reaction of BOC-L-phenylalanine, octadecylamine and maleic anhydride.ODMA-L-Phe can self-assemble in some organic solvents and turned them into thermally reversible physical supramolecular organogels. The morphology of ODMA-L-Phe aggregates was characterized by polarized optical microscopy(POM) and field emission scanning electron microscope(FE-SEM).The mechanism of ODMA-L-Phe self-assembly in organic solvents was investigated using ~1H-NMR and Circular Dichroism(CD).The results indicated that hydrogen bonding was one of the main driving forces for the self-assembly of ODMA-L-Phe.
     (2)Gelator N-octadecyl succinic acid(ODSA) was synthesized from succinic anhydride and octadecylamine by the ring-open reaction.The gel properities of ODSA in several polylymerizable solvents were investigated.The ODSA self-assemble into fibres aggregates in the polymerizable monomer such as styrene,Methyl acrylate,Buthyl acrylate et.al..The morphology of gel aggregates was investigated using POM.
     (3)Gelators N-octadecyl-N'-succinic-L-alanine(ODSA-L-Ala),N-octadecyl-N' -succinic -L-alanine-p-aminoazobenzene(ODSA-L-Ala-AZ)and N-octadecyl-N'- succinic -L-alanine(ODSA-L-Phe) were synthesized base on BOC-L-phenylalanine and BOC-L-alanine.The gel properities were investigated in some organic solvents. Suprahydrogel aggregrates were characterized using POM.
     (4)Polymerizable gelator N-octadecyl maleamic acid(ODMA) could self-assemble in polymerizable solvent mixture ofβ-hydroxyethyl methacrylate(HEMA),methylacrylic acid(MAA),polyethylene glycol dimethacrylates-200(PEGDMA-200) in the presence of template molecule 3-Cholesteryloxycarbonylbonylpropanoic Acid(COPA),and turned them into thermally reversible stable polymerizable organogels.Organogels were polymerized by in situ UV irradiation and the molecular-imprinting polymers(MIPs) were obtained after removal of the template molecules from polymer through ethanol extracting. Polarized optical microscopy(POM) and field emission scanning electric microscopy (FE-SEM) indicated the aggregates of ODMA were tree branch-like and sheet-like in organogels.The adsorption experiments of cholesterol exhibited that the adsorption equilibrium amount of cholesterol reached 30.2mg/g.The adsorption efficiency of MIPs was found to be dependent on the concentration of the gelator ODMA and template molecule COPA in organogel.
引文
[1]Gu W Q,Lu L D,Chapman G B,Weiss R G.Polymerized gels and "reverse aerogels" from methyl methacrylate or styrene and tetraoctadecylammonium bromide as gelator.J.Chem.Soc.Chem.Commun,1997,6:543-544
    [2]Terech P,Weiss R G.Low molecular mass gelators of organic liquids and the properties of their gels.Chem.Rev,1997,97:3133-3159
    [3]Terech P.Small-angle-scattering study of 12-hydroystearic physical organogels and lubricating greases.Colloid Polym.Sci,1991,269:490-500
    [4]Brotin T,Utermohlen R,Fages F,et al.A novel small molecular luminescent gelling agent for alcohols.J.Chem.Soc.Chem.Commun,1991,416-418
    [5]Brotin T,Desvergne J P,Fages F,et al.Tunable photoresponsive supramolecular systems.Photochem.Photobiol.1992,55:349
    [6]Campbell J,Kuzma M,Labes M.Low molecular weight gelators for organic solvents.Mol.Cryst.Liq.Cryst.1983,95:45-57
    [7]Kamiyama T,Yasuda Y,Shirota Y.A novel family of low-molecular-weight organic gels.Polym.J.1999,31:1165-1170
    [8]Hanabusa K,Okui K,Karaki K,et al.A small molecular gelling agent for organic liquids:N-benzyloxycarbonyl-L-alanine 4-hexadecanoyl-2-nitrophenyl ester.J.Chem.Soc.Chem.Commun,1992,18:1371-1373
    [9]Hanabusa K,Tange J,Taguchi Y,Koyama T,Shirai H.Small molecular gelling agents to harden organic liquids:alkylamide of N-benzyloxycarbonyl-L-valyl-L-valine.J.Chem.Soc.,Chem.Commun,1993,4:390-392
    [10]Hanabusa K,Naka Y,Koyama T,et al.Gelling agents to harden organic fluids:oligomers of α-amino acids.J.Chem.Soc.Chem.Commun,1994,23:2683-2684
    [11]Hanabusa K,Matsumoto Y,Miki T,et al.Cyclo(dipeptide)s as low-molecular-mass gellingagents to harden organic fluids. J. Chem. Soc. Chem. Commun, 1994, 11: 1401-1402
    [12] De Vries E J, Kellogg R M. Small depsipeptides as solvent gelators. J. Chem. Soc, Chem. Commun, 1993, 3: 238-240
    [13] Lu L, Weiss R G New lyotropic phases (thermally-reversible organogels) of simple tertiary amines and related tertiary and quaternary ammonium halide salts. J. Chem. Soc. Chem. Commun. 1996, 17: 2029-2030
    [14] Van Esch J, Kellogg R M, Feringa B L. Di-urea compounds as gelators for organic solvents. Tetradron Lett, 1997, 38: 281-284
    [15] Carr A J, Melendez R, Geib S J, Hamilton A D. The design of organic gelators: solution and solid state properties of a family of bis-ureas. Tetradron Lett, 1998, 39: 7447-7450
    [16] Van Esch J H, Feyter D S, Kellogg R M, et al. Self-assembly of bisurea compounds in organic solvents and on solid substrates. Chem. Eur. J, 1997, 3: 1238-1243
    [17] Klyne W. The Chemistry of Steroids[J]. New York: Willey, 1996
    [18] Ramasseul R, Maldivi P, Marchon J C. New organic gelators bearing a porphyrin group: A new strategy to create ordered porphyrin assemblies. Liquid Crystals, 1993, 13:729-734
    [19] De Rango C, Charpin P, Navaza J, Keller N, Nicolis I, Villain F, Coleman A W. β-Cyclodextrin/pyridine gel systems. The crystal structure of a first β-cyclodextrin-pyridine-water compound. J. Am. Chem. Soc, 1992, 114: 5475-5479
    [20] De Loos M, van Esch J, Stokroos I, Kellogg R M, Feringa B L. Remarkable stabilization of self-assembled organogels by polymerization. J. Am. Chem. Soc, 1992, 119: 12675-12676
    [21] Inoue K, Ono Y, Kanekiyo Y, Hanabusa K, Shinkai S. Preparation of new robust organic gels by in situ cross-link of a bis(diacetylene) gelator. Chem. Lett, 1999, 329: 429-430
    [22] Masuda M, Hanada T, Yase K, Shimizu T. Polymerizaton of bolaform butadiyne 1-glucosamide in self-assembled nanoscale-fiber morphology. Macromol, 1998, 31: 9403-9405
    [23] Israelachvili J N, Intermolecular and surface forces, 3rd ed.; Academic Press: London, 1992, 341-435
    
    [24] Eicke H F. Topics in Current chemistry; Springer-Verlag: Berlin, 1980, 87: 91
    [25] Bourrel M, Schechter, R S. Surfactant Science Series; Dekker, M.: New York, 1988; Vol.30: 111
    [26] Porte G, Appell J. Growth and Size Distributions of Cetylpyridinium Bromide Micelles In High Ionic Strength Aqueous Solutions. J. Phys. Chem. 1981, 85:2511-2519
    [27] Wang C, Zhang D, Zhu D. A Chiral Low-Molecular-Weight Gelator Based on Binaphthalene with Two Urea Moieties: Modulation of the CD Spectrum after Gel Formation. Langmuir 2007, 23:1478-1482
    [28] Roy S, Dasgupta A, Das P K. Alkyl Chain Length Dependent Hydrogelation of L-Tryptophan- Based Amphiphile. Langmuir. 2007, 23(23); 11769-11776
    [29] Jang W D, Aida T. Dendritic Physical Gels: Structural Parameters for Gelation with Peptide-Core Dendrimers. Macromolecules. 2003,36: 8461-8469
    [30] Xing B, Yu C W, Chow K H, Ho P L, Fu D, Xu B. Hydrophobic Interaction and Hydrogen Bonding Cooperatively Confer a Vancomycin Hydrogel: A Potential Candidate for Biomaterials J. AM. CHEM. SOC. 2002, 124: 14846-14847
    [31] Escuder B, Marti S, Miravet J F. Organogel Formation by Coaggregation of Adaptable Amidocarbamates and Their Tetraamide Analogues. Langmuir, 2005, 21: 6776-6787
    [32] Zhu G, Dordick J S. Solvent Effect on Organogel Formation by Low Molecular Weight Molecules. Chem. Mater. 2006, 18: 5988-5995
    [33] Ferry J D .Viscoelastic Properties of Polymers.Wiley:New York,1980
    [34] Almdal K Dyre J,Hvidt S,Kramer O. Polym.Gels Networks 1993,1:5-10
    
    [35] Wessling B. Dissipative structure formation in colloidal systems. Adv. Mater. 1993, 5 (4): 300-305
    [36] Eldridge J E, Ferry J D. The Hydrogen Bond in Boehmite. J. Phys. Chem. 1954 , 58: 992-994
    [37] Fu X, Yang Y., Wang N, Wang H, Yang Y. A novel chiral separation material: polymerized organogel formed by chiral gelators for the separation of D- and L-phenylalanine. J. Mol. Recognit. 2007, 20, 238-244
    [38] Bhattacharya S N, Acharya G Impressive Gelation in Organic Solvents by Synthetic, Low Molecular Mass, Self-Organizing Urethane Amides of L-Phenylalanine. Chem. Mater. 1999, 11:3121-3132
    [39] Motulskya A, Lafleurb M, Hoaraua A, Hoarauc D et al. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants. Biomaterials. 2005, 26: 6242-6253
    [40] Hirst A R, Smith D K, Feiters M C, Geurts Huub P M. Two-component dendritic gel: effect of stereochemistry on the supramolecular chiral assembly. Chem. Eur. J. 2004, 10:5901-5910
    [41] Suzuki M, Yumoto M, Kimura M, Shirai H, Hanabusa K. A family of low-molecular-weight hydrogelators based on L-lysine derivatives with a positively charged terminal group. Chem. Eur. J. 2003, 9: 348- 354
    [42] Li Y, Wang T, Liu M. Ultrasound induced formation of organogel from a glutamic dendron Tetrahedron. 2007, 63: 7468-7473
    [43] Suzuki O S, Kimura M, Kurose A, Shiraib H, Hanabusa K. Supramolecular hydrogels and organogels based on novel L-valine and L-isoleucine amphiphiles. Tetrahedron Letters. 2005, 46 : 303-306
    [44] Kveder M, Andreis M, Makarevic'J, Jokic' M, Rakvin B. EPR study of low molecular weight organogels by means of a nitroxide spin probe. Chemical Physics Letters. 2006, 420: 443-447
    [45] Heeres A, van der Pol C, Stuart M, Friggeri A, Feringa B L, van Esch J. Orthogonal self-assembly of low molecular weight hydrogelators and surfactants. J. Am. Chem. Soc, 2003, 125: 14252-14253
    [46] Ji Y, Luo Y F, Jia X R, Chen E Q, et al. A dendron based on natural amino acids: synthesis and behavior as an organogelator and lyotropic liquid crystal. Angew. Chem. Int. Ed. 2005, 44: 6025-6029
    [47] Das D, Dasgupta A, Roy S, Mitra R N, Debnath S, Das P K. Water gelation of an amino acid-based amphiphile. Chem. Eur. J. 2006, 23, 5068-5074
    
    [48] Si C, Huang Z, Kilic S, Xu J,. Enick R M, Beckman E J, Carr A J, Melendez R E, Hamilton A D. The Gelation of CO_2: A Sustainable Route to the Creation of Microcellular Materials. Science. 1999, 286, 1540-1543
    [49] Placin F, Desvergne J P, Cansell F. Organic low molecular weight aerogel formed in supercritical fluids J. Mater. Chem. 2000, 10: 2147 - 2149
    [50] Osada Y, Gong J P. Soft and Wet Materials: Polymer Gels Adv. Mater. 1998, 10: 827 - 837
    [51] Clark C G, Wooley K L. Polymerization of organized polymer assemblies, Colloid Interface Sci. 1999, 4: 122-129
    [52] Hanabusa K, Itoh A, Kimura M, Shirai H. Terephthaloyl Derivatives as New Gelators; Excellent Gelation Ability and Remarkable Increase of Gel Strength by Adding Polymers, Chem. Lett. 1999, 767-768
    [53] Beginn U, Zipp G, Moller M. Synthesis and Characterization of Tris-Methacrylated 3,4, 5-Tris[(alkoxy)benzyloxy]benzoate Derivatives, Chem. Eur. J. 2000, 6: 2016-2023
    [54] Beginn U, Zipp G, Moller M. Self-organization of liquid crystalline 3,4,5-tris[(11-methacryloyl-undecyl-1-oxy)-4-benzyloxy]benzoates in low-shrinkage methacrylate mixtures. J. Polym. Sci. Part A .2000: 38, 631-640
    [55]Tamaoki N,Shimada S,Okada Y.A.Belaissaoui,G.Kruk,K.Yase,H.Matsuda,Polymerization of a Diacetylene Dicholesteryl Ester Having Two Urethanes in Organic Gel States.Langmuir 2000,16:7545-7547
    [56]Masuda M,Hanada T,Okada Y,Yase K,Shimizu T.Polymerization in Nanometer-Sized Fibers:Molecular Packing Order and Polymerizability.Macromolecules 2000,33,9233-9238
    [57]黎坚,崔文瑾,王理,杨亚江,可聚合凝胶因子的合成及其有机凝胶热力学研究.有机化学 2002,22:651-657
    [58]Wang G,Hamilton A D.Synthesis and Self-Assembling Properties of Polymerizable Organogelators.Chem.Eur.2002,8:1954-1961
    [59]Esch J,Schoonbeek F,Loos M,Kooijman H.Spek A L,Kellogg R M,Feringa B L.Cyclic Bis-Urea Compounds as Gelators for Organic Solvents.Chem.Eur.1999,5:937-950.
    [60]Carr A J,Melendez R E,Geib S J,Hamilton A D.The design of organic gelators:Solution and solid state properties of a family of bis-ureas.Tetrahedron Lett.1998,39:7447-7450
    [61]Schoonbeek F S,Esch J H,Hulst R,Kellogg R M,Feringa B L.Geminal bis-ureas as gelators for organic solvents:gelation properties and structural studies in solution and in the gel state.Chem.Eur.2000,6:2633-2643
    [62]Estroff L A,Hamilton A D,Molecular Gels:Materials with Self-assembled Fibrillar Networks.Angew.Chem.2000,112:3589-3592
    [63]Rozner S,Kolusheva S,Cohen Z,Dowhan W,Eichler J,Jelinek R.Detection and analysis of membrane interactions by a biomimetic colorimetric lipid/polydiacetylene assay.Anal Biochem.2003,319:96-104
    [64]Okada S,Peng S,Spevak W,Charych,D.Color change of polymerized diacetylenes.Acc.Chem.Res.1998,31:229-239
    [65]Ouyang X,Fowler F W,Lauher J W.Single-Crystal-to-Single-Crystal Topochemical Polymerizations of a Terminal Diacetylene: Two Remarkable Transformations Give the Same Conjugated Polymer. J. Am. Chem. Soc. 2003, 125: 12400-12401
    [66] Tachibana H, Kumai R, Hosaka N, Tokura Y. Crystal Structures, Polymerization, and Thermochromic Phase Changes in Urethane-Substituted Diacetylenes Crystals with Varying Alkyl Chain Lengths. Chem. Mater. 2001,13: 155-158
    [67] Barentsen H M, Dijk M, Zuilhof H, Sudho¨lter E J R. Thermal and Photoinduced Polymerization of Thin Diacetylene Films. 1. Phthalimido-Substituted Diacetylenes. Macromolecules. 2000, 33: 766-774
    [68] Mosley D W, Sellmyer M A, Daida E J, Jacobson J M. Polymerization of Diacetylenes by Hydrogen Bond Templated Adlayer Formation. J. Am. Chem. Soc. 2003, 125: 10532-10533
    [69] Ma G, Cheng Q. Vesicular polydiacetylene sensor for colorimetric signaling of bacterial pore-forming toxin. Langmuir 2005, 21: 6123-6126
    [70] Kolusheva S, Shahal T, Jelinek R. Cation-Selective Color Sensors Composed of Ionophore-Phospholipid-Polydiacetylene Mixed Vesicles. J. Am. Chem. Soc. 2000, 122:776-780
    [71] Sarkar A, Okada S, Matsuzawa H, Matsuda H, Nakanishi H. Novel polydiacetylenes for optical materials: beyond the conventional polydiacetylenes. J. Mater. Chem. 2000,819-828
    [72] Lu Y, Yang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns A R, Sasaki D Y, Shelnutt J, Brinker C J. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 2001, 410: 913-917
    [73] Charych D, Nagy J,Spevak W, Bednarski M. Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly .Science. 1993, 261: 585-588
    [74] Gill I, Ballesteros A. Immunoglobulin-Polydiacetylene Sol-Gel Nanocomposites as Solid-State Chromatic Biosensors. Angew. Chem., Int. Ed. 2003, 42: 3264-3267
    [75] Tamaoki N, Shimada S, Okada Y, Belaissaoui A, Kruk G, Yase K, Matsuda H. Polymerization of a Diacetylene Dicholesteryl Ester Having Two Urethanes in Organic Gel States. Langmuir 2000,16, 7545-7547
    [76] Nagasawa J, Kudo M, Tamaoki N. Organogelation of diacetylene cholesteryl esters having two urethane linkages and their photopolymerization in the gel state. Langmuir. 2004, 20: 7907-7916
    [77] Masuda M, Hanada Y, Yase K, Shimizu T. Polymerization of Bolaform Butadiyne 1-Glucosamide in Self-Assembled Nanoscale-Fiber Morphology. Macromolecules. 1998,31: 9403-9405
    [78] Markowitz M, Singh A, Chang E L. Formation and properties of a network gel formed from mixtures of diacetylenic and short-chain phosphocholine lipids. Biochem. Biophys. Res. Commun. 1994,203: 396-305
    [79] Wang G, Hollingsworth R I. Offsetting the Tubule-Forming Tendency of Chiral Diacetylene-Containing Lipids: Planar Strips, Ribbons, and Liposomes from a Diacetylenic Lipid Analog of a Thermophilic Bacterium. AdV. Mater. 2000, 12: 871-874
    [80] George M, Weiss R G. Low Molecular-Mass Gelators with Diyne Functional Groups and Their Unpolymerized and Polymerized Gel Assemblies. Chem. Mater. 2003, 15: 2879-2888
    [81] Aoki K, Kudo M, Tamaoki N. Novel Odd/Even Effect of AlkyleneChain Length on the Photopolymerizability of Organogelators. Org. Lett., 2004, 22: 4009-4012
    [82] Cantow H. J. Polydiacetylenes. Springer-Verlag: Berlin, 1984
    [83] Nie X, Wang G. Synthesis and Self-Assembling Properties of Diacetylene-Containing Glycolipids 7. Org. Chem. 2006, 71: 4734-4741
    [84] Fujita N, Sakamoto Y, Shirakawa M, Ojima M, Fujii A, Ozaki M, Shinkai Seiji. Polydiacetylene Nanofibers Created in Low-Molecular-Weight Gels by Post Modification: Control of Blue and Red Phases by the Odd-Even Effect in Alkyl Chains. J. Am. Chem. Soc. 2007, 129: 4134-4135
    [85] Shirakawa M, Fujita N, Shinkai S. A Stable Single Piece of Unimolecularly (?)-Stacked Porphyrin Aggregate in a Thixotropic Low Molecular Weight Gel: A One-Dimensional Molecular Template for Polydiacetylene Wiring up to Several Tens of Micrometers in Length. J. Am. Chem. Soc. 2005, 127: 4164-4165
    [86] George M, Luo C, Wang C, Carretti E, Dei L, Weiss R G. Chemically and Physically Induced (Reversible) Gelation of Organic Liquids by Monomeric and Polymeric Gelators. Macromol Symp. 2005, 227: 173-182
    [87] 姜忠义,吴宏. 分子印迹技术. 北京: 化学工业出版社),2003: 1
    [88] Pauling L. A Theory of the Structure and Process of Formation of Autibodies. J Am Chem Soc, 1940, 62 (3): 2643-2657
    [89] Wulff G, Sarhan A, Zabrocki K. Enzyme-analogue Built Polymers and Their Use for the Resolution of Racemates[J]. Tetrahedron Lett, 1973,44: 4329-4332
    [90] Vlatakis G, Andersson L I, MullerR, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature, 1993, 361 : 645-647
    [91] Kempe M, Mosbach K. Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases. J. Chromatography A. 1995 ,691 (2) : 317-323
    
    [92] Mosbach K, Ramst rom O. J . Biotechnology. 1996 , 14 : 163-170
    [93] Whitcombe M J ,Rodriguez M E ,Villar P ,Vulf son E N. A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol. J . Am Chem. Soc. 1995, 117:7105-7111
    
    [94] Piletsky S A, Piletskaya E V, Yano K, et al. Anal Lett, 1996, 29(2): 157-159
    [95] Yilmaz E, Haupt K,Mosbach K. The Use of Immobilized Templates - A New Approach in Molecular Imprinting. [J].Angew Chem Int Ed Engl, 2000, 39:2115-2118
    [96]胡树国,李礼,何锡文.一种高选择性固相萃取吸附剂--分子印迹聚合物.化学进展.2005,17(3):531-543
    [97]Sellergren B.Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer.Anal Chem.1994,66:1578-1582
    [98]Bhim B P,Shouri B.Preparation,characterization and performance of a silica gel bonded molecularly imprinted polymer for selective recognition and enrichment of β-lactam antibiotics.[J].Reactive & Functional Polymers,2003,55:159-169
    [99]Mullett W M,P.Martin.In-Tube Molecularly Imprinted Polymer Solid-Phase Microextraction for the Selective Determination of Propranolol.[J].Anal Chem,2001,73:2383-2387
    [100]Koster E H M,Crescenzi C,Hoedt W D,Ensing K,et al.Fibers Coated with Molecularly Imprinted Polymers for Solid-Phase Microextraction。[J].Anal Chem,2001,73:3140-3145
    [101]李礼,胡树国,何锡文等.应用分子印迹-固相萃取法提取中药活性成分非瑟酮.高等学校化学学报.2006,27(4):608-611
    [102]向海艳,周春山.白藜芦醇分子印迹聚合物合成及其对中药虎杖提取液活性成分的分离[J].应用化学.2005,22(7):740-742
    [103]怀其勇;杨俊佼;雷荣;左育民.用于分子识别的分子印迹聚合物固定相.分析测试学报.2001,20(6):841-846
    [104]刘志航,浣石,蒋国平等.分子印迹聚合物应用研究进展.科技导报.2006,24(1):51-54
    [105]Wulff G,Heide B,Helfmeier G Molecular Recognition through the Exact Placement of Functional Groups on Rigid Matrices via a Template Approach.J.Am Chem Soc.1986,108:1089-1091
    [106]Petcu M,Cooney J,Cook C,Lauren D,Schaare P,Holland P.Molecular imprinting of a small substituted phenol of biological importance.J.Analytica Chimica Acta. 2001,435 :49-55
    [107] Yoshikawa M, Shimada A. Novel polymeric membranes having chiral recognition sites from tripeptide derivatives. Analyst. 2001,126 : 775-780
    [108] Uibricht M, Oechela L, Ehmann C, et al. Gas-phase photoinduced graft polymerization of acrylic acid onto polyacrylonitrile ultrafiltration membranes. Applied Polymer Science. 1995, 55 (13): 1707-1723
    [109] Lehmann M, Brmnner H, Tover G E M. Molekular gepragte Nanopartikelals selektive Phase in Kompositmembranen: Hydrodynamik und Stofftrennung in nanoskaligen Schuttungen. J . Chemie Ingenieur Technik. 2003 ,75 (122): 149-153
    [110] Davidson L, Hayes W. Molecular imprinting of biologically active steroidal systems. Curr. Org. Chem. 2002, 6:265-281
    [111] Chad C H, Mathew J B, William H B, Randall S H, Mandeville W H, Petersen J S, Polomoscanik S C, Sacchiro R J, Chen X, Dhal PK. Novel Cholesterol Lowering Polymeric Drugs Obtained by Molecular Imprinting. Macromolecules. 2001, 34:1548-1550
    [112] Grundy S M. In Drug Treatment of Hyperlipidemia; Rifkind, B. M., Ed.; Marcel Dekker: New York, 1991; p 139
    [113] Spizzirri U G, Peppas N A. Structural Analysis and Diffusional Behavior of Molecularly Imprinted Polymer Networks for Cholesterol Recognition. Chem. Mater. 2005, 17: 6719-6727
    [114] Whitcombe M J, Rodriguez M E, Villar P, Vulfson E N. A New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol. J. Am. Chem. Soc. 1995, 117: 7105-7111
    [115] Hwang C C, Lee W C. Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and non-covalent imprinting methods. Journal of Chromatography A. 2002, 962: 69-78
    [116] Sreenivasan K. Effect of the Type of Monomers of Molecularly Imprinted Polymers on the Interaction with Steroids. Journal of Applied Polymer Science. 1998, 68: 1863-1866
    [117] Zhong N, Byun H S, Bittman R. Hydrophilic cholesterol-binding molecular imprinted polymers .Tetrahedron Letters. 2001,42:1839-1841
    [118] Pe'rez N, Whitcombe M J, Vulfson E N. Molecularly Imprinted Nanoparticles Prepared by Core-Shell Emulsion Polymerization. J. Applied Polymer Science. 2000, 77:1851-1859
    [119] Boonpangrak S, Whitcombe M J, Prachayasittikul V, Mosbacha K, Ye L. Preparation of molecularly imprinted polymers using nitroxide-mediated living radical polymerization. Biosensors and Bioelectronics. 2006, 22: 349-354
    [120] Spizzirri U G, Peppas N A. Structural Analysis and Diffusional Behavior of Molecularly, Imprinted Polymer Networks for Cholesterol Recognition. Chem. Mater. 2005, 17: 6719-6727
    [121] Sreenivasan K. Imparting Cholesterol Recognition Sites in Radiation Polymerised Poly(2-hydroxyethyl methacrylate) by Molecular Imprinting. Polymer International. 1997,42: 169-172
    [122] Pe' rez N, Whitcombe M J, Vulfson E N. Surface Imprinting of Cholesterol on Submicrometer Core-Shell Emulsion Particles. Macromolecules 2001, 34: 830-836
    [123] Gore M A, Karmalkar R N, Kulkarni M G Enhanced capacities and selectivities for cholesterol in aqueous media by molecular imprinting: role of novel cross-linkers. Journal of Chromatography B. 2004, 804:211-221
    [124] Simon F X, Khelfallah N S, Schmutz M, Diaz N, Me'sini P J. Formation of Helical Mesopores in Organic Polymer Matrices. J. Am. Chem. Soc. 2007, 129: 3788-3789
    [125] Suzuki M, Nakajima Y, Yumoto M, Kimura M, Shirai H, Hanabusa K. Effects of Hydrogen Bonding and van der Waals Interactions on Organogelation Using Designed Low-Molecular-Weight Gelators and Gel Formation at Room Temperature. Langmuir. 2003,19, 8622-8624
    [126] Jung J H, Ono Y, Shinkai S. Sol-gel polycondensation in a cyclohexane based organogel creation of both right-and left-handed silica structures by helical organogel fibers. Chem. Eur. J, 2000, 6: 4552-4557
    [127] Kimura M, Kobayashi S, Kuroda T, Hamabusa K. Assembly of gold nanoparticles into fibrous aggregates using thiol-terminated gelators. Adv. Mater. 2004, 16: 335-339
    [128] Maji S K, Malik S, Michael G B, Drew M G B, Arunk N, Arindam B. Synthetic tripeptide as a novel organogelator: A structural investigation. Tetrahedron Lett. 2003, 44:4103-4107
    [129] Jung J H, Lee S H, Shin J. Creation of Double silica Nanotubes by using crown-appended cholesterol Nanotubes. Chem. Eur. J, 2003, 9: 5307-5331
    [130] Koumura N, Kudo M, Tamaoki N. Photocontrolled gel-to sol-gel phase transitioning of metal-substituted azobenze bisurethanes through the breaking and reform ing of hydrogon bonds. Langmuir. 2004, 20: 9897-9900
    [131] Gronwald O, Shinkai S. Sugar-integrated gelators of organic solvents. J Chem. Eur. 2001, 7: 4328-4334
    [132] Jung J H, John G, Masuda M, Yoshida K, Shinka S, Shimizu T. Self-assembly of a sugar-based gelator in water: Its remarkable diversity in gelation ability and aggregate structure. Langmuir. 2001, 17: 7229-7232
    [133] Suzuki M, Sato T, Kurose A, Shirai H, Hanabusa K. New Low-molecular weight gelator based on L-valine and L-isoleucine with various terminal groups. Tetrahedron Lett. 2005, 46: 2741-2745
    [134] Hanabusa K, Okui K, Karaki K, Kimura M, Shirai H. Organogels Formed by N-Benzyloxycarbonyl-L-alanine 4-Hexadecanoyl-2-nitrophenyl Ester and Related Compounds, J. Colloid Interface Sci. 1997,195: 86-93
    [135] Tan H, Moet A, Hiltner A, Baer E. Thermoreversible Gelation of Atactic Polystyrene Solutions. Macromolecules. 1983,16: 28-34
    
    [136] Hirst A R, Smith D K. Solvent Effects on Supramolecular Gel-Phase Materials: Two-Component Dendritic Gel. Langmuir. 2004,20, 10851-10857
    
    [137] Kamlet M J, Abboud J L M, Abraham M H, Taft R W. Reaction of triflates with potassium diethyl phosphite. Formation of phosphate esters. J. Org.Chem. 1983, 48: 2877-2891
    [138] Suzuki M, Sato T, Kurose A, Shirai H, Hanabusa K. New low-molecular weight gelators based on 1-valine and 1-isoleucine with various terminal groups . Tetrahedron letters. 2005,46(18): 2741-2745
    
    [139] Fuhrhop J H, Helfrich W. Fluid and solid fibers made of lipid molecular bilayers. Chem. Rev. 1993, 93:1565-1582
    [140] Bhattacharya S, Ghanashyam A S N. Impressive Gelation in Organic Solvents by Synthetic, Low Molecular Mass, Self-Organizing Urethane Amides of L-Phenylalanine. Chem. Mater. 1999, 11: 3121-3132
    [141] Jan H. van Esch; Franck Schoonbeek; Maaike de Loos; Huub Kooijman; Anthony L. Spek; Richard M. Kellogg; Ben L. Feringa, Cyclic Bis-Urea Compounds as Gelators for Organic Solvents. Chem. Eur. J. 1999, 5(3), 937-950
    [142] Estroff L A, Hamilton A D. Water gelation by small organic molecules. Chem. Rev, 2004, 104: 1201-1218
    [143] Schmidt R, Adam F B., Michel M, Schmutz M, Decher G et al. New bisamides gelators: relationship between chemical structure and fiber morphology. Tetrahedron Letters. 2003, 44:3171-3174
    [144] Jung J H, Ono Y, Shrinkai S. Novel Silica Structure Which Are Prepared by Transcription of Various Superstructure Formed in Organogels. Langmuir. 2000, 16: 1643-1649.
    [145] Duncan D C, Whitten D G. Photoinduced Gelation by Stilbene Oxalyl Amide Compounds. Langmuir. 2000, 16: 6445-6452
    [146] Friggeria A, Feringab B L, Eschb J. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator Journal of Controlled Release. 2004, 97: 241-248
    [147] Kveder M, Andreis M, Makarevic J, Jokic M, Rakvin B. EPR study of low molecular weight organogels by means of a nitroxide spin probe. Chemical Physics Letters . 2006, 420: 443-447
    [148] Huang B, Hirst A R, Smith D K, Castelletto V, Hamley I W. A Direct Comparison of One- and Two-Component Dendritic Self-Assembled Materials: Elucidating Molecular Recognition Pathways. J. Am. Chem. Soc. 2005, 127: 7130-7139
    [149] U. Gianfranco Spizzirri, and Nicholas A. Peppas. Structural Analysis and Diffusional Behavior of Molecularly Imprinted Polymer Networks for Cholesterol Recognition Chem. Mater. 2005, 17: 6719-6727
    [150] Flores A, Cunliffe D, Whitcombe M J. Evgeny N. Vulfson, Imprinted polymers prepared by aqueous suspension polymerization. J. Appl. Polym. Sci. 2000, 77:1841-1850
    [151] Perez N, Whitcombe M J, Vulfson E N. Surface Imprinting of Cholesterol on Submicrometer Core-Shell Emulsion Particles. Macromolecules. 2001, 34: 830-836
    [152] Yavuza H, Karakoc V, T¨urkmen D, Say R, Denizli A. Synthesis of cholesterol imprinted polymeric particles. J. Biological Macromolecules. 2007, 41: 8-15
    [153] Yungerman I, Srebnik S. Factors Contributing to Binding-Site Imperfections in Imprinted Polymers. Chem. Mater. 2006, 18: 657-663
    [154] Simon F X, Khelfallah N S, Schmutz M, Diaz N, Me'sini P J. Formation of Helical Mesopores in Organic Polymer Matrices. J. Am. Chem. Soc. 2007, 129: 3788-3789
    [155] Abele S, Graillat C, Zicmanis A, Guyot A. Hemiesters and hemiamides of maleic and succinic acid: synthesis and application of surfactants in emulsion polymerization with styrene and butyl acrylate. Polym. Adv. Technol. 1999, 10: 301-310
    [156] Tan H, Moet A, Hiltner A, Baer E. Thermoreversible gelation of atactic polystyrene solutions. Macromolecules.1983,16, 28-34
    [157] Meng Y, Yang Y. Gelation of the organic liquid electrolytes and the conductivities as gel electrolytes. Electrochem. Commun. 2007, 9: 1428-1433
    [158] Watanabe Y, Miyasou T, Hayashi M. Diastereomixture and Racemate of myo-Inositol Derivatives, Stronger Organogelators than the Corresponding Homochiral Isomers. Org. Lett. 2004, 6: 1547-1550
    [159] Gore M A, Karmalker R N, Kulkarni M G Enhanced capacities and selectivities for cholesterol in aqueous media by molecular imprinting: role of novel cross-linkers, Journal of Chromatography B. 2004, 804:211-221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700