用户名: 密码: 验证码:
城市供水系统的优化调度与智能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市人口的快速增长和人民生活水平的不断提高,对城市供水系统的服务要求也越来越高,供水系统的规模在不断扩大,复杂性随之提高。城市供水系统是极其重要而复杂的网络系统,确保其安全可靠的运行和正确有效的管理具有重大意义。为了提高系统的社会效益和经济效益,采用现代化的技术手段、先进的控制理论来提高供水企业的生产水平和生产效率,运用现代化的管理理论、优化方法以及计算机技术对城市供水系统进行管理、监控、预测和优化调度都是势在必行的。论文对城市供水系统中管网预测、优化调度、智能控制以及大功率电机平稳切换等问题进行深入系统的研究和探讨。
     城市供水管网预测是优化调度的前提和基础。选取BP神经网络作为建模基础,研究探讨城市供水系统神经网络预报的原理和机制,阐述了建立基于BP网络的城市供水时序预测模型方法。分别以管网的节点压力、管道流量和用水负荷的过去某一历史时期数据纪录,建立基于BP神经网络的管网预测模型,对未来某一时段的节点压力、管道流量和用水负荷进行预测。运用BP神经网络对城市供水的变化规律进行识别的实质,就是通过选择适当的神经网络模型逼近实际系统的动态过程。人工神经网络模型在已有的历史数据的基础上,一旦通过学习识别出城市供水的变化规律,网络模型通过联想,就可以预报下一个时段的城市供水需求。
     从供水管网系统整体优化和最小供水费用的角度出发,建立了城市供水系统管网优化调度的数学模型。重点研究在用户节点压力已知条件下,复杂供水系统整体优化调度数学模型求解问题。对城市供水系统管网优化调度的遗传算法进行深入的研究,并给出了详细的求解步骤。文中还对某市供水系统的优化调度进行仿真研究,根据不同时段的各用户节点压力服务质量要求,采用MATLAB编写基于遗传算法的优化调度程序,对供水系统进行管网整体优化调度。采用优化调度程序进行生产调度可以节省运行费用。
     根据供水厂二级泵房的水泵机组生产调度特点,建立了水泵机组组合优化的数学模型,对水泵机组优化组合遗传算法进行了认真的研究和探讨。文中还结合某供水厂二级泵房机组情况,对水泵机组组合优
With the quickly increase of city population in our country, and with the gradually improvement of people life, the service of city water distribution systems are brought up higher and higher requests, the scale of city water distribution systems gradually expand and water distribution systems become much more complex. Due to importance and complexity of water distribution systems, it is important significance to ensure water distribution systems to safety work and effective management. In order to enhance economic benefits and society benefits of water distribution systems, it is necessary to improve production level and efficiency of water plants by using modern industry technology and advanced process control theory, and it is indispensable to realize water distribution systems optimal schedule, intelligence prediction, supervision and management by modern management theories, optimal methods automation and computer technology. In this dissertation pipe network prediction, optimal schedule, intelligence control and the steady switch of high power electromotor are deeply researched and discussed for water distribution systems.Water supply pipe network prediction is premise base of optimal schedule. As the foundation of establishing model, BP neural networks is selected to research and discuss the principles and mechanisms of neural networks water supply pipe network prediction, and the method is presented how to establish water supply time serial prediction model based on BP neural networks. On the ground of the history datum of node pressure, pipe flow, water charge of water distribution systems, water supply pipe network prediction model based on BP neural networks is respectively established, and node pressure, pipe flow, water charge in next period of time are predicted by their respective BP neural networks model. Making use artificial neural networks recognize principles of water supply is to select proper neural networks model to approach practical systems. Based on these history datum, once BP neural networks model recognize principles of water supply through study, water supply request next time would be predicted.
    Proceeding from view of overall optimum and minimum water cost for water distribution systems, mathematic model of optimum schedule is built for complex water distribution systems. Genetic algorithms for optimum schedule of complex water distribution systems are presented, then code regular, chromosome evaluation and genetic operation are deeply studied, furthermore solution steps for optimum schedule are given in detail. Matlab is adopted to write optimum control program based on genetic algorithms, and the program is applied to simulate production control for certain city water distribution systems. Simulation result shows that overall optimum solution is obtained when genetic algorithms are used to optimum schedule of complex water distribution systems, and that production by optimum schedule program contributes to economize water-supply cost.According to practical production characteristic of water supplying plant second grade stations, mathematic model is formulated about optimizing combination of pump units. On account of model optimal solution, the pump units optimizing combination genetic algorithm is presented, then code regular, chromosome evaluation and genetic operation are deeply studied and discussed. In terms of pump units condition of some water plant second grade stations, Simulation research is carried out about pump units combination optimization. It is indicated that optimizing scheduler of pump units with this mathematic model acquires much satisfying available values and great economic benefits.Aiming at characteristics of vvvf constant pressure water-supplying system such as multi-parameters, strong coupling, nonlinear, long time delay, the self-adaptive Fuzzy-PID controller based neural networks is designed. The controller can make online self-regulation of PID parameters, according to different working condition, proper parameters are selected to effectively adjust water pressure constant. It is especially discussed about system identification NN1 and self-adaptive NN2,furthermore solution steps is given out about Fuzzy-PID control algorithm based on BP neural networks, simulation program is written in Matlab environment to make simulation research on controller,, Simulation result and field application show that after the Fuzzy-PID control algorithm based on BP neural
    networks being used, both the static characteristic of control system and dynamic characteristic of that are improved, system output datum accord with referenced model output datum.According to electrical equivalent circuit and vector graph of induction electromotor, discussion is made in theory about the problem ,that exists in the course of transformation from variable frequency to work frequency. Furthermore it is pointed out that whether the high-power electromotor can be switched from VF to WF lies on phase consistency between work frequency phase voltage and corresponding work frequency phase voltage. At the same time switch method are studied and discussed. Frequency and phase discriminator is adopted in the industry test to successfully complete the transformation from VF to WF. As the switch electrical current is small, non-impact switch of the high-power electromotor is realized. Furthermore it is also presented that PLL is integrated inside VWF, when the frequency of PLL input sine wave is equal to the VCO base frequency, PLL can eliminate initiative phase errors, thus PLL can rapidly lock frequency and phase of VWF output voltage, and keep phase consistency between WF voltage and corresponding VF output voltage.
引文
[1] 姚雨霖,任周宇.城市给水排水.北京:中国建筑工业出版社,1986.7
    [2] 严煦世,范遂初.给水工程(第四版),北京:中国建筑工业出版社,1999
    [3] 胡碧波.西安市供水系统优化调度:[硕士学位论文].西安:西安交通大学,2002
    [4] 刘敏南.供水管网水力计算与优化调度.水利学报,1995,9(1):32-39
    [5] Marcello N. and Giovanni M.S. Mixed Optimization Technique for Large-Scale water-Resources Systems. Journal Water Resources Planning and Management, 1996, 6: 387-393
    [6] Ali D. Peterm, W. F. L., Manouchehr M.,et al. Planned Operation of Large-Scale Water Distribution Systems. Journal of Water Resources Planning and management, 1995, 3: 260-269
    [7] Alperovits A. Design of Optimal Water Distribution Systems. Water Resource Research, 1997, 13(6): 886-900
    [8] Robert Demoyer JR, Lawrence B.H.. Macroscopic distribution system modeling. Journal AWWA, 1975, 67(7): 377-380
    [9] Alperovits A. Design of optimal water distribution systems. Water Resource Research, 1997, 13(6): 886-900.
    [10] Nielsen H.B. Methods for Analyzing Pipe Networks. Journal of the Hydraulics Engineers, 1989, 115(7): 139-157.
    [11] Wei Sun, Hongbin Zhao,Yixing Y. Multi-objective Optimization of a Large Water Network Using a Macroscopic Model. Integrated Compute Application for Water Supply & Distribution Systems. 1993, 9: 21-30
    [12] 赵新华,田一梅,武福平.城市配水系统优化运行的研究.中国给水排水,1992,8(3):18-22
    [13] 王训俭.略论城市给水系统优化调度与管理的研究和发展方向.中国给水排水,1990,6(1):27-30
    [14] 王训俭,张宏伟,赵新华.城市配水系统宏观模型的研究.中国给水排水,1998,14(3):33-37
    [15] 陈跃春.城市配水系统的微机优化调度.中国给水排水.1986.2(3):12-15
    [16] 吴学伟,赵洪宾.给水管网状态估计方法的研究.哈尔滨建筑大学学报 1995,6:60-64.
    [17] 郑爽英.城市供水系统两级优化调度的宏观模型研究,四川联合大学学报,1997,1(2):60-68.
    [18] Martin D.W. , Peters G.. The Application of Newton's Method to Network Analysis by Digital Compute. Journal of the Institute of Water Engineers, 1963,17(3): 115-129
    [19] Wood D.J. Algorithms for Pipe Networks Analysis and their Reliability. Water Research Institute, University of Kentucky, Lexington. Res, 1981
    [20] 王永彤.多水源管网平差一般程序的实现.给水排水,1992,18(1):9-14
    [21] 徐得潜.给水管网流量分配方法的探讨.中国给水排水,1993,9(5):29-32.
    [22] 胡丹彻,孙本良.多点供水管网最佳供水方案的寻找.给水排水,1995,21(8):12-14.
    [23] 李子富,王宴平.多水源管网水力计算的新方法.给水排水,1994.3:12-15
    [24] Gofman E., Rodeh M.. Loop Equations with unknown Pipe Characteristics. Journal of the Hydraulic Division, ASCE, 1981, 107(9): 1047-1060
    [25] 陈钢军,林建华.图论在环状管网水力计算中的应用.给水排水,1994.20(3):5-7
    [26] 石继,张丰周,兜永曙.图论法用于供水管网水力计算的研究.水利学报,1999,13(2):49-55
    [27] 孙文深,黄宇阳,韩德宏.深圳市给水管网水力计算模型的建立.给水排水,1999,25(2):17-19
    [28] Guy Cohen, Le Chesnay. Optimal Colltrol of water Supply Networks. Optimization and Control of Dynamic Operational Research Models, 1982, 8: 251-276
    [29] Fallside. F. Hierarchicai Optimization of a Water Supply Network. Proc IEE, 1975, 122 (2): 202-208
    [30] Thomas M.Walski. Assuring Accurate Model Calibration. J.AWWA, 1985, 12: 38-41
    [31] Thomas M. Walski. Technique for Calibration Network Models. J. Water Researchs Planning & Management, 1983, 4: 360-372
    [32] MadR. Bhave. Calibrating Water Distribution Network Models. J. Environment Eng, 1988, 114(1): 205-212
    [33] Bargiela. Pressure, Flow Uncertainty in Water System. J. of Water Researches Planning & Management, 1989, 115(2): 123-132
    [34] Zessler.U., Shamir.U, Optimal Operation of water Distribution Systems. ASCE Journal of Water Resources Planning and Management, 1989, 115(4): 735-751
    [35] G. Yu, R.S. Powell and M.J.H. Stering, Optimized Pump Scheduling in Water Distribution Systems. Journal of Optimization Theory & Applications, 1994, 83(3): 463-488
    [36] Geoffrion A. M. Lagrangian Relaxation and Its Uses in Integer Programming. Mathematical Programming Study, 1974
    [37] Shapiro J. F., Mathematical Programming: Structures and Algorithm. New York: John Wiley&Sons, 1979
    [38] Fisher M.L.,The Langrangian Relaxation Method for Solving Integer Programming Problem. Management Science, 1981, 27(1): 234-245
    [39] 刘正祥、蒋丽娟等.动态规划、模拟技术在多级泵站优化调度中的应用.灌溉排水,2000.2,19(2):62-65
    [40] 陈皓勇,王锡凡.机组组台问题的优化方法综述.电力系统自动化,1999.3,23(5):51-53
    [41] 韩学山、吴忠明等.定火电机组组合方式下水火电系统动态优化调度.东北电力学院学报,1997.9,17(3):12-19.
    [42] 左浩、陈昆薇等.机组负荷最优分配的改进遗传算法.电力系统及其自动化学报,2001.4,13(2):16-19.
    [43] 王黎,马光文.基于遗传算法的水电站优化调度新方法.系统工程理论与实践,1997(7):65-69.
    [44] Tsujimura Y, Gen.M. Genetic Algorithms for Solving Multi-process Scheduling Problems. In: Simulated Evolution and Learning, First Asia-Pacific Conference, SEAL'96, Taejon, Korea, Spring,1996: 106-115.
    [45] 蔡超豪,蔡元宇.机组优化组合的遗传算法.电网技术,1997.1,21(1):44-47
    [46] 黄宝凤,陈为宇.城市供水系统的短负荷预测的一种方法,系统工程理论与实践,1992,1:24-27.
    [47] 吕谋,赵洪宾等.城市日常用水量预测的组合动态建模方法.给水排水,1997,23(11):9-12.
    [48] 张雅君,刘全胜.需水量预测方法的分析与择优,中国给水排水,2001,17(7):27-29.
    [49] Richard Hahnloser, Learning Algorithms Based on Linearization. Network Compute Neural System, 1998 (9): 363-380
    [50] 李斌,许仕荣等.灰色一神经网络组合模型预测城市用水量.中国给水排水,2002,18(2):21-24
    [51] 徐向南,曹析,盛昭瀚.城市水负荷的分配模型及信息预报方法的简化.系统工程理论与实践,1998,6:12-15
    [52] 张怀宇,赵洪宾,王彤.赤峰市给水管网实用优化调度研究,中国给水排水,1997,13(3):4-6
    [53] 苑希民,刘树坤,陈浩.基于人工神经网络的多泥沙洪水预报.水科学进展,1999,8(4):12-14
    [54] 徐海亮,蒋红云.人工神经网络模型在河网地区的应用.水利管理技术,1998.18(1):25-27
    [55] 邱林,陈守煜,聂相田.模糊模式识别神经网络预测模型及其应用.水科学进展,1998,9(3):14-17
    [56] 陈守煜,聂相田,朱文彬,王国利.模糊优选神经网络模型及其应用.水科学进展,1999,10(1):15-18
    [57] 谢新民,蒋云红.基于人工神经网络的河川径流实时预报研究.水利水电技术,1999,(9):42-45
    [58] Fi - John Chang, Yuan - Yih Hwang. A self- organization algorithm for realtime flood forecast, Hydro-logical processes, 1999, 13: 123-138
    [59] A. Sezin Tokar, Peggy, A. Johnson. Rainfull - run off modeling using artificial neural networks, Journal of hydrology engineering, 1999, 3: 232-239
    [60] D. Aehela, K. Femando, A. W. Jayawardena, Runoff forecasting using RBF networks with OLS algorithm, Journal of hydrology engineering, 1998, 3: 203-209
    [61] Song - Yee Yoon, Soo - Young Lee, Training algorithm with incomplete data for feedforward neural networks, Neural processing letters, 1999, 10: 171-179
    [62] Fatine Maghrebi, On a Hopfield net arising in the modeling and control of oversaturated singnalized intersections, Neural processing letters, 1999, 10: 161-169
    [63] Carlos L, Sergio M, Jose M. E and Joaquin L. Explore-Hybrid System for Water Networks Management. Journal of water Resources Planning and Management, 2000, 2: 65-74
    [64] Boumediene B.,Irina D., Layra L.S. Design of Object-oriented Water Quality Software System. Journal of Water Resources Planning and Management, 1999, 5: 289-296
    [65] Sand A.T., John W.L..Optimal Design of Water-distribution Network with GIS. Journal of Water Resources Planning and Management, 1996, 4: 301-311
    [66] 郁凯民,张素萍.水利工程设计计算机集成技术.计算机应用与研究,1997,6:34-36
    [67] 黄宇阳,许仕荣.给水管网信息系统的研究.给水排水,1998,24(10):36-39
    [68] 李珂,饶伟宏.给水厂计算机监控(SCADA)系统,2000.12,4:39-42
    [69] 陈伯时.电力拖动自动控制系统.北京:机械工业出版社,1997
    [70] 王占奎.变频调速应用百例.北京:科学出版社,1999
    [71] 高新陵,宋晓平.变频调速恒压供水系统研制.河海大学学报,2001.1,29(1):115-118
    [72] 宁耀斌,明正峰.变频调速恒压供水系统的原理与实现.西安理工大学学报,2001,17(3):305-308.
    [73] 邓巍.PLC及变频器在多台泵自动恒压供水系统中的应用.新疆石油学院学报,2001,13(2):67-69.
    [74] 徐甫荣.关于变频器的输出切换问题探讨——兼论水泵群软起停控制方案.电气传动自动化,2002,24(4):19-24.
    [75] 张戟.单台变频器实现多台水泵软起动空调恒压供水方法.计算技术与自动化,1999,4:18-20.
    [76] 丁学文,金大海.交流电机变频软起动时的问题及解决方法.电力电子技术,2001.23(5),1-3.
    [77] 曾光,徐艳平,宁耀斌.变频电源与工频电源间的同步切换控制.西安理工大学学报,2001,17(3):265-268.
    [78] 金以慧.过程控制.北京:清华大学出版社,2001.
    [79] 李清泉,杜继宏.计算机控制系统及应用.北京:机械工业出版社,1988.
    [80] 杨凌云.PID调节器在恒压供水系统中的应用.微计算机信息,1996 12(5),49-51
    [81] 周宝林,朱建跃等.过程控制系统中PID控制器参数优化研究.能源技术,2001,22(5):194-197
    [82] 郁汉琪.基于专家PID调节的变频调速恒压供水系统的研究.电气传动自动化,1998,20(1),40-44
    [83] 刘开培.基于Pade逼近的纯滞后系统增益自适应内模PID控制.武汉大学 学报(工学版),2001,34(4):93-95
    [84] 章卫国.模糊控制理论与应用.西安:西北工业大学出版社,1999
    [85] 王晓岚.模糊控制技术现状与发展趋势.电工技术,2000,(3):22-25
    [86] 张波.Fuzzy-PID复合控制.自动化与仪器仪表,2001,(2):21-23
    [87] 阎世杰.多变量模糊控制器的研究.应用数学,1991,4(3):34-36.
    [88] 王世同.模糊专家系统研究.计算机研究与发展,1990,(7):36-39.
    [89] 刘曙光.模糊控制的发展与展望.机电工程.2000,17(1):26-28.
    [90] 徐剑波,周亚素.空调冷却水系统节能运行分析.中国纺织大学学报.1998(6)
    [91] 江志斌,江斌,孙保群,方贵银.风机盘管空调器模糊控制的研究.制冷学报.1995(63).
    [92] 江导斌,吴宝志,何斌.汽车空调模糊控制的研究.制冷学报.1995(64).
    [93] J. H. Kim, S. J. Oh.. A fuzzy PID controller for nonlinear and uncertain. Soft Computing - A Fusion of Foundations, Methodologies and Applications systems, 2000,2(4): 123-129.
    [94] H. O. Wang, K. Tanaka, M. F. Griffin. An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues. IEEE Trans, Fuzzy Syst, 1996, 4(1): 14-23
    [95] 姜成国,冉树成,郑雪梅等.模糊控制在水处理系统中的应用探讨.工业水处理,2000,20(10):28-30
    [96] Zhao Z. Y., Tomizuka M., Isaka S. Fuzzy gain scheduling of PID controllers. IEEE Trans, On Systems Man & Cybernetics, 1993, 23: 1392-1398
    [97] 阳宪惠.现场总线技术及其应用.北京:清华大学出版社,1999
    [98] 沈学东,王蔚然.现场总线综述.东北电力技术,1999,5:20-22
    [99] 陈启昌.现场总线技术和进展.中国电力,1998,31(2):13-15
    [100] 王锦标.现场总线和现场总线控制系统.化工自动化及仪表,1997,24(2):34-36
    [101] 邬宽明.CAN总线原理和应用系统设计.北京:北京航空航天大学出版社,1996
    [102] 贾建军,陈虹等.基金会现场总线在中小型水厂自动化中的应用.测控技术,2002,21(4):45-48
    [103] 高迟,孙兆瑞等.基于Lonworks的节能供水控制系统.电工技术,2003,9:36-37.
    [104] 赵雨斌,齐永密,温力.基于现场总线的量水设备在东深供水改造工程中 的应用.中国农村水利水电,2003,9:75-76
    [105] 颜翠英,秦肖榛.用现场总线技术设计远程供水系统.河北工业科技,2003,20(4):52-56
    [106] 王小平,曹立命.遗传算法——理论、应用与软件实现.西安:西安交大出版社,2002
    [107] 廖平.基于遗传算法的形状误差计算研究:[博士学位论文].长沙:中南大学,2002
    [108] 史忠植.高级人工智能.北京:科学出版社,1998
    [109] Holland, J. H, Adaptation in Nature and Artificial Systems, 1st ed., 1975, 2cd., Cambridge, MA: MTT Press, 1992
    [110] De Jong K. A., An Analysis of the Behavior of a Class of Genetic Adaptive Systems, [ph D Dissertation], University of Michigan, 1975
    [111] 玄光南.遗传算法与工程设计,(程润伟译).北京:科学出版社,2000
    [112] 张文修,梁怡.遗传算法的数学基础.西安:西安交大出版社,2000
    [113] Goldberg D. E. Simple Genetic Algorithms and the Minimal Deceptive Problem, In L. Davis (Ed.), Genetic Algorithms and Simulated Annealing, London Pitman, 1987: 74-78.
    [114] Takahashi Y. Convergence of the simple genetic algorithm to the two- bit problem, IEICE Trans Fundamentals, 1994, 77(5): 868-880.
    [115] Yamamura M, Satoh H. , Kobayashi S. An Markov analysis of generation alternation models on minimal deceptive problems, In:Int Conf on Information Sciences: Fuzzy Logic, Intelligent Control & Genetic Algorithm, NC: Duke University, 1997: 47-50.
    [116] Goldberg D. E., Smith R E., Non-stationary function optimization using genetic algorithms with dominance and diploidy. In:Proc of the 2 nd Int Conf on Genetic Algorithms. NJ:Lawrence Eribaum Associates, 1987: 59-68
    [117] Srinivasetal M., Patnaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithm, IEEE Trans Syst Man, Cybem, 1994, 24(4): 656-667
    [118] Deb K.,Goldberg D. E. Sufficient conditions for deceptive and easy binary functions, Annals of Mathematics and Artificial Intelligence, 1994, 7(10): 385-408
    [119] Barrios D., Pazos J.,Rios J.etal, Conditions for convergence if genetic algorithms through Walsh series. Computers and Artificial Intelligence, 1994, 13 (5): 441 -452
    [120] Grefenstette J. J. Deception considered harmful. In: Foundations of Genetic Algorithms. CA:Morgan Kaufmann, 1993, : 75-91
    [121] Liepins G E and Vose M. D..Representational issues in genetic optimization, J of Experimental and Theoretical Artificial Intelligence, 1990, 2 (2): 101-115
    [122] 黄炎,蒋培,王嘉松等.基于可调变异算子求解遗传算法的欺骗问题。软件学报,1999,10(2):216-219
    [123] Goldberg D. E., Segrest P. Finite Markov chain analysis of genetic algorithms. In: Proc of the 2nd Int Conf on Genetic Algorithm s. NJ: Lawrence Eribaum Associates, 1987: 1-8.
    [124] Rudolph G. , Convergence analysis of canonical genetic algorithms, IEEE Trans on Neural Networks, 1994, 5(1): 96-101.
    [125] Eiben A E, Aarts E H L and Hee K M V..Global Convergence of Genetic Algorithms: A Markov Chain Analysis. Schwefel H P, Manner R, Eds, Springer-Vedag, 1990: 4-12
    [126] Fogel D. B. A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems. Simulation, 1995, 64(6): 397-406
    [127] Qi X. and Palmieri F..Adaptive Mutation in the Genetic Algorithms, Proc. Of the Sec. Ann. Conf. On Evolutionary Programming, Fogel, D. B, Atmar. W. , Eds. La Jollg, CA: Evolutionary Programming Society, 1993: 192-196
    [128] 罗志军.遗传算法全局收敛性的齐次有限马尔柯夫链分析.系统工程与电子技术 2000,22(1):73-76
    [129] 何琳等.最优保留遗传算法及其收敛性分析.控制与决策,2000,15(1):63-66.
    [130] 林丹,李敏强,寇纪凇.基于实数编码的遗传算法的收敛性研究.计算机研究与发展,2000,37(11):1321-1327
    [131] Goldberg D. E..Messy Genetic algorithms: Motivation, Analysis and First Results. Complex Syst, 1989(3); 493-530
    [132] Feng Q X, Francesco P..Theoretical Analysis of Evolutionary Algorithms with an Infinite Population Size in Continuous Space Part and: Basic Properties of Selection and Mutation.IEEE Trans Neural Networks, 1994, 5(1): 102-129
    [133] Janikow C. I., Michalewicz I. An Experimental Comparison of Binary and Floating Point Representation in Genetic Algorithms, In Proc 4th Int Conf Genetic Algorithms, 1991 (3): 1-36
    [134] Robert J. S.,Rovert J. M..Dynamicfuzzycontrol of Genetic Algorithm Parameter Coding. IEEE Tran syst Man, Cybem, 1999, 29(3): 426-433
    [135] 雷德明.多维实数编码遗传算法.控制与决策,2000,15(2):239-241.
    [136] 唐飞.十进制编码遗传算法的模式定理研究.小型计算机系统,2000,21(4):364-367
    [137] Antonisse J.. A new interpretation of schema notation that overturns the binary encoding constraint. In: Proc of the 3rd Int Conf on Genetic Algorithms. CA: Morgan Kaufmann, 1989: 86-91.
    [138]. Antonisse H. J., Keller K. S. Genetic operators for high level knowledge representations, In: Proc of the 2nd Int Conf on Genetic Algorithms. NJ:L awrence Eribaum Associates, 1987: 69-76
    [139]. Michalewicz Z. et al.Genetic algorithms and Optimal Control Problems, Proc. 29111, IEEE Conf Dicision and Control, 1990: 1664-1666
    [140] Michalewicz Z. et al. A modified Genetic Algorithm for Optimal Control Problems, Computers Math, Applic, 1992, 23(12): 83-94
    [141] 缪希仁,张培铭.多目标动态优化高级遗传算法及其在智能电磁电器设计中的应用研究.电工技术学报,1999,14(4):27-30
    [142] 钟守楠,遗传算法的收敛性与编码.武汉水利电力大学学报,2000,33(1):108-112
    [143] 陈国良,王煦法,庄镇泉等.遗传算法及其应用.北京:人民邮电出版社,1996
    [144] 章珂,刘贵忠.交叉位置非等概率选取的遗传算法.信息与控制,1997,6(1):53-60
    [145] 王国庆,郭振邦.基于改进遗传算法的离散变量结构可靠性优化设计.天津大学学报,1998,31(5):569-575
    [146] 席裕庚,柴天佑,恽为民.遗传算法综述.控制理论与应用,1996,13(6):697-708
    [147] 任庆生,叶中行,曾进.基于实数型遗传算法的电子系统可靠性最优分配.通信学报,2000,21(3):43-46
    [148] 李梅,梁慧冰.遗传算法在供水系统优化调度中的应用[J].广东工业大学学报,2000.3,17(1):34-37
    [149] 胡国四,韩生廉.遗传算法适值函数定义方法的研究.控制与决策,1999,14(6):694-697
    [150] 焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1992
    [151] J. J. Hopfield. Neural Networks and physical Systems with Emergent Collective Computational Abilities. Proceedings of the National academy of Science, 1982, 79: 2554-2558.
    [152] J. J. Hopfield. Neurons With Graded Response Have Collective mutational Properties Like of Two-state Neurons. Proceedings of the National Academy of Science, 1984, 81:3088-3092
    [153] D. H. Ackley, G. E. Hinton and T. J. sqnowski, A Learning Algorithm for olzmann Machines. Journal of Cognitive Science, 1985, (9): 147-169
    [154] 王俊普.智能控制.合肥:中国科学技术大学出版社,1996
    [155] 邓君理,杨行峻.人工神经网络.高等教育出版社,1992
    [156] 胡手仁,神经网络应用技术.北京:国防科技大学出版社,1993
    [157] 苑希明、李鸿雁.神经网络和遗传算法在水科学领域的应用.北京:水利水电出版社,2002
    [158] 袁曾任.人工神经元网络及其应用.北京:清华大学出版社,1999
    [159] 黄德双.神经网络模式识别系统理论.北京:电子工业出版社,1996
    [160] 张乃尧.神经网络与模糊控制.北京:清华大学出版社,1998
    [161] 楼顺天,施阳.基于MATLAB的系统分析与设计——神经网络.西安:西安电广出版社,1999
    [162] Song-Yee Yoon, Soo-Young Lee. Training algorithm with incomplete data for feed-forward neural networks, Neural processing letters, 1999 (10): 171-179
    [163] Fatine Maghrebi, On a Hopfield net arising in the modeling and control of over-saturated signalized intersections, Neural processing letters, 1999 (10): 161-169
    [164] Richard Hahnloser, Learning algorithms based on linearization, Network: Compute neural system, 1998 (9); 363-380
    [165] Nazife Baykal, Aydan M. Erkmen, Extended self organizing feature map: A tagged potential field approach, Neural processing letters, 1999 (10): 57-72
    [166] P. M. Wong, T. D. Gedeon, A pattern adaptive technique to handle data quality variation. Neural processing letters, 1999 (10): 7-15
    [167] Xin-chuan Zeng, Tony Martinez, A new relaxation procedure in the Hopfield network for solving optimization problems. Neural processing letters, 1999 (10): 211-222
    [168] Roman Rosipal, Milos Koska, Igor Farkas. Prediction of chaotic time-series with a resource-allocating RBF network, Neural processing letters, 1998 (7): 185-197.
    [169] N. A. Vlassis, G. Papakonstantinou, P. Tsanakas. Mixture density estimation based on maximum likelihood and sequential test statistics. Neural processing letters, 1999 (9): 63-76
    [170] Teuvo Kohonen. Fast evolutionary learning with batch-type self-organizing maps, Neural processing letters, 1999 (9): 153-162.
    [171] Julio Ortega, Ignacio Rojas, Antonio F. Diaz, Alberto, Parallel coarse grain computing of Boltzmann machines, Neural processing letters, 1998 (7): 169-184.
    [172] Enrique Castillo, Functional networks. Neural processing letters, 1998 (7); 151-159
    [173] Stephanie Muller, Patrick Garda, A neuron-fuzzy coding for processing incomplete data: application to the classification of seismic events. Neural processing letters, 1998 (8): 83-91
    [174] Ki-Hwan Aim, Yoon Kyung Choi, Soo-Young Lee, Pruned feed- forward networks for efficient implementation of multiple FIR filters with arbitrary frequency responses. Neural processing letters, 1998 (8):221-227
    [175] Siu- Yeung Cho, Tommy W. S. Chow. A fast heuristic global learning algorithm for multiplayer neural networks, Neural processing letters, 1999 (9): 177-187
    [176] K. Bertels, L. Neuberg, S. Vassiliadis. Chaos and neural network learning some observations, Neural processing letters, 1998 (7): 69-80
    [177] Mikko Lehtokangas. Constructive backpropagation for recurrent networks. Neural processing letters, 1999 (9): 271-278
    [178] P. Costa, P. Larzabal. Initialization of supervised training for parametric estimation. Neural processing letters, 1999 (9): 53-61
    [179] Siu- Yeung, Tommy W. S. Croow, A fast neural learning vision system for crowd estimation at underground stations platform. Neural processing letters, 1999 (10): 111-120
    [180] Christian Schitenkope, Custavo Deco, Wilfied Brauer. Two strategies to avoid overfitting in feedforward networks. Neural network, 1997 (10): 68-82
    [181] 扈宏杰.基于神经网络自适应稳定PD控制方法的研究.北京航空航天大学学报,2001,4(2):153-156.
    [182] 楚彦君.PD神经网络控制器的设计及仿真研究.工业仪表与自动化装置, 2001,(2):3-6
    [183] 郭前岗.一种新型神经网络结构的PD控制器及其仿真研究.西北轻工业学报,1998,9(3):108-113
    [184] A. S. Pandya, D. R. Kulkamt, J. C. Parikh. Study of time series prediction under noisy environment, Applications and science of artificial neural networks, 1997 (11): 21-24
    [185] 宋序彤.我国城市供水发展有关问题分析.城镇供水.2001,(2):22-26
    [186] 欧柏清.钦州城区供水现状及水源规划.人民珠江,1996,12(6):42-44
    [187] 卢开澄,卢华明.图论及其应用.北京:清华大学出版社,1995
    [188] 黄文梅.系统分析与仿真——MATLAB语言与应用.长沙:国防科技大学出版社,1999.
    [189] 田家山.水泵及水泵站.上海:上海交通大学出版社,1989
    [190] 汤蕴璎.电机学.北京:机械工业出版社,1999
    [191] 陈国呈.PWM变频调速技术.北京:机械工业出版社,1998
    [192] 庄卉.锁相及频率合成技术.北京:气象出版社,1996
    [193] 王福昌,鲁昆生.锁相技术.武汉:华中科技大学出版社,1996.11
    [194] 黄良沛,刘义伦,阳小燕.大功率电机平稳切换的理论探讨与方法研究.大电机技术,2004,3:13-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700