用户名: 密码: 验证码:
近岸海域水环境容量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着沿海地区经济的快速发展和人口的激增,使得近岸海域的污染日趋严重。为了有效地控制近岸海域的污染,就必须掌握其特征和规律,并在此基础上合理确定近海水环境容量。以往的机理性研究没有很好的利用环境监测数据,从经济上和实用性上不适用于环境管理实际。本文以天津市近岸海域为研究对象,完全依据环境监测数据,综合运用多学科理论与方法,成功实现了近海水质的预测、模拟和评价,并提出了计算水环境容量的新方法,为近海污染总量控制和环境管理提供了决策依据。
    首先,根据灰色系统理论,对研究海域内的监测站位进行关联分析,计算站位之间的B型关联度,建立关联度矩阵和关联度排序矩阵; 依据上述信息,采用k-means方法对站位进行了分区,并提出了站位敏感度的概念,将研究海域分成了三个管理区域,得出了近岸海域的优化分区管理的思想;
    其次,根据陆源入海水体的信息,成功地采用神经网络法预测监测站位的COD值,并采用Bayesian自动正则化技术解决了模型的过拟合问题; 首次采用Fourier级数对监测数据序列进行拟合,并应用强非线性加权最小二乘法成功确定级数中的系数用于预测; 而且,创新性的将上述预测结果采用由各自log-logistic概率密度确定的权重进行组合预测,误差大幅度降低。
    再次,以批处理SOM算法和MATLAB环境下的SOM工具箱为背景和工具,编制了近海水质评价软件; 通过SOM的训练,将高维的监测数据转化成二维图形显示; 结合环境科学理论,将监测数据分为5种污染类型,并实现了图形化的监测数据的追踪和归类,大大简化和改进了监测数据的分析工作。
    最后,本文首次采用地统计学原理分析了近岸海域污染物浓度的空间结构特征,在试验变异函数曲线的基础上,采用三种理论模型对其进行了拟合; 通过普通克里格插值成功实现了对于整个研究海域的污染物浓度估值; 结合GIS软件的地图代数运算的功能,确定研究海域的最不利区域,并依据质量守恒原理,最终确定了其在最不利条件下的水环境容量。
With the rapid economic development and the population booming in coastal zone, the coastal water quality was deteriorated. In order to control the coastal water pollution effectively, its characters and regulations must be mastered, based on which the coastal water environmental capacity could be calculated. The studies before which mainly concerned the mechanisms had taken little use of the environmental monitoring data, so they were inapplicable to management in the thinking of economics and practicability. In this dissertation, through the integrated using of many theories and methods in different fields, the prediction, simulation and assessment of the water quality in Tianjin coastal marine were studied totally based on the environmental monitoring data. Furthermore, a new calculation method for coastal water environmental capacity was proposed, which could supply the decision support for coastal pollution total amount control and environmental management.
    Firstly, the association analysis among monitoring points was taken based on grey system theory. In this section, the B type association degrees between points were calculated and then the association degree matrix and its sort order matrix were set up. According to the information in the above two matrix, the monitoring points were clustered by k-means method. What’s more, the concept of point sensitivity was purposed. Then, the studied area was divided into three management subareas and the idea of coastal optimal management was presented.
    Secondly, according to the information about the inlets, the COD values of each monitoring point were predicted by NN method successfully, during which the over-fitting problem was solved by Bayesian automatic regularization technology. And, the monitoring data serial of each point was also fitted by Fourier serial whose parameters were decided by robust weighted nonlinear least squares algorism, after which the Fourier serial was also used for prediction. Finally, the integrated prediction was taken based on the above two prediction results, whose weights were
    calculated by its log-logistic probability density. This method was demonstrated to be effective to reduce the prediction error. Thirdly, based on the batch version of SOM algorism and SOM toolbox in MATLAB environment, the coastal water quality assessment software was compiled. Through the training of SOM, the monitoring data with high dimension could be abstracted and displayed in a two-dimension figure. Then, based on some research findings in environmental science, monitoring data was clustered into 5 pollution kinds. Furthermore, the data trajectory tracking and automatic classification were also realized in figure mode. So the water quality assessment could be simplified and improved. At last, for the first time, the spatial variation of contaminant concentration in the coastal marine was analyzed using geostatistical theory. Three theoretical models were used to fit the experimental variogram of each period, based on which the ordinary Kriging interpolation method was employed to estimate the COD concentration in the whole studied area. After that, the worst area was located by raster GIS maps algebraic functions. Finally, the water environmental capacity under the worst condition was calculated according to the conservation of mass.
引文
[1] P. M. Vitousek, H. A. Mooney, Estimates of Coastal Populations, Science, 1997, 278(5341): 1211~1212
    [2] UNCED, Agenda 21(Ch. 17), United Nations Conference on Environment and Development, 1992, 1~136
    [3] 张耀光,20 世纪 90 年代中国海洋经济的高速增长与新世纪展望,经济地理,2000,20(5):9~12
    [4] 程连生,孙承平,周武光,我国海岸带经济环境与经济走势分析,经济地理,2003,23(2):211~215
    [5] 宋增华,构建海岸带综合管理体制的设想,海洋开发与管理,2002,19(5):21~25
    [6] HELCOM, Third Periodic Assessment on the State of the Marine Environment of the Baltic Sea, 1989-1993: Background Document, Helsinki: Helsinki Commission, Baltic Marine Environment Protection Commission, 1996
    [7] C. Sheppard, Regional Chapters: Europe, The Americas and West Africa, Seas at the Millennium: an Environmental Evaluation, Amsterdam: Elsevier, 2000, 1~934
    [8] C. Sheppard, Regional Chapters: The Indian Ocean to the Pacific, Seas at the Millennium: an Environmental Evaluation, Amsterdam: Elsevier, 2000, 1~920
    [9] M. T. Gomoiu, Marine eutrophication syndrome in the northwestern part of the Black Sea, Science of Total Environment, 1992, Supplement: 683~692
    [10] J. E. Cloern, Our evolving conceptual model of the coastal eutrophication problem, Marine Ecology Progress Series, 2001, 210: 223~253
    [11] GESAMP, the State of the Marine Environment, UNEP Regional Seas Report and Studies No. 115, UNEP, 1990
    [12] E. Bonsdorff, E. M. Blomqvist, J. Mattila et al., Coastal eutrophication: causes, consequences and perspectives in the Archipelago areas of the northern Baltic Sea Estuarine, Coastal and Shelf Science, 1997, 44(Suppl. A): 63~72
    [13] R.J. Diaz, R. Rosenberg, Marine benthic hypoxia: a review of its ecological effects and the behavioral responses of benthic macrofauna Oceanography, Marine Biology Annual Review, 1995, 33: 245~303
    [14] A.J. Robson, C. Neal, A summary of regional water quality for Eastern UK Rivers, The Science of the Total Environment, 1997, 194: 15~37
    [15] V. Cheevaporn, P. Menasveta, Water pollution and habitat degradation in the Gulf of Thailand, Marine Pollution Bulletin, 2003, 47(1~6): 43~51
    [16] UNEP, The State of the World Environment, Nairobi: United Nations Environment Programmed, 1991
    [17] S. Cornell, A. Rendell, T. Jickells, Atmospheric inputs of dissolved organic nitrogen to the oceans, Nature, 1995, 376: 243~246
    [18] C. Sheppard, Global Issues and Processes, Seas at the Millennium: an Environmental Evaluation, Amsterdam: Elsevier, 2000, 1~498
    [19] J. M. Prospero, K. Barrett, T. Church et al., Atmospheric deposition of nutrients to the North Atlantic Basin: nitrogen cycling in the north Atlantic Ocean and its watersheds, Dordrecht: Kluwer Academic Publishers, 1996, 27~73
    [20] H. W. Paerl, Emerging role of atmospheric nitrogen deposition in coastal eutrophication: biogeochemical and trophic perspectives, Canadian Journal of the Fisheries and Aquatic Science, 1993, 50: 2254~2269
    [21] A. J. Gabric, P. R. F. Bell, Review of the effects of nonpoint nutrient loading on coastal ecosystems, Australian Journal of Marine and Freshwater Research, 1993, 44: 261~283
    [22] FAO, Aquaculture Production 1984~1990 Fisheries Circular No. 815, 1992, 1~206
    [23] R. S. S. Wu, The environmental impact of marine fish culture: towards a sustainable future, Marine Pollution Bulletin, 1995, 31(4~12): 159~166
    [24] J. E. Cohen, C. Small, A. Mellinger et al., Estimates of coastal populations, Science, 1997, 278: 1211~1212
    [25] Shahidul Islam, Masaru Tanaka, Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis, Marine Pollution Bulletin, 2004, 48(7~8): 624~649
    [26] 国 家 海 洋 局 , 2003 年 中 国 海 洋 环 境 质 量 公 报 , 人 民 网http://www.people.com.cn,2004
    [27] 天津市海洋局,2003 年天津市海洋质量公报,国家海洋局北海分局网站http://www.ncsb.gov.cn,2004
    [28] 周密,王华东,张义生,环境容量,吉林长春:东北师范大学出版社,1987
    [29] 张永良,洪继华,夏青,刘培哲,我国水环境容量研究与展望,环境科学研究,1988,1(1):73~81
    [30] 张永良,刘培哲,水环境容量综合手册,北京:清华大学出版社,1991
    [31] 张永良,水环境容量基本概念的发展,环境科学研究,1992,5(3):59~61
    [32] D. Prandle, C. F. Jago, S. E. Jones et al., The influence of horizontal circulation on the supply and distribution of tracers, Philosophical Transactions of the Royal Society of London A, 1993, 343(1669): 405~421
    [33] D. Prandle, A modelling study of the mixing of 137Cs in the seas of the European continental shelf, Philosophical Transactions of the Royal Society of London A, 1984, 310: 407~436
    [34] J. T. Holt, I. D. James, A simulation of the southern North Sea in comparison with measurements from the North Sea Project. Part 2: Suspended particulate matter, Continental Shelf Research, 1999, 19(12): 1617~1642
    [35] A. D. Tappin, J. D. Burton, G. E. Millward et al., A numerical transport model for predicting the distributions of Cd, Cu, Ni, Pb and Zn in the southern North Sea; the sensitivity of the model results to the uncertainties in the magnitudes of metal inputs, Journal of Marine Systems, 1997, 13(1~4): 173~204
    [36] M. L. Spaulding, A state-of-the-art review of oil spill trajectory and fate modeling, Oil and Chemical Pollution, 1988, 4: 39~55
    [37] ASCE Task Committee on Modeling of Oil Spills of the Water Resources Engineering Division, State-of-the-art review of modeling transport and fate of oil spills, ASCE Journal of Hydraulic Engineering, 1996, 122: 594~609
    [38] M. Reed, ?. Johansen, P. J. Brandvik et al., Oil spill modeling towards the close of the 20th century: overview of the state of the art, Spill Science and Technology Bulletin, 1999, 5(1): 3~16
    [39] S. Stolwijk, M. T. Villars, R. Laane et al. Comparison of the performance of five different water quality models of the North Sea, Environmental Modelling & Software, 1998, 13(5): 455~460
    [40] W. K. Nuttle, Ecosystem managers can learn from past successes, EOS, 2000, 81(25): 278~284
    [41] I. J. Totterdell, An annotated bibliography of marine biological models, Towards a Model of Ocean Biogeochemical Processes, NATO ASI Series I: Global Environmental Change, Berlin/Heidelberg/New York: Springer, 1993, 10: 317~339
    [42] A. D. Bryant, M. R. Heath, N. Broekhuizen et al., Modelling the predation, growth and population dynamics of fish within a spatially-resolved shelf sea ecosystem model, Netherlands Journal of Sea Research, 1995, 33(4): 407~421
    [43] J. D. Woods, W. Barkmann, Simulating plankton ecosystems by the Lagrangian ensemble method, Philosophical Transactions of the Royal Society of London B, 1994, 343: 27~31
    [44] M. J. R. Fasham, H. W. Ducklow, S. M. McKelvie, A nitrogen based model of plankton dynamics in the oceanic mixed layer, Journal of Marine Research, 1990, 48: 591~639
    [45] P. J. Luyten, J. E. Jones, R. Proctor et al., COHERENS documentation: a coupled hydrodynamical–ecological model for regional and shelf seas, http://www.mumm.ac.be/coherens/ coherens. html, 2000
    [46] K. G. Ruddick, E. Deleersnijder, P. J. Luyten et al., Haline stratification in the Rhine–Meuse freshwater plume: a three-dimensional model sensitivity analysis, Continental Shelf Research, 1995, 15(13): 1597~1630
    [47] G. Radach, A. Moll, Estimation of the variability of production by simulating annual cycles of phytoplankton in the central North Sea, Progress in Oceanography, 1993, 31(4): 339~419
    [48] M. D. Skogen, A. Moll, Inter annual variability of the North Sea primary production: comparison from two model studies, Continental Shelf Research, 2000, 20(2): 129~151
    [49] A. F. Blumberg, G. L. Mellor, A description of a three-dimensional coastal ocean model, Three Dimensional Coastal Ocean Models, Washington, DC: American Geophysical Union, 1987, 1~16
    [50] M. D. Skogen, E. Svendsen, J. Berntsen et al., Modelling the primary production of the North Sea using a coupled three-dimensional physical–chemical–biological ocean model, Estuarine, Coastal and Shelf Science, 1995, 41(5): 545~565
    [51] J. W. Baretta, W. Ebenhoh, P. Ruardij, The European Regional Seas Ecosystem Model, a complex marine ecosystem model, Netherlands Journal of Sea Research, 1995, 33(3): 233~246
    [52] P. Ruardij, H. Van Haren, H. Ridderinkhof, The impact of thermal stratification on phytoplankton and nutrient dynamics in shelf seas: a model study, Journal of Sea Research, 1997, 38(3~4): 311~331
    [53] J. I. Allen, R. M. H. Howland, N. Bloomer et al., Simulating the spring phytoplankton bloom in the Humber plume, Marine Pollution Bulletin, 1999, 37(3~7): 295~305
    [54] R. J. Greatbatch, G. L. Mellor, An overview of coastal ocean models, Coastal Ocean Prediction: Coastal and Estuarine Studies, Washington, DC: American Geophysical Union, 1999, 56: 31~57
    [55] I. D. James, Modelling pollution dispersion, the ecosystem and water quality in coastal waters: a review, Environmental Modelling & Software, 2002, 17(4): 363~385
    [56] Minna Kuusisto, Jorma Koponen, Juha Sarkkula. Modelled phytoplankton dynamics in the Gulf of Finland, Environmental Modelling & Software, 1998, 13(5~6): 461~470
    [57] Y. S. Sin, K. W. Chau, Eutrophication Studies on Tolo Harbour, Hong Kong, Wat. Sci. Tech., 1992, 26(9~11): 2551~2554
    [58] K. W. Chau, Y. S. Sin, Correlation of Water Quality Parameters in Tolo Harbour, Hong Kong, Wat. Sci. Tech., 1992, 26(9~11): 2555~2558
    [59] K. W. Chau, Y. S. Sin, Numerical Solution of Two-layer, Two-Dimensional Tidal Fow in a Boundary-Fitted Orthogonal Curvilinear Co-ordinate Systems, International Journal for Numerical Methods in Fluids, 1995, 21: 1087~1107
    [60] K. W. Chau, Y. S. Sin, A finite difference model of two-dimensional tidal flow in Tolo Harbor, Hong Kong, Appl. Math. Modelling, 1996, 20(4): 321~328
    [61] K. W. Chau, Y. S. Sin, Depth-averaged, two-dimensional eutrophication modeling for Tolo Harbour, Hong Kong, Environmental Modeling and Assessment, 1999, 4(2~3): 189~199
    [62] K. W. Chau, Y. S. Sin, Two-layered, 2D unsteady eutrophication model in boundary-fitted coordinate system, Marine Pollution Bulletin, 2002, 45(1~12): 300~310
    [63] K. W. Chau, Manipulation of numerical coastal flow and water quality models, Environmental Modelling & Software, 2003, 18(2): 99~108
    [64] 赵亮,魏皓,冯士筰,渤海氮磷营养盐的循环和收支,环境科学,2002,23(1):78~81
    [65] 魏皓,田恬,周锋等,渤海水交换的数值研究——水质模型对半交换时间的模拟,青岛海洋大学学报,2002,32(4):519~525
    [66] 王泽良,王日新,陶建华,渤海湾流场以及污染物分布的数值模拟研究,海洋与湖沼,1999,30(2):224~230
    [67] 王泽良,陶建华,王德龙等,渤海湾污水海洋处置研究,环境科学学报,2000,20(6):704~708
    [68] 沈永明,郑永红,邱大洪,近海水域三维水动力学和水质的精细模型研究,云南环境科学,2000,19(增刊):17~21
    [69] SU JILAN, DONG LIXIAN, Application of Numerical Models in Marine Pollution Research in China, Marine Pollution Bulletin, 1999, 39(2): 73~79
    [70] 程声通,陈疏龄,环境系统分析,北京:高等教育出版社,1994
    [71] 郭劲松,王红,龙腾锐,水资源水质评价方法分析与进展,重庆环境科学,1999,21(6):1~3
    [72] 谢宏斌,南湖富营养化的人工神经网络评价,广西科学院学报,1999,15(1):29~32
    [73] 楼文高,海水水质评价的人工神经网络模型研究,海洋环境科学,2001,20(4):49~53
    [74] 刘秀花,模糊信息分配法及其在水质评价中的应用,西安工程学院学报,2002,24(1):29~32
    [75] 王晓鹏,朱明奎,河流水质评价的多级模糊模式识别模型及在湟水流域的应用,沈阳化工学院学报,2001,15(2):147~150
    [76] 罗定贵,王学军,后立胜,模糊综合评价——聚类复合模型在地下水质评价与分区中的应用,地理与地理信息科学,2003,19(6):77~79,88
    [77] 罗定贵,郭青,王学军,地表水质评价的径向基神经网络模型设计,地理与地理信息科学,2003,19(5):77~81
    [78] 蔡德昌,杨连武,模糊综合评判法在海洋环境污染分析中的应用,海洋环境科学,1990,9(1):65~69
    [79] 徐恒振,海水环境质量评价的灰色聚类法,海洋通报,1992,11(5):34~40
    [80] 徐恒振,海水水质级别的模糊综合评价方法,海洋环境科学,1992,11(2):41~48
    [81] 徐恒振:海水水质评价的一种新方法——灰色聚类综合水质级数法,交通环保,1992,(6):113~18
    [82] 徐恒振,周传光,灰色局势决策法在海水水质评价中的应用,黄渤海海洋,1993,11(4):64~72
    [83] 徐桓振,海水水质评价的模糊灰色决策法,交通环保,1993,(2):1~5
    [84] 徐恒振,尚龙生,海水水质评价的灰色局势决策水质级数法,海水水质评价的灰色局势决策水质级数法,海洋环境科学,1994,13(4):36~42
    [85] 徐恒振,尚龙生,周传光,海水水质评价的物元分析法,海洋环境科学,1996,15(3):10~14
    [86] 孙春鹏,雷俊荣,赵会强,基于自适应共振理论(ART)的水环境质量分级模型,水利水电技术,2002,33(6):42~44
    [87] 赵玲,赵冬至,张丰收,基于 GIS 的海域环境质量评价模型研究,遥感技术与应用,1998,13(3):61~65
    [88] Karim Bengra?ne, Taha F. Marhaba, Using principal component analysis to monitor spatial and temporal changes in water quality, Journal of Hazardous Materials, 2003, 100(1~3): 179~195
    [89] 国家环境保护局,中国环境科学研究院,总量控制技术手册,北京:中国环境科学出版社,1990
    [90] Chih-Sheng Lee, Ching-Gung Wen, Application of Multiobjective Programming to Water Quality Management in a River Basin, Journal of Environmental Management, 1996, 47(1): 11~26
    [91] A. U. Mahajan, C. V. Chalapatirao, S. K. Gadkari, Mathematical modeling-A tool for coastal water quality management, Wat. Sci. Tech., 1999, 40(2): 151~157
    [92] Lennart Nordvarg, Lars H?kanson, Predicting the environmental response of fish farming in coastal areas of the ?land archipelago (Baltic Sea) using management models for coastal water planning, Aquaculture, 2002, 206(3~4): 217~243
    [93] 张存智,韩康,张砚峰等,大连湾污染排放总量控制研究——海湾纳污能力计算模型,海洋环境科学,1998,17(3):1~5
    [94] 李适宇,李耀初,陈炳禄等,分区达标控制法求解海域环境容量,环境科学,1999,20(4):96~99
    [95] 何碧娟,陈波,邱绍芳等,广西铁山港海域环境容量及排污口位置优选研究,广西科学,200l,8(3):232~235
    [96] 叶德赞,倪纯治,周宗澄,厦门西海域水体的细菌动力学研究和环境容量评估,海洋学报,1994,16(4):102~112
    [97] 陈春华,海口湾海域重金属自净能力研究,海洋学报,1997,19(6):77~83
    [98] 裴相斌,赵冬至,基于 GIS 的海湾陆源污染排海总量控制的空间优化分配方法研究——以大连湾为例,环境科学学报,2000,20(3):294~298
    [99] 国家环境保护总局,中国近岸海域环境功能区划,北京:中国环境科学出版社,2002
    [100] 傅立,灰色系统理论及应用,北京:科学技术文献出版社,1992
    [101] 邓聚龙,灰色系统(社会·经济),北京:国防工业出版社,1985
    [102] 刘思峰,郭天榜,党耀国,灰色系统理论及其应用,北京:科学出版社,1999
    [103] 张玉芬,陈声亮,天津沿岸主要排污河附近海域化学耗氧量的潮扩散,海洋通报,1995,14(5):62~66
    [104] 天津市环境保护局,天津市碧水工程研究报告,2003
    [105] 周继成,人工神经网络 第六代计算机的实现,北京:科学普及出版社,1993
    [106] 张宏伟,牛志广,神经网络法建立城市供水管网宏观模型的研究,系统工程理论与实践,2003,23(10):121~126
    [107] 焦李成,神经网络系统理论,西安:西安电子科技大学出版社,1990
    [108] 刘国东,丁晶,BP 网络用于水文预测的几个问题探讨,水利学报,1999,(1):65~70
    [109] 江学军,唐焕文,前馈神经网络的泛化能力的系统分析,系统工程理论与实践,2000,20(8):36~40
    [110] M. T. Hagan, H. B. Demuth, M. H. Beale, Neural Network Design, Boston, MA: PWS Publishing, 1996
    [111] D. J. C. MacKay, A Practical Bayesian Framework for Backpropagation Networks. Neural Computation, 1992, 4(3): 448~472
    [112] D. J. C. MacKay, Bayesian Interpolation, Neural Computation, 1992, 4(3): 415~447
    [113] F. D. Foresee, M. T. Hagan, Gauss-Newton Approximation to Bayesian Regularization, Proceedings of the 1997 International Joint Conference on Neural Networks, 1997, 1930~1935
    [114] D. Marquardt, An Algorithm for Least-squares Estimation of Nonlinear Parameters, SIAM Journal Applied Mathematics, 1963, 11: 431~441
    [115] J. J. More, G. A. Watson, The Levenberg-Marquardt Algorithm: Implementation and Theory, Numerical Analysis, Lecture Notes in Mathematics 630, Springer Verlag, 1977, 105~116
    [116] Qing Zhang, J. Stanley Stephen, Real-Time water treatment process control with artificial neural networks, J. of Environmental Engineering, 1999, 125(2): 45~50
    [117] H. J. 威佛,离散和连续傅里叶分析理论(王中德,张辉),北京:北京邮电学院出版社,1991
    [118] 裴礼文,数学分析中的典型问题与方法,北京:高等教育出版社,1993
    [119] W. DuMouchel, F. O'Brien, “Integrating a Robust Option into a Multiple Regression Computing Environment,” in Computing Science and Statistics, Proceedings of the 21st Symposium on the Interface, Alexandria, VA: American Statistical Association, 1989, 297~301
    [120] 张青,基于神经网络最优组合预测方法的应用研究,系统工程理论与实践,2001,21(9):90~93
    [121] 马永开,唐小我,杨桂元,非负权重最优组合预测方法的基本理论研究,运筹与管理,1997,6(2):1~8
    [122] 电子科技大学应用数学系,概率论与数理统计,成都:电子科技大学出版社,1999
    [123] K. P. SINGH, A. A. WARSONO, BARTOLUCCI et al., Mathematical Modeling of Environmental Data, Mathematical and Computer Modelling, 2001, 33(6~7): 793~800
    [124] 国家环境保护局,国家技术监督局,GB 3097-1997,中华人民共和国国家标准:海水水质标准,北京:中国环境科学出版社,1998
    [125] Aguilera P. A., Frenich A. Garrido, Torres J. A. et al., Application of the Kohonen Neural Network in Coastal Water Management: Methodological Development for the Assessment and Prediction of Water Quality, Water Research, 2001, 35(17): 4053~4062
    [126] 杨建强,高振会,孙培艳等,自组织神经网络在有害赤潮预警研究中的应用,海洋环境科学,2003,22(1):6~9
    [127] Kohonen T., The self-organized map, Proc. IEEE, 1990, 78(9): 1464~1480
    [128] Juha Vesanto, Johan Himberg, Esa Alhoniemi et al., Self-organizing map in MATLAB: the SOM Toolbox, Proceedings of the MATLAB DSP Conference 1999, Espoo, Finland, 1999, 35~40
    [129] Young-Seuk Park, Tae-Soo Chon, Inn-Sil Kwak et al., Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks, Science of the Total Environment, 2004, 327(1~3): 105~122
    [130] Kiviluoto K. Topology preservation in self-organizing maps, Pro. ICNN’96, Piscataway: IEE International Conference on Neural Networks IEEE Service Center, 1996: 294~299
    [131] Kohonen, T., Self-Organizing Maps, New York, U.S.A.: Springer-Verlag, 1995
    [132] Juha Vesanto, Esa Alhoniemi, Clustering of the Self-Organizing Map, IEEE Transactions on Neural Networks, 2000, 11(3): 586~600
    [133] 方志刚,穆云侠,渤海辽东湾富营养化的趋势研究,环境保护科学,2001, 27(6):15~17
    [134] 郭卫东,章小明,杨逸萍,中国近岸海域潜在性富营养化程度的评价,台湾海峡,1998, 17(1):64~70
    [135] P. M. Strain, D. J. Wildish, P. A. Yeats, The application of simple models of nutrient loading and oxygen demand to the management of a marine tidal inlet, Marine Pollution Bulletin, 1995, 30(4): 253~261
    [136] 黄河宁,自净度场——量度海域物理强力的新概念,海洋学报,1990,12(5):603~609
    [137] 侯景儒,黄竞先,地质统计学的理论与方法,北京:地质出版社,1990
    [138] T. M. Burgress, R. Webster, Optimal Interopolation and isatithmic mapping of soil properties: Ⅱ, Block kriging, Journal of Soil Science, 1980, 31: 333~341
    [139] P. A. Burrough, Multiscale sources of spatial variation in soil. Ⅰ. The application of fractal concepts to nested level of soil variation, Journal of Soil Science, 1983, 34: 577~597
    [140] P. A. Burrough, Multiscale sources of spatial variation in soil. Ⅱ. A non-brownian fractal model and its application in soil survey, Journal of Soil Science, 1983, 34: 599~650
    [141] 沈思渊. 土壤空间变异研究中地统计学的应用及其展望. 土壤学进展. 1989,17(3): 11~25.
    [142] 王学军,邓宝山,张泽浦,北京东郊污灌区表层土壤微量元素的小尺度空间结构特征,环境科学学报,1997,17(4):412~416
    [143] 刘瑞民,王学军,郑一等,地统计学在太湖水质研究中的应用,环境科学学报,2002,22(2):209~212
    [144] 刘瑞民,王学军,郑一,湖泊水质参数空间分析中异常值的识别与处理,环境科学与技术,2003,26(5):17~18
    [145] 刘瑞民,王学军,湖泊水质参数空间优化估算的原理与方法,中国环境科学,2001,21(2):177~179
    [146] 刘瑞民,王学军,王翠红,湖泊水质参数空间最优估计精度分析,环境科学,2001,22(5):91~94
    [147] Chaosheng Zhang, David McGrath, Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods, Geoderma, 2004, 119(3~4): 261~275
    [148] 侯景儒,尹镇南,李维明等,实用地质统计学,北京:地质出版社,1998
    [149] 王政权,地统计学及在生态学中的应用,北京:科学出版社,1999
    [150] 朱会义,刘述林,贾绍凤,自然地理要素空间插值的几个问题,地理研究,2004,23(4):425~432
    [151] 贾利,金立新,万一,淮河流域污废水中 CODCr 与 CODMn 相关性研究,水资源保护,1998,(4):24~27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700