用户名: 密码: 验证码:
微波断层成象重建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波断层成象是一种无损探测技术,它采用微波照射被测物体,利用置于
    被测物体外部的检测器得到的散射数据,重建被测物体内部的复介电常数图象。
    复介电常数包含了丰富的信息,其实部即为介电率,虚部与导电率成比例;并
    且介电常数与很多生理参数有关,例如温度、含水量、血量、血氧浓度等。因
    此,微波断层成象不仅能够得到人体内部的形态结构信息,还能得到相应的生
    理信息,是一种非常有潜力的诊断成象技术。它既可以独立应用于诊断,也可
    以作为其他成象系统的一种补充。
     微波断层成象隶属于电磁逆散射问题,这里的散射是一个广义的概念,包
    含了透射、反射、折射、衍射和散射等等。这样的问题具有非线性和非适应性,
    一般难于求解。利用Born或Rytov近似,可以将问题线性化,然后应用与X-CT
    类似的算法利用傅立叶变换对被测物体成象。但是此方法只适用于弱散射体,
    而在生物医学领域中,大多数介质或组织介电常数的对比度较高,这种方法就
    无能为力了。采用空域重建算法,可以将此问题视为优化问题迭代求解,并且
    通过引入某些先验知识,如物体的外部形状、介电常数的上下限等,改善问题
    的非适应性,因而可以应用于生物医学领域,进一步发展了微波断层成象技术。
     在简要介绍微波断层成象的原理和基本重建算法之后,本文提出了几种不
    同的方法应用于微波断层成象。扩展局部搜索重建算法不仅考虑了散射数据的
    误差,同时还考虑了系数矩阵的计算误差,求解问题的总体最小二乘解,并利
    用Tikhonov正则化改善问题的非适应性;神经网络重建算法引入了Markov随
    机场模型,并且由于保边界正则化项中存在二进制变量,因而求解的混合变量
    问题。耦合Hopfield神经网络和增广Hopfield神经网络都由两个子网络组成,
    分别处理连续变量和二进制变量,并且这两个子网络之间也存在相互作用。这
    两种神经网络的区别在于处理二进制变量的子网络,前者将二进制变量扩展为
    0、1之间的连续变量,在计算之后再将其惩罚或强制为二进制变量;而后者可
    以直接处理二进制变量,不需要扩展或强制变量;信赖域重建算法是将微波断
    层成象问题视为约束最小二乘问题,其约束条件来自于先验知识。在迭代时,
    根据一阶必要条件,可以将此问题转化为互补问题求解。实际上,互补问题所
    求解的是两个拉格朗日乘子,由他们可以得到下次迭代所需要新的介电常数值。
     这几种重建算法都可以方便地引入先验知识,并且应用Tikhonov或者其他
    正则化过程来改善逆散射问题的非适应性。并且扩展局部搜索重建算法和神经
    网络重建算法都可以搜索全局最优解,从而得到较好的重建结果。然而,这些
    算法重建过程都较长,这是由迭代算法本身和散射问题的复杂性引起的,这也
    是我们下一步研究的重点。
Microwave tomography is a promising nondestructive evaluation method, which exploit microwave as incidence to irradiate the object and reconstruct the internal complex permittivity image of the object by applying the scattered data from receivers settled outside of the object. Complex permittivity includes abundant information, since its real part is the dielectric constant, and the imaginary part is proportional to conductivity. Moreover, permittivity has close relationship with some physiological parameters, such as temperature, water content, blood content, blood oxygenation, and so on. Therefore microwave tomography can produce the internal information of not only morphology but also physiology. Thus it will be a potential imaging technique for medical diagnosis, as either an independent system competitive with other sophisticated imaging methods or merely a complementary method.
    Microwave tomography belongs to electromagnetic inverse scattering problems, where the word "scattering" is a generalized concept, which includes transmission, reflection, refraction, diffraction, and scattering. This kind of problems is quite difficult to develop to its full potential because of its nonlinearity and ill-posedness. Fortunately, the problem of a weakly scattering object can be linearized by Born or Rytov approximation and thus resolved in Fourier domain with methods similar to those in X-CT. However, these methods would not be valid in biomedical field, in which most tissues or media have high contrast of permittivity. A possible solution is to apply spatial methods, which discretize the integrate equations into matrix equations and solve them iteratively in the framework of optimization problem. The conspicuous advantage of these methods is the capability to improve the inherent ill-posedness of the inverse scattering problem by introducing some a priori knowledge of the object, such as the external structure, the lower and upper limit of permittivity, etc. It is these spatial methods that encourage the development of microwave tomography and make a lot of achievements.
    After the brief explanation of the principle of microwave tomography and introduction of some basic reconstruction algorithms several spatial methods are proposed, including the extended local search reconstruction (ELSR), the neural network reconstruction (NNR), and the trust region reconstruction (TRR). ELSR focuses on not only the errors of scattered data, but also the errors of coefficient matrix coming from computing. Hence, ELSR is to search the global optimum solution of the total least squres problem and apply Tikhonov regularization to improve the ill-posedness of the problem. NNR is to resolve a mixed-variable problem, since a Morkov random field model is introduced and there are binary line processes, together with the continuous permittivity, in the edge-preserving regularization. Here, NNR includes two neural networks, coupled Hopfield network (CHN) and augmented Hopfield network (AHN), both of which are composed with two sub-networks to deal with continuous and binary variables, respectively. In
    
    
    
    
    addition, these two sub-networks interact with each other. The sub-networks to continuous variables of CHN and AHN are based on the continuous Hopfield network and have the same structure and neurons. The difference between CHN and AHN exists in the other sub-network of handling the binary variables. For CHN, the subnetwork is also a continuous Hopfield network, for the line processes have been expanded into continuous one with the range from 0 to 1. A specific penalty term is incorporated into the energy function to penalize the continuous line processes back to binary variables. Situation is quite different in AHN. The sub-network of binary variable is composed of binary neurons with binary input and output, and thus can deal with binary variable directly. TRR resolve the problem with constrained least squares criterion, where the constrained condition comes from a priori knowledge. In each iteration the problem can be transformed as
引文
Ahn B. H., 1981, "Solution fo nonsymmetic linear complementarity problems by iterative method", J. Optimiz. Theory and applicat., vol. 33, no. 2, p. 175-185.
    Aluffi-pentini F., 1985, Parisi V. and Zirilli F., "Global optimization and stochastic differential equations", J. Optim. Theory Appl., vol. 47, no. 1, p. 1-16.
    American National Standards Institute ANSI C95. 1-1982, "Safety levels with respect to human exposure to radiofrequency electromagnetic fields, 300kHz to 100GHz", IEEE, New York, NY.
    Baribaud M., 1990, " Microwave imagery: Analytical method and maximum entropy method", J. Phys. D: Appl. Phys., vol. 23, p. 269-288.
    Belkebir K., Kleinman R. E. and Pichot C., 1997, "Microwave imaging-Location and shape reconstruction form multifrequency scattering data", IEEE Trans. Microwave Theory and Tech., vol. 45, no. 4, p. 469-476.
    Bilbro G. et al., 1989. "Optimization by mean field annealing", Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kauffman.
    Bilbro G. L, Snyder W. E. and Gamier S. J. et al, 1992, "Mean field annealing: A formalism for construcing GNC-like algorithms", IEEE Trans. Neural Networks, vol. 3, p.131-138.
    Bolomey J. C. and Pichot C., 1990, "Microwave tomography: From theory to practical imaging systems", Int. J. Imag. Syst. Technol., vol. 2, p. 144-156.
    Bolomey J. C. and Pichot C., 1991, "Planar microwave imaging camera for biomedical applications: Critical and prospective analysis of reconstruction algorithm", Radio Science, vol. 26, no. 2, p.541-549.
    Bolomey J. C., 1989, "Recent European developments in active microwave imaging for industrial, scientific and medical applications", IEEE Trans. Microwave Theory Tech., vol. 37, no. 12, p. 2109-2117.
    Bolomey J. C., 1990, "Microwaves and their applications in analysis and in quality control of wooden pieces," First Europen Wood Symposium, Paris, May.
    Bouman C. and Sauer K., 1993, "A generalized Gaussian image model for edge-preserving MAP estimation", IEEE Trans. Image Processing, vol. 2, no. 3, p.296-310.
    Bout D. E. and Miller T. K., 1990, "Graph partitioning using annealed neural networks", IEEE Trans. Neural Networks, vol. 1, p. 192-203.
    Broquetas A., Ferrando M., Rius J. M. and Jofre L. et al., 1987, "Temperature and permittivity measurements using a cylindrical microwave imaging system", 17~(th) European Microwave Conf, Rome, Sept. P. 892-895.
    Broquetas A., Romeu J. and Rius J. M. et al., 1991, "Cylindrical geometry: A further step in active microwave tomography", IEEE Trans. Microwave Theory Tech., vol. 39, no. 5, p. 836-844.
    
    
    Cadzow J. A., 1982, "Spectral estimation: An overdetermined rational model equation approach", Proc. IEEE, vol. 70, p. 907-938.
    Caorsi S. and Massa A., 2000, "Two-dimensional microwave imaging approach based on a genetic algorithm", IEEE Trans. Antennas Propag., vol. 48, no. 3, p. 370-373.
    Caorsi S., and Gamba P., 1999, "electromagnetic detection of dielectric cylinders by a neural network approach", IEEE Trans. Geosc. Remote Sensing, vol. 37, no. 2, p.820-827.
    Caorsi S., Gragnani G. L. and Pastorino M., "Reconstruction of dielectric permittivity distributions in arbitrary 2-D inhomogeneous biological bodies by a multiview microwave numerical method", IEEE Trans. Med. Imag., vol. 12, no. 2, p.232-239, June, 1993.
    Caorsi S., Gragnani G. L. and Pastorino M., 1991a, "An approach to microwave imaging using a multiview moment method solution for a two-dimensional infinite cylinder", IEEE Trans. Microwave Theory Tech., vol. 39, no. 6, p. 1062-1067.
    Caorsi S., Gragnani G. L. and Pastorino M., 1991b, "A multiview microwave imaging system for two-dimensional penetrable objects", IEEE Trans. Microwave Theory Tech., vol. 39, no. 5, p. 845-851.
    Caorsi S., Gragnani G. L. and Pastorino M., 1993, "Reconstruction of dielectric permittivity distribution in arbitrary 2D inhomogeneous biological bodies by a multiview microwave numerical method", IEEE trans. Medical Imaging, vol. 12, no. 2, p. 232-239.
    Caorsi S., Gragnani G. L., Medicina S., Pastorino M. and Pinto G. A., 1995, "A Gibbs random field-based active electromagnetic method for noninvasive diagnostics in biomedical applications", Radio Sci., vol. 30, no. 1, p.291-301.
    Caorsi S., Gragnani G. L., Medicina S., Pastorino M. and Zunino G., 1994, "Microwave imaging based on a Markov random field model", IEEE Trans. Antennas Propag., vol. 42, no. 3, p. 293-302.
    Caorsi S., Massa A. and Pastorino M., 2000, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes", IEEE Trans. Geosc. Remote Sensing, vol. 38, no. 4, p. 1697-1708.
    Chen B., Marker P. T. and Pmar M. C., 1999, "Continuation method for nonlinear conplementarity problems via normal maps", Europ. J. Operat. Research, vol. 116, p. 591-606.
    Chen C. and Mangasarian O. L., 1996, "A class of smoothing functions for nonlinear and mixed complementarity problems", Comput. Optimiz. Applicat., vol. 2, p. 97-138.
    Chenouni D., Lakhliai Z., and Benoit C. et al., 1998, "Computation of electromagnetic waves diffraction by spectral moments method", IEEE Trans. Antenn. Propogat., vol. 46, no. 2, p. 165-174.
    
    
    Chew W. C. and Wang Y. M., 1990, "Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method", IEEE Trans. Med. Imag., vol. 9, no.2,p.218-225.
    Chew W. C., Otto G. P., Weedon W. H., and Lin J. H. et al., 1996, "Nonlinear diffraction tomography: The use of inverse scattering for imaging", Int. J. Imag. Syst. Tech., vol. 7, p. 16-24.
    Colton D. and Monk P., 1989, "A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium I ", Inverse Problems, vol. 5, p. 1013-1026.
    Colton D. and Monk P., 1990, "A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium II", Inverse Problems, vol. 6, p. 935-947.
    Committee on the Next Decade of Operations Research (Condor), 1988, "Operations research: The next decade", Oper. Res. 36.
    Conway J., Hawley M. S., and Seagar A. D. et al., 1985, "Applied potential tomography for noninvasive thermal imaging during hyperthermia treatment", Electron. Lett., vol. 21, no. 19.
    Crawford C. R. And Kak A. C., 1982, "Multipath artifact corrections in ultrasonic transmission tomography", Ultrasonic Imaging, vol. 4, p. 234-266.
    Cryer C. W., 1971, "The method of Christopherson for solving free boundary problems for infinite Journal Bearings by means of finite difference", Mathematics of Computation, vol. 25, p.435-443.
    Datta A. N. and Bandyopadhyay B., 1985, "A simplified first-order reconstruction algorithm for microwave tomography", Int. J. Electronics, vol. 58, no. 5, p. 831-838.
    Delaney A. H. and Breslet Y., 1998, " Globally convergent edge-preserving regularized reconstruction: an approach to limited-angle tomography", IEEE Trans. Image Processing, vol. 7, no. 2, p.204-221.
    Dennis J. E. and Schnabel R. B., 1983, Numerical methods for unconstrained optimization and nonlinear eqautions, Prentice-Hall, Englewood Cliffs, NJ.
    Derin H. and Elliott H., 1987, "Modeling and segmentation of noisy and textured imaged using Gibbs random field", IEEE Trans. Patt. Anal. Machine Intell., vol. 9, p. 39-55.
    Devaney A. J. and Sherman G. C., "Nonuniqueness in inverse source and scattering problems", IEEE Trans. Antennas Propag., vol. 30, no. 5, p. 1034-1039,1982.
    Devaney A. J., 1978, "Nonuniqueness in the inverse scattering problem", J. Math. Phys. vol. 19, no.7, p. 1526-1531, July.
    Devaney A. J., 1982, "A filtered backpropogation algorithm for diffraction tomography", Ultrasonic Imaging, vol. 4, p. 336-350.
    Devaney A. J., 1983, "A computer simulation study of diffraction tomography", IEEE Trans. Biomed. Eng., vol. 30, p. 377-385.
    
    
    Dickinson R. J., Hall A. S., Hind A. J., and Young I. R., 1986, "Measurement of changes in tissue temperature using MR imaging", J. Comput. Assist. Tomography, vol. 10, p. 468-472.
    Duff J., Nocedal I. S. and Reid K., 1987, "The use of linear programming for the solution of sparse sets of nonlinear equations", SIAM J. Sci. Statist. Comput., vol.8, no. 2, p. 99-108.
    Elshafiey I., Udpa L., and Udpa S. S., 1995, "Solution of inverse problems in elecromagnetics using Hopfield neural networks", IEEE Trans. Magn., vol. 31, p. 852-861.
    Ermert H. and Dohlus M., 1986, "Microwave-diffraction-tomography of cylindrical objects using 3-dimensional wave fields", Archiv, Bd. 8, H. 5, p. 111-117.
    Fischer M. and Langenberg K. J., 1984, "Limitations and defects of certain inverse scattering theories", IEEE Trans. Antennas Propag., vol. 32, no. 10, p. 1080-1088.
    Fletcher R., 1997, Harwell Subroutine Libraby, Technical Report, Harwell.
    Foster K. R. and Shepps J. L., 1981, "Dielectric properties of tumor and normal tissue at radio through microwave frequencies", J. Microwave Power, vol. 16, p. 107-119.
    Franchois A. and Pichot C., 1992, "Generalized cross validation applied to a Newton-type algorithm for microwave tomography", SPIE vol. 1767, Inverse problems in scattering and imaging, p.232-240.
    Franchois A. and Pichot C., 1997, " Microwave imaging-Complex permittivity reconstruction with a Levenberg-Marquardt method", IEEE Trans. Antennas Propag., vol. 45, no. 2, p. 203-215, Feb.
    Gamble E. and Poggio T., 1987, "Visual integration and detetion of discontinuities: the key role of intensity edges", A. I. Memo no. 970, MIT.
    Garnero L., Franchois A. and Hugonin J. P. et al., 1991, "Microwave imaging-Complex permittivity reconstruction by simulated annealing", IEEE Trans. Microwave Theory Tech., vol. 39, no. 11, p. 1801-1807.
    Geman D. and Reynolds G., 1992, "Constrained restoration and the recovery of discontinuities", IEEE Trans. Patt. Anal. Machine Intell., vol. 14, no.3, p.367-382.
    Geman S. and Geman D., 1984, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images", IEEE Trans. Patt. Anal. Machine Intell., vol. 6, no.6,Nov.,p.721-741.
    Geman S. and McClure D., 1985, "Bayesian image analysis: An application to single photon emission tomography", Proc. Statist. Comput. Sect. Amer. Stat. Assoc., Washinton,DC,p.l2-18.
    Glover F., 1986, "Future paths for integer programming and links to artificial intelligence", Computer and Operations Research, vol.13, p.533-549.
    Goldfeld R. E., Quandt S. M. and Trotter H. F., 1966, "Maximization by quadratic hill
    
    
    climbing", Econnmertica, vol. 34, p.541-551.
    Golub G. H. And van Dloan C. R, 1980, "An analysis of the total least squares problem", SIAM J. Numer. Anal., vol. 17, p. 883-893.
    Golub G. H., 1973, "Some modified matrix eigenvalue problems", SIAM Rev., vol. 15, p. 318-334.
    Golub G. H., Heath M., and Wahba G., 1979, "Generalized cross validation as a method for choosing a good ridge parameter", Technometr., vol. 21, p.215-223.
    Green P. J., 1990, "Bayesian reconstructions from emission tomography data using a modified EM algorithm", IEEE Trans. Med. Imag., vol. 9, p. 84-93.
    Hadamard J., 1923, Lectures on Cauchy's problem in linear partial differential equations. New Haven, CT: Yale Univ. Press.
    Harrington R. F., 1968, Field Computation by Moment Methods. N. Y, McGraw.
    Hawley M. S., Broquetas A. And Jofre L. et al., 1991, "Microwave imaging of tissure blood content changes", J. Biomed. Eng., vol. 13, May, p. 197-202.
    Hebert T. and Leahy R., 1989, "A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors", IEEE Trans. Med. Imag., vol. 8, no. 2, June, p. 194-202.
    Hildreth C., 1957, "A quadratic programming procedure", Nav. Res. Logist. Quart., vol.4, p. 79-85.
    Ho H. S., Guy A. W., Sigelmann R. A. And Lehmann, 1971, "Microwave heating of simulated human limbs by aperture sources", IEEE Trans. Microwave Theory Tech., vol. 19, Feb., p. 224-231.
    Horrman E. J., Cutler P. D., Digby W. M, and Mazziotta J. C., "3-D phantom to simulate cerebral blood flow and metabolic images for PET", IEEE Trans. Nuclear Science, vol. 37, no. 2, p.616-620,1990.
    Hopfield J. J., 1982, "Neural networks and physical systems with emergent collective computational abilities", Proc. of the National Academy of Science, USA, vol. 79, p. 2554-2558.
    Hopfield J. J., 1984, "Neurons with graded response have collective computational properties like those of two-state neurons", Proc. of the National Academy of Science, USA, vol. 81, p. 3088-3092.
    Ishimaru A., 1978, Wave propagation and scattering in random media, New York: Academic Press.
    Jacobi J. H., Larsen L. E. And Hast C. T., 1979, "Water immersed microwave antennas and their applications to microwave interrogation of biological targets", IEEE Trans. Microwave Theory and Tech., vol. 27, no. 1, p. 70-78.
    焦李成。神经网络计算。西安电子科技大学出版社. 1996. Joachimowicz N., 1990, "Tomography microonde: Contribution a la reconstruction quantitative bidimentionelle et tridimentsionnelle", Ph. D. Thesis, Univ. Paris Ⅶ, Gif-sur-Yvette, France.
    Joachimowicz N., Mallorqui J. J., Bolomey J. C. and Broquetas A., 1998, "Convergence and stability assessment of Newton-Kantorovich reconstruction
    
     algorithms for microwave tomography", IEEE Trans. Med. Imag., vol. 17, no. 4, Aug., p.562-570.
    Joachimowicz N., Pichot C., and Hugonin J. P., 1991, "Inverse scattering: An iterative numerical method for electromagnetic imaging", IEEE Trans. Antennas Propag., vol. 39, no. 12, Feb., p. 1742-1752.
    Jofre L., Hawley M. S., A. Broquetas et al., 1990, "Medical imaging with a microwave tomographic scanner", IEEE Trans. Biomed. Eng., vol. 37, no. 3, p. 303-311.
    Jofre L., Reyes E., Ferrando M., and Elias A. et al., 1986, "A cylindrical systerm for quasi-real-time microwave tomography", 16~(th) European Microwave Con., Dublin, Sept., p. 599-604.
    Johnson C. C. and Guy A. W., 1972, "Nonionizing electromagnetic wave effects in biological materials and systems", Proc. IEEE, vol. 60, no. 6. p. 692-718.
    Joines W. T., Jirtle R. L., Rafal M. D., and Schaefer D. J., 1980, "Microwave power absorption differences between normal and malignant tissue", Int. J. Radiation Oncology Biol. Phys., vol. 6, p. 681-687.
    Joines W. T., Zhang Y., Li C., and Jirtle R. L., 1994, "The measured electrical properties of normal and malignant human tissues from 50 to 900MHz", Med. Phys., vol. 21, no. 4, p. 547-550.
    Joisel A., Bolomey J. C., 2000, "Rapid microwave imaging of living tissures", SPIE vol., 3977, p. 320-330.
    Jones D. S., 1956, "A critique of the variational method in scattering problems", IRE Trans., vol. AP-4, no. 3, p.297-301.
    Kak A. C. and Slaney M., 1988, Principles of Computerized Tomographic Imaging, IEEE Press, New York.
    Kao H. P., Cardoso E. R. And Shwedyk E., 1999, "Correlation of permittivity and water content during cerebral edema", IEEE Trans. Biomed. Eng., vol. 46, no. 9, p. 1121-1128.
    Karamardian S., 1971, "Generalized complementarity problem", J. Optim. Theory Appl., vol. 8, no. 3, p.161-167.
    Karmarkar N., 1989, "An interior-point approach to NP-complete problems", Proc. 3~(rd) SLAM Conference on Optimization, Boston.
    Kaveh M., Soumekh M., and Greenleaf J. F., 1984, "Signal processing for diffraction tomography," IEEE Trans. Sonics Ultrason., vol. 31, pp. 230-239.
    Kholodov Y. A., 1967, "The effect of electromagnetic and magnetic fields on the central nervous systems", NASA Technical Translation, TTF-465, Washington, D.C.
    Kleinman R. E. And van den Berg P. M., 1992, "A modified gradient method for two-dimensional problems in tomography", J. Compt. Appl. Math., vol. 42, p. 17-35.
    Larsen L. E. and Jacobi J. H., 1979, "Microwave scattering imagery of isolated canine kidney", Med. Phy., vol. 6, no. 5, p. 394-403.
    Levenberg K., 1944, "A method for the solution of certain nonlinear problems in least squares", Quart. Appl. Math., vol. 2, p. 164-168.
    
    
    李缉熙,牛中奇。生物电磁学概论。西安电子科技大学出版社。 1990.
    Lin H. T. and Kiang Y. W., 1994, "Microwave imaging for a dielectric cylinder", IEEE Trans. Microwave Theory and Tech., vol. 42, no. 8, p. 1572-1579.
    Lin J.C., 1985, "Frequency optimization for microwave imaging of biological tissues", Proc. IEEE, vol. 73, no. 2, p. 374-375.
    刘普和,物理因子的生物效应。科学出版社. 1992.
    Lobel P., Blance-Feraud L. Pichot C. and Barlaud M.,1997a, "A new regularization scheme for inverse scattering", Inverse Problems, vol. 13, p. 403-410. -MT161
    Lobel P., Pichot C. Blance-Feraud L. and Barlaud M.,1997b, "Conjugate-Gradient Algorithm with edge-preserving regularization for image reconstruction from Ipswich data for mystery objects", IEEE Anten. Propagat. Magaz., vol. 39, no. 2, p. 12-14.
    Lobel P., Pichot C., Blanc-Feraud L. and Barlaud M., 1997c, "Microwave imaging: Reconstructions from experimental data using conjugate gradient and enhancement by edge-preserving regularization", Int. J. Imag. Syst. Technol., vol. 8, p.337-342.
    Mallorqui J. J., Joachimowica N., Broquetas A. and Bolomey J. C., 1996, "Quantitative images of large biological bodies in microwave tomography by using numerical and real data", Electronics Letters, vol. 32, no. 23, p. 2138-2140.
    Mangasarian O. L., 1977, "Solution of symmetric linear complementarity problems by iterative methods", J. Optimization theory and applications, vol.22, no. 4, p.465-484.
    Marquardt D. W., 1963, " An algorithm for least-squares estimation of non linear parameters", J. Soc. Indust. Appl. Math., vol. 11, p. 431-441.
    Meaney P. M., Paulsen K. D. and Fanning M. W., 2000, "Microwave imaging for breast cancer detection: Preliminary experience", SPIE vol. 3977, p. 308-319.
    Meaney P. M., Paulsen K. D., Hartov A. and Crane R. K., 1996, "Microwave imaging for tissue assessment: Initial evaluation in multitarget tissue-equivalent phantoms", IEEE Trans. Biomed. Eng., vol. 43, no. 9, p. 878-890.
    Moghaddam M. and Chew W. C., 1993, "Study of some practical issures in inversion with the Born iterative method using time-domain data", IEEE Trans. Anten. Propogat., vol. 41, no. 2, p. 177-184.
    Moghaddam M., Chew W. C., and Oristaglio M., 1991, "Comparison of the Born iterative method and Tarantola's method for an electromagnetic time-domain invers problem", Int. J. Imag. Syst. Technol., vol. 3, p.318-333.
    Morris G. M. And Hopewell J. W., 1986, "Changes in the cell kinetics of pig epidermis after repeated daily doses of X-rays", Br. J. Radial., S19, p. 34-38.
    Ney M. M., Smith A. M. and Stuchly S. S., 1984, "A solution of electromagnetic imaging using pseudoinverse transformation", IEEE Trans. Med. Imag., vol. 3, no. 4, Dec., p. 155-162.
    Nguyen M. K. and Djafari A. M., 1994, "Basyesian approach with the maximum entropy principle in image reconstruction from microwave scattered field data", IEEE Trans. Medical Imaging, vol. 13, no. 2, p. 254-262.
    
    
    
    倪光正,钱秀英。电磁场数值计算。高等教育出版社。 1996.
    Niu S. S., Ljung L., and Bjorck A., 1996, "Decomposition methods for solving least-squares parameter estimation", IEEE Trans. Signal Processing, vol. 44, no. 11, p. 2847-2851.
    Okamura S., 1981, "High-moisture content measurement of grain by microwaves", J. Microw. Power, vol. 16, no.3, p. 253-256.
    Pan S. X. and Kak A., 1983, " A comutational study of reconstruction algorithms for diffraction tomography: Interpolation versus filtered backpropagation", IEEE Trans. Acoust. Speech Sign. Proces., vol. 31, no. 5, p.1262-1275.
    Park C. S. and Jeong B. S., 1999, "Reconstruction of a high contrast and large object by using the hybrid algorithm combining a Levenberg-Marquardt algorithm and a genetic algorithm", IEEE Trans. Magnetics, vol. 35, no 3, p. 1582-1585.
    Peterson A. F, 1991, "Analysis of heterogeneous electromagnetic scatterers: Research progress of the past decade", Proc. IEEE, vol. 79, no. 10, p. 1431-1441.
    Pichot C., Lobel P. and Dourthe C., 1997, "Microwave inverse scattering: Quantitative reconstruction of complex permittivity for different applications", IEICE Trans. Electron., vol. E80-c, no. 11, p.1343-1348.
    Pierri R. and Leone G., 1999, "Inverse scattering of dielectric cylinders by a second-order Born approximation", IEEE Trans. Geosc. Remot. Sens., vol. 37, no. 1, p. 374-381.
    Powell M. J. D., 1970, A hybrid method for nonlinear equations, Numerical methods for nonlinear algebraic equations, Gordon and Breach.
    Qin Y. M. and Ciric I. R., 1994, "Method of selecting the regularisation parameter for microwave imaging", Electron. Lett., vol. 30, no. 24, p.2028-2019.
    Reeves C. R., 1993, Modern heuristic techniques for combinatorial problems, Oxford: Blackwell Scientific Publications.
    Rekanos I. T., Yioultsis T. V. and Tsiboukis T. D., 1999, "Inverse scattering using the finite-element method and a nonlinear optimization technique", IEEE Trans. Microwave Theory Tech., vol. 47, no. 3, p.336-343.
    Remy J, Wegrowski J., Crechet F. Martin M. And Daburou F., 1991, "Long-term overproduction of collagen in radiation-induced fibrosis", Radial. Res., vol. 125, p.4-19.
    Richmond J. H., 1965, "Scattering by a dielectric cylinder of arbitrary cross section shape", IEEE Trans. Antennas Propagat., vol. 13, may, p. 334-341.
    Roger A., 1981, "Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem", IEEE Trans. Antennas Propagat., vol. 29, no. 2, p. 232-238.
    Rosenfeld A. and Kak A. C., 1982, Digital Picture Processing, 2~(nd) ed., vol. 1. New York: Academic.
    Sadjadi S. J. and Ponnamblam K., 1999, "Advances in trust region algorithms for constrained optimization", Appl. Numeric. Math., vol. 29, p.423-443.
    Schepps J. L. And Foster K. R., 1980, "The UHF and microwave dielectric properties of normal and tumor tissues: Variation indielectric properties with tissue water content", Phy. Med. Biol, vol. 25, no. 6, p. 1149-1159.
    
    
    Schwan H. P. and Takashima S., 1992, "Electrical conduction and dielectric behaviour in biological systems", Encyclopedia of Applied Physics, vol.5, p. 177-200, Weinheim:VCH.
    Semenov S. Y, Svenson R. H, and Boulyshev A. E. et al, 1999, "Three-dimensional microwave tomography: Experimental prototype of the system and vector Born reconstruction method", IEEE Trans. Biomed. Eng., vol. 46, no. 8, p. 937-945.
    Semenov S. Y, Svenson R. H, and Boulyshev A. E. et al., 1996b, "Myocardial ischemia and infarction can be detected by microwave spectroscopy. 1. Experimental evidence", 18~(th) Annu, Int. Conf. IEEE Engineering in Medicine and Biology Society.
    Semenov S. Y, Svenson R. H., and Boulyshev A. E. et al., 1996a, "Microwave tomography: Two-dimensional system for biological imaging", IEEE Trans. Biomed. Eng., vol. 43, no. 9, p.869-877.
    Slaney M, Kak A. and Larsen L. E., 1984, "Limitations of imaging with first-order diffraction tomography", IEEE trans. Microwave Theory Tech., vol. 32, no. 8, Aug., p.860-873.
    Stark H., Woods J. W. and Paul I. et al, 1981, "Direct Fourier reconstruction in computer tomography", IEEE Trans. Acoust. Speech Signal Process., vol. 29, no. 2,p.237-244.
    Stevenson R. and Delp E., 1990, "Fitting curves with discontinuities", Proc. 1~(st) Int. Workshop on Robust Computer Vision, Seattle, WA, Mar., p. 127-136.
    Stone M., 1974, "Cross-validatory choice and assessment of statistical prediction", J. Roy. Stat. Soc. Ser. B., vol. 36, p. 111-147.
    Stratton J. A., Electromagnetic Theory, New York, McGraw-Hill, 1941.
    Stuchly M. A. and Stuchly S. S., 1980, "Dielectric properties of biological substances--Tabulated", J. Microwave Power, vol. 15, no. 1, p. 19-26.
    Sun D., 1999, "A regularization Newton method for solving nonlinear complementarity problems",Appl.Math. Optim., vol. 40, p. 315-339.
    Tamura T., Tenhunen M., Lahtinen T., Repo T. And Schwan H. P., 1994, "Modelling of the dielectric properties of normal and irradiated skin", Phys. Med. Biol., vol. 39, p. 927-936.
    Tanaka T, Takanaka T, and He S., 1999, "FDTD approach to the time domain inverse scattering problem for an inhomogeneous cylindrical object", Microw. Opt. Tech. Lett., vol. 20, no. 1, p. 12-17.
    Tikhonov A. N. and Arsenin V. Y, 1977, Solutions of ill-posed problems, Washington, D.C.: V. H. Winston & Sons.
    Tiuri M., Jokela K. and Heikkila S., 1980, "Microwave instrument for accurate moisture and density measurement of timber", J. Microwave Power, vol. 15, no. 4, p. 251-254.
    Vidyasagar M., 1993, "Location and stability of the high-gain equilibria of nonlinear neural networks", IEEE Trans. Neural Network, vol. 4, p. 660-672.
    Vogel C. R., "A constrained least squares regularization method for nonlinear ill-
    
    posed problems", SIAM J. Control and Optimization, vol. 28, no.1, pp.34-49, 1990.
    Walsh M. P. and O'Malley M. J., 1997, "Augmented Hopfiled network for unit commitment and economic dispatch", IEEE Trans. Power Syst., vol. 12, p. 1765-1775.
    Walsh M. P., Flynn M. E. and O'Malley M. J., 1999, "Augmented Hopfiled network for Mixed-Integer Programming", IEEE Trans. Neural Networks, vol.10, no.2, p.456-458.
    王长清,祝西里.电磁场计算中的时域有限差分法.北京大学出版社.1994.
    Wang Y. M. and Chew W. C., 1989, "An iterative solution of two-dimensional electromagnetic inverse scattering problem", Int. J. Imag. Syst. Technol., vol. 1,no. 1, p. 100-108.
    王竹溪,郭敦仁.特殊函数概论.北京大学出版社.2000.
    Watta P. B. and Hassoun M. H., 1996, "A coupled gradient network approach for static and temporal mixed-integer optimization", IEEE Trans. Neural Networks, vol. 7, no. 3, p.578-593.
    邢文训,谢金星.现代优化计算方法.清华大学出版社.1999.
    Ye Y., 1992, "A new complexity result on the minimization of a quadratic function with a sphere constraint", Technical Report, Princeton University, Recent Advances in Global optimization.
    张克潜,李德杰.微波与光电子学中的电磁理论.电子工业出版社.1994.
    Zhu W. et al., 1997, "A total least squares approach for the solution of the perturbation equation", J. Opt. Soc. Amer. A, vol. 14, p. 799-807.
    Zhu W., Wang Y., Galatsanos N. P., and Zhang J., 1999, "Regularized total least sqaures approach for nonconvolutional linear inverse problems", IEEE Trans. Image Proces., vol. 8, no. 11, p. 1657-1661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700