用户名: 密码: 验证码:
滑模变结构控制理论及其在倒立摆系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑模变结构控制由前苏联学者Emelyanov在上世纪五十年代提出,后经Utkin和Itkis等人的进一步发展研究。由于它所具有的独特的鲁棒性以及对匹配不确定性和外部干扰的完全自适应性等特点,到上世纪七十年代,逐渐引起了西方学者的重视。目前滑模变结构控制理论已经得到了充分的发展,成为非线性控制理论的一个重要分支,其所研究的对象涉及离散系统、分布参数系统、滞后系统等。然而滑模变结构控制带来的高频抖振是其应用到实际系统的障碍。因此许多其它的先进控制技术如自适应控制、模糊控制、神经网络控制等也被综合应用到滑模变结构控制系统设计中,以解决滑模变结构控制系统的抖振,同时还要尽量保持滑模变结构所具有的性能。
     本文在掌握滑模变结构控制理论的国内外研究现状,结合实际应用对滑模变结构控制理论提出的新要求基础上,对目前滑模变结构控制理论面临的几个问题进行了深入的研究,同时理论联系实际,将滑模变结构控制理论成功地应用于倒立摆系统控制中。论文的主要内容如下:
     针对一类相对于输入为非线性的系统,设计了滑模变结构控制器保证非线性系统的全局渐近稳定,在此基础上,考虑到系统运行在滑模面上时所具有的特点,提出了一种基于滑模变结构控制的参数辨识方法来辨识非线性系统的未知参数。并证明了该辨识器是渐近收敛的。
     针对一类二阶不确定离散系统,利用离散变结构控制系统所具有的滑动模态区,提出了一种具有强鲁棒性的时变滑模面离散变结构控制方法。通过旋转和平移初始滑模面得到一个时变的滑模面,并证明了在此滑模面条件下滑动模态的存在性。给出了滑模面旋转和平移的具体过程,同时由于滑动模态区的宽度固定,可以定量地确定出滑模面在各个采样时刻的变化量。该控制方法使得闭环系统对于任意初始状态都处于滑动模态区内,然后通过结合旋转和平移滑模面的方法,使随后任何时刻的系统状态都处于滑动模态区内。消除了传统变结构控制方法具有的趋近模态运动,提高
    
     摘 要
    了系统的鲁棒性能。
     基于传统的离散系统滑模变结构控制方法,利用饱和函数代替滑模切
    换函数中的符号函数来抑制滑模变结构闭环控制系统的抖振。证明了当系
    统不存在不确定性和外部干扰情况时,用饱和函数的方法可以消除系统的
    抖振;而当系统存在不确定性和外部干扰时,必须通过选择适当的饱和函
    数参数才能达到抑制抖振目的。同时给出了为抑制抖振所需要的饱和函数
    的条件。
     将一种广义变结构控制方法成功地应用于一级倒立摆的自举控制实
    验。该方法由摆动控制部分和平衡控制部分组成。摆动控制使摆从垂亘向
    下运动到近似垂直向上位置,采用双闭环控制策略,内环控制小车的位移,
    而外环采用正反馈控制器由摆的角位移和速度来确定出小车期望的位移。
    平衡控制利用滑模变结构控制理论使摆到达近似垂直向上位置后能保持
    垂直向上状态。
     将滑模变结构控制理论应用到二级串联、二级并行倒立摆系统的平衡
    控制实验中。为了降低闭环系统的抖振,分别对二级串联、二级井行倒立
    摆系统利用两种不同的方法来抑制抖振。实验结果证明了所用方法的有效
    性和可行性。
     三级倒立摆系统被公认为自动控制理论中的一个典型而又具有挑战
    性试验设备。提出了一种基于全程滑模的变结构控制方法对具有单控制输
    入的三级倒立摆系统进行平衡控制的综合设计和成功的实验研究.该方法
    使得倒立摆系统从初始时刻开始就运行在滑模面上,从而使系统具有较强
    的鲁棒性,取得了非常好的实验效果.
     最后是全文的总结与展望。
In the 1950s, Emelyanov, a Soviet researcher, first proposed variable structure control (VSC) based on sliding mode(SM), then Utkin and Itkis et al. developed the theory. Significant interest on VSC with SM has been generated in the control research realm on account of its excellent robustness and complete adaptability to the uncertainties and external disturbance in the 1970s.
    So far, VSC with SM has been deeply studied as an important branch of nonlinear control theory. It has been employed to control discrete-time systems, distributed parameters systems and time-delay systems etc.. However, the chattering with high frequency in sliding mode control systems is a barrier for the application to the practice engineering problems. Therefore, many advanced control theories, such as adaptive control, fuzzy control, NN etc. have been applied to variable structure system to reduce the chattering.
    Considering the current developed VSC theory and the new requirements from the practice, some desiderated problems are studied and discussed. The single, double, parallel and triple inverted pendulums have been controlled by the sliding mode controller (SMC) successfully.
    An SM based identifier is presented to deal with the parameter identification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. An SMC algorithm is employed to ensure the global reaching condition of the sliding mode for the nonlinear system, and an identifier is designed to identify the uncertain parameters of the nonlinear system. The asymptotical convergence of the identifier is proved.
    A discrete variable structure control algorithm with time-varying sliding surface is developed for a class of second-order uncertain discrete systems.
    Ill
    
    
    
    
    The time-varying sliding surface is obtained by rotating and/or shifting the initial sliding mode surface, and the existence of sliding mode with the time-varying sliding surface is proved. The rotating and/or shifting procedures are presented in detail, and the movement of the time-varying sliding surface is obtained quantitatively at every sampling time by taking advantage of the range of the sliding mode band. The states of the closed loop system moved in the sliding mode band of the time-varying sliding surface globally. Reaching mode is eliminated and robustness of the closed-loop system is enhanced.
    The sign function of the switching surface function is replaced by a saturate function to reduce the chattering. The chattering can be eliminated if there do not exist hasn't parameter uncertainties and external disturbance in the controlled system. An parameter of the saturate function can be adjusted to reduce the chattering if there are some parameter uncertainties and external disturbance, and how to select this parameter to reduce the chattering are introduced.
    An extended VSC is designed to make the single pendulum self erected and then keep it upright. Two loops are presented to swing the pendulum up. The outer loop, which is a positive feedback loop performs position control of the cart based on the position and rate of the pendulum. The inner loop make the cart track the position. The balance control part based on sliding mode keep the pendulum upright.
    The double inverted pendulum and the parallel inverted pendulum was successfully balanced by VSC with SM. Two different methods for these two systems are employed to reduce the chattering and excellent results are obtained.
    Triple inverted pendulum is a mechanical idealization which poses an interesting and difficult problem in control. In this paper, a robust control algorithm based on sliding mode is employed to control a triple inverted pendulum system with single input. The employment of such a technique
    IV
    
    
    
    appears necessary because the traditional linear design process cannot incorporate the nonlinear dynamics of such system and its physical limitations. The new controller satisfies the required dynamic characteristic of the triple inverted pendulum system and keep the system
引文
Bartolini G., Chattering phenomena in discontinuous control systems. Int. J. System Science, 1989, 20(12):2471-2481
    Burton J.A., Zinober A.S.I., Continuous approximation of variable structure control. Int. J. System Science, 1986,17(6)
    Chen X., and Fukuta T., Adaptive quasi-sliding mode control for discrete-time multivariable systems. Int. J. Control, 1999, 72(4): 133-140
    Chen C.T., Linear system theory and design. New York: Holt, Rinehart and Winston, 1984
    Chern, T. L. and Wu Y.-C., Design of integral variable structure controller and application to electrohydraulic velocity servosystems. IEE Proceedings-D, 1991, 138(5): 439-444
    Chiang C. C., Decentralized variable structure model reference adaptive control of linear time-varying large-scale systems with bounded disturbances. Int. J. Systems SCI., 1995, 26(10): 1993-2003
    Choi H. H., A new method for variable structure control system design: A linear matrix inequality approach. Automatica, 1997, 33(11): 2089-2092
    Choi, J.H., Misawa E.A., and Young G.E., A study on sliding mode state estimation. J. of Dynamic Systems, Measurement , and Control, 1999, 121:121-125
    Choi S.B., Prak D.W., Jayasurya S., A time-varying sliding surface for fast and robust tracking control of second-order uncertain systems. Automatica, 1994, 30:899-904
    Corless M. and Manela J., "Control of Uncertain Discrete-Time Systems," in Proc. American Control Conference, (Seattle, Washington),1986, pp.515-520,
    Corless M.J. and Leitmann G., ontinuous State Feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans.
    
    Automat. Contr., vol. 26, no.5, 1981, pp.1139-1144,
    Davari A. and Zhang Z., Application of the three segments variable structure systems. Proc. American Control Conference, 1991:62-63
    Decarlo R.A., Zak S.H., and Matthews G.P., ariable Structure control of nonlinear multivariable systems:a tutorial. Proceeding of the IEEE, vol. 76, no.3, pp212.232,1988
    Dorling C.A., Zinober A.S.I., Two approachs of hyperplane design in multivariable variable structure control systems. Int. J. Control, 1986, 44(1)
    Dragoslav D. S., Parameter space methods for robust control design: A Guided Tour. IEEE Trans on Auto. Contr., 1989.34(7): 674-688
    Drakunov S., Utkin V.I., On discrete-time sliding modes. Proceedings of the IFAC Symposium on Nonlinear control systems, 1989:484-489
    Eltohamy K.G., Kou C.Y., Real time stabilization of a triple link inverted pendulum using single control input, IEE Proc.-Control Theory App., 1997, 144(3): 498-504
    Eltohamy K.G., Kou C.Y., Nonlinear optimal control of a triple link inverted pendulum with single control input. Int. J. Control, 1998, 69(2): 239-256
    Emelyanov S.V. and Fedotova A.I., Design of a static tracking systems with variable structure. Automation and Remote Control, 1962, 10: 1223-1235
    Emelyanov S.V. andTaran V.A., Use of inertial elements in the design of a class of variable structure control systems, Ⅰ, Ⅱ. Automation and Remote Control, 1963, 1:29-42, 1963.2:183-190
    Emelyanov S.V. and Utkin V.I., On stability of a class of variable structure systems. Eng. Cybern., 1964, 2:115-117
    Emelyanov S.V. et al, Design principles for variable structure control systems. Proc. 3rd IFAC Congr., 1966, 1(3): 40C.1-40C.6
    
    
    Emelyanov S.V., Matic B.P., and Kostyleva N.E., A universal uniform control system with variable structure, Ⅰ, Ⅱ. Inst. Contr. System, 1973, 12: 8-16, 1974, 1:5-10
    Eun Y., Kim J.H., Kim K. and Cho D., Reply to "Comments on 'Discrete-Time Variable Structure Controller With a Decoupled Disturbance Compensator and Its Application to a CNC Servomechanism'.". IEEE Transactions on Control Systems Technology, 2003,11 (1): 157
    Fang L., Chen W.J., Cheang S.U., Friction compensation for a double inverted pendulum. Proceedings of the IEEE International Conference on Control Applications, 2001: 908-913
    Flugge-Lotz, I., Discontinuous Automatic System. New York: Princeton University Press, 1953.
    Furuta, K. and Pan, Y.D., Variable structure control with sliding sector. Automatica, 2000, 36(2):211-228
    Furuta, K., Sliding mode control of a discrete system. Systems and Control Letters, 1990,14: 145-152.
    Furuta K., Yamakita M., Kobayashi S., Swing up control of inverted pendulum. Proceedings of International Conference on Industrial Electronics, Control and Instrumentation, 1991, 3: 2193-2198
    Furuta K., Kajiwara H., Kosug K., Digital control of a double inverted pendulum on an inclinedrails. Int J Control, 1980, 32:907-924
    Furuta K., Ochiai T., Ono N., Attitude control of a triple inverted pendulum. Int. J. Control, 1984, 39:1351-1365
    Gang Feng and Jiang Y. A. (1995), A new algorithm for decentralized and adaptive control. Int. J. Systems SCI., 26(4): 841-850
    Gao W., Wang Y., Homaifa A., Discrete-time variable structure control systems. IEEE Trans. IE, 1995, 42:117-122
    Gao, W.B. and Hung, J.G.., Variable structure control of nonlinear systems: a new approach. IEEE Transactions on Industrial Electronic, 1993,
    
    40(1):45-55
    Gouaisbaut F., Perruquetti W. and Richard J.P. (1999). A sliding mode control for linear systems with input and state delays. Proceedings of the 38th IEEE Conference on Decision and Control, 4:4234-4239
    Gutman S., Uncertain Dynamical Systems—A Lyapnov Min-Max Approach. IEEE Trans. Automat. Contr., vol. 24, p. 1979, 1976
    Harrison R.F., Asymptotically optimal stabilising quadratic control of an inverted pendulum. IEE Proc.-Control Theory Appl., 2003, 150(1): 7-16
    Hector M. G. and Paul I. Ro, Sliding-mode control of a nonlinear-input system: application to a magnetically levitated fast-tool servo. IEEE Transactions on Industrial Electronic, 1998,45:921-927
    Hong D.S., Jung S.S., Jeong J.H., Kim J.S., Han S.I., QLQG/LTR control of parallel inverted pendulums. Proceedings of the 39th SICE Annual Conference, 2000:225-228
    Hsu, K.C., Decentralized variable structure control design for uncertain large-scale systems with series nonlinearities. Int. J. Control, 1997, 68(6): 1231-1240
    Hsu K.C., Variable structure control design for uncertain dynamic systems with sector nonlinearities. Automatic, 1998, 34:505-508
    Hsu K.C., Decentralized variable structure model-following adaptive control for interconnected systems with series nonlinearities. International Journal of Systems Science, 1998, 29:365-372
    Hung J. Y. Gao W. B. and Hung J. C., Variable structure control: A Survey. IEEE Trans. Ind. Electron, 1993, 40(1): 2-22
    Hu J. B. and Chu J., A new VSC design method based on LMI. IMC, Beijing, 1999, pp 302-305
    Hu Jianbo, Su hongye and Chu Jian, A robust gain-scheduling control based on VSC and fuzzy local controller network. Journal of Zhejiang University (SCIENCE), 2000, 1(3): 249-253
    
    
    Itkis. Y., Control Systems of Variable Structure. New York: Wiley, 1976
    Kim J. and Cho D., Discrete-time variable structure control using recursive switching function. Proc. American Control Conference, 2000: 1113-1117
    Koshkouei A.J. and Zinober A.S.I., "Sliding mode Lattice Design for Discrete Time Linear Mltivariable Systems. Proc. 35th Conference on Dicision and Control, (Kobe, Japan), 1996, pp.1497-1502
    Lei S., Langari R., Hierarchical fuzzy logic control of a double inverted pendulum. The Ninth IEEE International Conference on Fuzzy Systems, 2000, 2:1074-1077
    Letov A.M., Conditionally stable control systems (on a class of optimal control systems). Automation and Remote Control, 1957, 7:649-664
    Lin Y.S., Qian J., Xue A., Wang J., Simple multi-PD control algorithm of double inverted pendulum, IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, 2002, 3: 1428-1431
    Lu, X. and Spurgeon, S.K., Output feedback stabilization of MIMO nonlinear systems via dynamic sliding mode. Int. J. Robust Nonlinear Control, 1999, 9(2): 275-305
    Mantz R.J., Battista H.D., Puleston P., A new approach to reaching mode of VSS using trajectory planning. Automatica, 2001, 37:763-767
    Man Z. et al, A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators, IEEE Trans. on. Auto. Contr., 1994, 39: 2464-2469
    Magana M.E. and Zak S.H., Robust State Feedback Stabilization of Discrete-Time Uncertain Dynamical Systems. IEEE Trans. Automat. Contr., 1988, vol. 33, no. 9, pp.887-891
    Medranocerda G.A., Eldukhri E., Biped robot locomotion in the saggital plane. Trans. Inst. Meas. Control, 1997,19(1):38-49
    Meier H., Farwig Z., Unbehauen H., Discrete computer control of a
    
    triple-inverted pendulum. Opt. Cont. App. & Methods, 1990, 11(1): 157-171
    Mihelj M., Munih M., Double inverted pendulum optimal control-basis for unsupported standing in paraplegia. 7th International Workshop on Advanced Motion Control, 2002:121-126
    Milosavljevic C., General conditions for the existence of a quasi-sliding mode on the switching hyper-plane in discrete variable structure systems. Automation Rem. Control, 1985, 46:307-314
    Misawa E.A., Discrete Time Sliding mode Control for Nonlinear Systems for unmatched Uncertainties and Uncertain Control Vector. ASME Journal of Dynamic systems,, Measurement, and Control, 1997, 119:503-512
    Misawa, E.A., Nonlinear state estimation using sliding observers. Massachusetts Institute of Technology, Ph.d. thesis, 1988
    Nassab T. M., A new design procedure for variable structure control systems. Ph.D. Dissertation,The University of Tennessee, U.S.A., 1995, December
    Pan Y. and Furuta K., VSS Controller Design for Discrete-Time System. Control Theory and Advanced Technology, 1994, 10(4): 669-687,
    Park S.K., Ahn H.K., Robust controller design with novel sliding surface. IEE Proceedings online, no. 19990436:242-246
    Park U.S., Kim J.H., Kim S.J. et al., Development of a parallel inverted pendulum system and its control. 38th Annual Conference Proceedings of the SICE Annual, 1999:943-948
    P.Micheau, A. Kron, P. Bourassa, Analysis of human postural stability based on the inverted pendulum model with time-delay in feedback. Proc. of the American Control Conference, 2001, 3:2297-2298
    Rajiv G. R., Moving sliding mode surface for fast tracking of nonlinear uncertain systems. University of Connecticut, 1994
    Rubi J., Rubio A., Avello A., Swing-up control problem for a self-erecting
    
    double inverted pendulum. Control Theory and Applications, IEE Proceedings-, 2002, 149(2): 169-175
    Ryna E. P. and Corless M., Ultimate boundness and asympototic stability of a class of uncertain systems via continuous and discontinuous feedback control. IMA J. Math. Control Information, 1984, 1: 223-243
    Sarpturk, S.Z., Istefanopulos, Y., The stability of discrete time sliding mode control systems. IEEE Trans. Autom. Control, 1987, 32:930-932
    Sarpturk S.Z., Istefanopulos Okaynak Y., On the stability of discrete-time sliding mode control systems. IEEE Trans. AC, 1987, 32:930-932
    Sellesa R.W., Bussmanna B.J., Wagenaarb R.C., Stam H.J., Comparing predictive validity of four ballistic swing phase models of human walking. Journal of Biornechanics, 2001, 34:1171-1177
    Shtesse Y. B. and Buffington M., Continuous sliding mode control. Proceeding of the American Control Conference, 1998:562-563
    Sira-Ramirez, H., Nonlinear discrete variable structure systems in quasi-sliding mode. Int. J. Control,1991, 54:1171-1187
    Slotine J. J. E. and Sastry S. S., Tracking control of non-linear systems using sliding surfaces with application to robot manipulators. Int. J. Contr., 1983, 38:465-492
    Slotine J. J. E., Sliding controllers design for non-linear systems. Int. J. Control, 1984, 40(2): 421-434
    Slotine J.J., Sastry S. S., Tracking control of non-linear systems using sliding surface with application to robot manipulatoes. Int. J. of Control, 1983, 22:465-492
    Slotine J.J., Li W., Applied nonlinear control. Prentice-Hall, 1991.
    Slotine J.J., Satry S.S., Tracking control of nonlinear systems using sliding mode surfaces with application to robot manipulators. Int. J. Control, 1983, 38(2)
    Song F., Smith S.M., A Takagi-Sugeno type fuzzy logic controller with only 3
    
    rules for a 4 dimensional inverted pendulum system. IEEE International Conference on Systems, Man, and Cybernetics, 2000, 5:3800-3805
    Srewal, M.S. and Glover, K., Identifiability of linear and nonlinear dynamical systems. IEEE Trans. on Automatic Control, 1976, 21 (4): 833-837
    Su W.C., zgüner S.V., and Drakunov S.V., Discrete Time Sliding mode with chattering Reduction in Sampled Data Systems. Proc. 32nd Conference on Decision and Control, (San Antonio, Texas), 1993:2452-2457
    Takahashi M., Mizumoto I., Iwai Z., Kohzawa R., Multivariable adaptive model output following control system based on backstepping strategy and its application to parallel inverted pendulums. Proceedings of the 1999 IEEE International Conference on Control Applications, 1999(2): 1241-1248
    Tsachouridis V.A., Medrano-Cerda G.A., Discrete-time H∞ control of a triple inverted pendulum wiyh single control input. IEE Proc.- Control Theory Appl., 1999, 146(4): 567-577
    Tsypkin, Y., 1955, Theory of Relay Control Systems, Moscow: Gostechizdat. Report of the workshop held at the university of Santa Clara on September 18-19,1986. Challenges to control: a collective view. IEEE Trans. on Auto. Contr., 1987,32(4): 275-285
    Utkin V. I., On compensation of the forced component in the motion of control systems with variable structure. Eng. Cybern., 1965, 4:167-171
    Utkin V. I., VSS: present and future. Automation and Remote Control, 1983, 44:1105-1120
    Utkin V. I. and Yang K. D., Methods for constructing discontinuity planes in multidimensional variable structure systems. Automation and Remote Control, 1978, 39(10): 1466-1470
    Utkin V.I., "Variable Structure Systems: Presebt and Future," Automation and Remote Control, 1983, 44(9): 1105-1120,
    Utkin, V, I., Variable structure systems with sliding modes. IEEE Trans.
    
    Automatic Control, 1977, 22(2):212-222
    Venkataraman S.T. and Gulati S., A variable structure model reference adaptive control for nonlinear robotic manipulators. Proceedings of American Control Conference, 1992:891-893
    Wang W.J., Wu G.H., and Yang D.G., Variable Structure Control Design for Uncertain Discrete-Time Systems. IEEE Trans. Automat. Contr., 1994, 39(1): 99-102
    Wensel L., Vazquez N., Nair D. et. al., Computer vision based inverted pendulum. Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference, 2000:1320-1323
    Widjaja M., Yurkovich S., Intelligent control for swing up and balancing of an inverted pendulum system. Proceedings of the 4th IEEE Conference on Control Applications, 1995: 534-542
    Wunch W. S., Reproduction of an arbitrary function of time by discontinuous control, Ph.D. dissertation, Stanford Univ., Stanford, CA, 1953
    Xu J.X., Parameter identification methodologies based on variable structure control. Int. J. Control, 1993, 57(5): 1207-1220
    Xu J.X., Self-tuning variable structure control method for a class of nonlinear systems. Int. J. Robust Nonlinear Control, 1998, 8(6): 1133-1153
    Yamakita M., Iwashiro M., Sugahara Y., Furuta K., Robust swing up control of double pendulum. Proceedings of the American Control Conference,1995,1: 290 -295
    Yasunobu S., Yamasaki H., Evolutionary control method and swing up and stabilization control of inverted pendulum. IFSA World Congress and 20th NAFIPS International Conference. 2001, 4:2078-2083
    Yi J., Yubazakia N., Hirota K., Upswing and stabilization control of inverted pendulum system basedon the SIRMs dynamically connected fuzzy inference model. Fuzzy Sets and Systems, 2001,122:139-152
    Yoo D. S. and Chung M. J., A variable structure control with simple
    
    adaptation laws for upper bounds on the norm of the uncertainties. IEEE Trans. Automat. Control, 1992, 37 (6): 860-864
    Yu X., ManZ., Model reference adaptive control systems with terminal sliding modes. Int. J. Contr., 1996, 64:1165-1176
    Yu X., Man Z., Multi-input uncertain linear systems with terminal sliding mode control. Automatica, 1998, 34(3): 389-392
    Yu X., Man Z., Fast TSM Control for Single Input Systems. Proc. of 2000 ASCC, Shanghai, China, July, 2000
    Yu X.H., Conditions for the Existence of Discrete Time Sliding Mode. Proc. IFAC 12th World Congress, 1993, 2:215-218
    Yu X., Digital Variable Structure Control with Pseudo-Sliding Mode, Variable Structure and Lyapnov Control (A.S.I. Zinober ed.), Spinger-Verlag, 1994:133-155
    Zhang Keqin, Hongye Su, Kaiyu Zhuang, and Jian Chu , Comments on "Discrete-Time Variable Structure Controller With a Decoupled Disturbance Compensator and Its Application to a CNC Servomechanism". IEEE Transactions on Control Systems Technology, 2003,11(1):156-157
    Zhong W., Rock H., Energy and passitive based control of the double inverted pendulum on a cart. Proc. of the IEEE International Conference on Control Applications. 2001, 896-901
    Zinober A.S.I., Variable Structure and Lyapnov Control. Lecture Notes in Control and Information Sciences 193, Springer-Verlag, 1994
    单波,徐燕,赵建涛,预测控制算法及其在倒立摆中的应用.华北电力大学学报,2001,28(2):46—51
    高为炳,变结构控制的理论和设计分发,科学出版社,1998
    高为炳,变结构控制系统的品质控制.全国控制理论与应用年会,西安,1988,pp156-159
    李洪兴,苗志红,王家银,四级倒立摆的变论域自适应模糊控制.中国科
    
    学(E辑),2002,32(1):65—75
    罗宁苏,冯纯伯,消除变结构系统中高频颤振的一种方法.全国控制理论与应用年会,西安,1988,pp132-139
    武明,季林红,金德闻等,基于能量的人体动力学平衡评价指标的仿真研究.清华大学学报(自然科学版),2002年第42卷第2期:168—171
    肖军,张石,徐心和,四级倒立摆系统的模糊控制方法研究.系统仿真学报,2001,13(6):752—755
    张冬军,从爽等,旋转平行倒立摆的摆起及平衡控制的研究.Proc.of 4th World Congress on Intelligent Control and Automation, 2002: 2370-2374
    张飞舟,范跃祖,沈程智等,利用云模型实现智能控制倒立摆.控制理论与应用,2000,17(4):519-523

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700