用户名: 密码: 验证码:
GaN基电子器件中极化库仑场散射机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GaN材料由于其禁带宽度大、饱和电子漂移速度高、临界击穿电场强、化学性质稳定等优越性能,使得GaN基异质结场效应晶体管(HFETs)非常适合应用于制作抗辐射、高频、大功率和高密度集成的电子器件以及蓝、绿光和紫外光电子器件,在无线通信基站、卫星、雷达、汽车电子、航空航天、核工业、军用电子等国民经济和国防建设领域中有着广泛的应用。
     GaN基异质结场效应晶体管器件主要包括:AlGaN/GaN HFETs、InAlN/GaN HFETs和AIN/GaN HFETs,虽然GaN基HFETs器件已经发展到较高的性能水平,但是仍然受到电流崩塌、器件可靠性等诸多问题的约束,这些器件的高频和大功率性能仍有进一步改善和提升的空间。GaN基HFETs材料与器件的特性参数,例如2DEG电子密度和电子迁移率、势垒层极化电荷密度、肖特基接触势垒高度、亚阈值摆幅、器件开关电流比等都会直接影响器件的频率和功率特性。因此,系统地研究GaN基HFETs器件的特性参数,对改善器件的功率和频率性能有着重要的意义。2007年J. Z. Zhao et al以及2011年Y. J. Lv et al研究表明AlGaN/GaN和AlGaN/AlN/GaN HFETs器件中影响2DEG电子迁移率的散射机制主要为:极化库仑场散射、极化光学声子散射以及界面粗糙散射。但是极化库仑场散射的存在只从实验上得到了证实,理论模型尚未建立,因此研究低电场下极化库仑场散射理论模型至关重要。此外,将极化库仑场散射同器件的特性参数(亚阂值摆幅、器件开关电流比等)结合起来研究,对提升器件的特性也非常重要。本文系统研究了AlGaN/GaN HFETs和InAlN/GaN HFETs中极化库仑场散射机制,建立了极化库仑场散射机制的理论模型,还对这些GaN基电子器件参数与极化库仑场散射的关联关系开展了研究,具体包括以下内容:
     1、AlGaN/AlN/GaN HFETs器件中极化库仑场散射理论模型及其应用研究
     (a)边欧姆接触工艺对AlGaN/AlN/GaN HFETs器件中极化库仑场散射的影响。结合实验测试得到的由边欧姆接触工艺和正常欧姆接触工艺制作的圆形和方形AlGaN/AlN/GaN HFETs器件的C-V曲线和I-V输出特性曲线,利用迁移率计算公式,得到了在源漏电压为O.1V时圆形和方形AlGaN/AlN/GaN HFETs器件中2DEG电子迁移率随栅偏压的变化曲线。研究发现在由边欧姆接触工艺制作的器件中,几乎所有的圆形和方形器件的2DEG电子迁移率都随着栅偏压的升高而下降;但在由正常欧姆接触工艺制作的器件中,栅面积较小器件的2DEG电子迁移率随栅偏压的升高而上升;对此我们对AlGaN/AlN/GaN HFETs器件做了电子能谱测试,并结合极化库仑场散射、极化光学声子散射和界面粗糙散射给出了详细的解释并得到如下结论:由极化电荷密度分布不均匀引起的极化库仑场散射同正常欧姆接触工艺和栅偏压息息相关,而边欧姆接触工艺大大减弱了AlGaN/AlN/GaN HFETs器件中的极化库仑场散射。
     (b) AlGaN/AlN/GaN HFETs器件中的极化库仑场散射理论模型研究。根据AlGaN/AlN/GaN HFETs器件中极化库仑场散射起源的研究可以得到器件源漏欧姆接触间AlGaN/AIN界面极化电荷的分布,进一步可以计算得到该散射机制的微扰势,从而推导得到该散射机制的理论公式;对于制作的AlGaN/AlN/GaN HFETs器件,结合极化光学声子散射、界面粗糙散射以及压电散射,可以从理论上计算得到器件的2DEG电子迁移率,而且理论计算值同实验上得到的2DEG电子迁移率数值非常吻合。这就从理论上证实了AlGaN/AlN/GaN HFETs器件中极化库仑场散射的存在,也证明了极化库仑场散射在AlGaN/AlN/GaN HFETs器件中是一种重要的散射机制。
     (c) AlGaN/AlN/GaN HFETs器件中极化库仑场散射对器件亚阈值摆幅的影响。基于实验测试得到的耗尽型AlGaN/AlN/GaN HFETs器件的C-V曲线、I-Ⅴ输出特性曲线以及亚阈值特性曲线(IDS-VGS),可得到极化库仑场散射同亚阈值摆幅之间的关系。研究发现在极化库仑场散射作用较强的器件中,亚阈值摆幅值S同极化库仑场散射较弱的器件的S相比减小了26%。说明在耗尽型AlGaN/AlN/GaN HFETs器件中,极化库仑场散射会大大改善器件的亚阈值特性。
     2、InAlN/AlN/GaN异质结场效应晶体管中极化库仑场散射机制研究
     (a)栅金属面积对In0.18Al0.82N/AlN/GaN HFETs器件中2DEG电子迁移率的影响研究。基于实验测试得到的方形和圆形In0.18Al0.82N/AlN/GaN HFETs器件的C-V曲线和I-V输出特性曲线,利用推导得到的迁移率计算公式,得到了源漏电压0.1V时不同肖特基栅面积方形和圆形In0.18Al0.82N/AlN/GaN HFETs器件中2DEG电子迁移率随栅偏压的变化曲线。研究发现栅面积较小器件的2DEG电子迁移率随栅偏压的升高而上升;但栅面积较大器件的2DEG电子迁移率随栅偏压的升高而下降;同一栅偏压下,2DEG电子迁移率随栅面积的增大而上升。对此我们对In0.18Al0.82N/AlN/GaN HFETs器件做了电子能谱测试,结合极化库仑场散射、极化光学声子散射和界面粗糙散射给出了详细的解释并得到了如下结论:由欧姆接触工艺和栅偏压引起的In0.18Al0.82N/AlN界面极化电荷分布不均匀导致的极化库仑场散射在In0.18Al0.82N/AlN/GaN HFETs器件中是一种重要的散射机制。
     (b)边欧姆接触工艺对In0.17Al0.83N/AlN/GaN HFETs器件中极化库仑场散射影响的研究。结合实验测试得到的由边欧姆接触工艺和正常欧姆接触工艺制作的方形和圆形In0.17Al0.83N/AlN/GaN HFETs器件的C-V曲线和Ⅰ-Ⅴ输出特性曲线,利用推导得到的迁移率计算公式,可以得到源漏电压为0.1V时方形和圆形In0.17Al0.83N/AlN/GaN HFETs器件2DEG电子迁移率随栅偏压的变化曲线。研究发现在同一栅偏压下,通过边欧姆接触工艺制作的器件2DEG电子密度随着栅金属面积的增大而升高;而通过正常欧姆接触工艺制作的器件2DEG电子密度变化不大而且无规律。边欧姆接触工艺制作的方形和圆形器件的2DEG电子迁移率随栅偏压的变化趋势都比正常欧姆接触工艺制作的器件2DEG迁移率随栅偏压的变化趋势缓慢;对此,我们对In0.17Al0.83N/AlN/GaN HFETs器件做了电子能谱测试,并结合极化库仑场散射、极化光学声子散射和界面粗糙散射做出了详细的解释并得到如下结论:由极化电荷密度梯度引起的极化库仑场散射同正常欧姆接触工艺和栅偏压息息相关,而边欧姆接触工艺大大减弱了In0.17Al0.83N/AlN/GaN HFETs器件中的极化库仑场散射;另外,栅偏压对In0.17Al0.83N/AlN/GaN HFETs器件中极化库仑场散射的影响要远强于其对AlGaN/AlN/GaN HFETs器件中极化库仑场散射的影响,边欧姆接触工艺使得In0.17Al0.83N/AlN/GaN HFETs器件中的2DEG电子密度比正常欧姆接触工艺制作器件的2DEG电子密度大2倍。
     (c)从正向Ⅰ-Ⅴ曲线获取In0.18Al0.82N/AlN/GaN异质结肖特基二极管势垒高度。基于双二极管模型以及热离子发射理论,通过理论分析和公式推导,可以从In0.18Al0.82N/AlN/GaN异质结肖特基二极管的正向I-Ⅴ曲线分析得到其平带电压V0,然后结合平带电压与零电场下势垒高度的关系式,通过薛定谔和泊松方程自洽迭代计算可以得到肖特基二极管的势垒高度。
     3、AlGaN/AlN/GaN、In0.18Al0.82N/AlN/GaN和AlGaAs/GaAs异质结场效应晶体管低电场下2DEG电子迁移率比较研究
     基于实验测试得到的AlGaN/AlN/GaN、In0.18Al0.82N/AlN/GaN和AlGaAs/GaAsHFETs器件C-V曲线和Ⅰ-Ⅴ输出特性曲线,利用推导得到的迁移率计算公式,可得到源漏电压为0.1V时HFETs器件2DEG电子迁移率随外加栅偏压的变化曲线。研究发现Ⅲ-Ⅴ氮化物(AlGaN/AlN/GaN和In0.18Al0.82N/AlN/GaN) HFETs器件同AlGaAs/GaAs HFETs器件2DEG电子迁移率随栅偏压的变化趋势有很大不同。在Ⅲ-Ⅴ氮化物HFETs器件中,2DEG电子迁移率随栅偏压的变化趋势与栅长同源漏间距的比值(LG/LSD)有很大关系,但是栅长同源漏间距的比值LG/LSD对AlGaAs/GaAs HFETs器件2DEG电子迁移率随栅偏压的变化趋势没有影响。分析表明这主要是由Ⅲ-Ⅴ氮化物HFETs器件中极化库仑场散射的影响所导致的。
With the excellent physical and chemical properties of the GaN material, such as wide band gap, high saturated electron drift velocity, high critical breakdown electric field, chemical stability, GaN heterostructure field-effect transistors (HFETs) are suitable for the production of anti-radiation, high frequency, high power, high density integration of electronic devices and blue, green, ultraviolet optoelectronic devices, these have a wide range of applications in the national economy and national defense construction, such as wireless communications, satellite, radar, automotive electronics, aerospace, nuclear industry and military electronics.
     Although the performance of GaN-based HFETs has been developed to a high level, there are still many problems in the investigation of GaN-based HFETs, such as the current collapse, device reliability and many other issues. The materials and devices parameters of the GaN-based HFETs, such as two-dimensional electron gas (2DEG) electron density,2DEG electron mobility, the polarization charge density of the barrier layer, the Schottky barrier height, subthreshold swing, on/off current ratio will directly affect the frequency and the power characteristics of the HFET devices. Therefore, the systematic study of the characteristic parameters of the GaN-based HFETs is essential to improve the frequency and the power performance of the devices. Zhao et al and Lv et al point out that, in AlGaN/GaN and AlGaN/AlN/GaN HFETs, the polarization Coulomb field scattering, the polar optical-phonon scattering and the interface roughness scattering are the main scattering mechanisms. But the presence of the polarization Coulomb field scattering is only confirmed from the experiment, it is crucial to establish the theoretical model of the polarization Coulomb scattering at low electric field in AlGaN/AlN/GaN HFETs. Also, the study of the relationship between the polarization Coulomb field scattering and the characteristic parameters (such as subthreshold swing and on/off current ratio) in AlGaN/AlN/GaN HFETs is necessary to improve the device characteristics. In addition, the parameters of the InAlN/AlN/GaN HFETs (such as2DEG electron mobility and the barrier height) are also made a detail study in this dissertation. The main contents of the dissertation are listed below.
     1. The theoretical model of the polarization Coulomb field scattering and the application of the polarization Coulomb field scattering in AlGaN/AlN/GaN HFETs.
     (a) Influence of the side-Ohmic contact processing on the polarization Coulomb field scattering in AlGaN/AlN/GaN HFETs.
     Using the measured Capacitance-Voltage (C-V) cures and the Current-Voltage (I-V) characteristics for the circular and rectangular AlGaN/AlN/GaN HFETs with side-Ohmic contacts and normal-Ohmic contacts, the relationship between the2DEG electron mobility and the gate voltage can be calculated when the source-drain voltage VDS is0.1V. It is shown that the2DEG electron mobility decreased with the increasing gate voltage in almost all the AlGaN/AlN/GaN HFETs with side-Ohmic contacts, but the2DEG electron mobility increased with the increasing gate voltage in the small gate area AlGaN/AlN/GaN HFETs with side-Ohmic contacts. Based on the measured scanning electron microscope with energy dispersive spectrometer (SEM-EDS) spectrum and the scattering mechanisms in AlGaN/AlN/GaN HFETs (polarization Coulomb field scattering, polar optical-phonon scattering and interface roughness scattering), the above phenomenon was explained and the conclusion can be made that the polarization Coulomb field scattering caused by the polarization charge density variation at the AlGaN/AlN/GaN interfaces is closely related to the Ohmic-contact processing, and the side-Ohmic contact processing greatly weakens the polarization Coulomb field scattering in AlGaN/AlN/GaN HFETs.
     (b) Theoretical model of the polarization Coulomb field scattering in strained AlGaN/AlN/GaN HFETs.
     Base on the origin of the polarization Coulomb field scattering, the distribution of the polarization charges in the AlGaN barrier layer can be gotten, then the perturbation potential of the polarization Coulomb field scattering can be calculated and the theoretical model of the polarization Coulomb field scattering caused by the polarization charge density variation at the AlGaN/AIN interface can be obtained. And the theoretical values for the electron drift mobility, which were calculated using the Matthiessen's rule that includes polarization Coulomb field scattering, piezoelectric scattering, polar optical-phonon scattering and interface roughness scattering, are in good agreement with our experimental values. Thus, the conclusion can be made that the developed theoretical model for polarization Coulomb field scattering in AlGaN/AlN/GaN HFETs is correct, and it is also shown that polarization Coulomb field scattering is an important carrier scattering mechanism in AlGaN/AlN/GaN HFETs.
     (c) Influence of polarization Coulomb field scattering on the subthreshold swing in depletion-mode AlGaN/AlN/GaN heterostructure field-effect transistors.
     Used the measured capacitance-voltage (C-V) curves and current-voltage (I-V) curves for the prepared AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs), the relationship between polarization Coulomb field scattering (PCF scattering) and the subthreshold swing for depletion mode (D-mode) AlGaN/AlN/GaN HFETs has been investigated. It was found that the S value (S=(бlg(IDS)/бVGs)-1) of subthreshold swing is smaller for the device with stronger polarization Coulomb field scattering, and the S value decreases by more than26%for the D-mode AlGaN/AlN/GaN HFET samples. The reason is attributed to the big gradient of the mobility and the gate-source bias curve which is generated by the polarization Coulomb field scattering.
     2. Research of the meachnnisms for polarization Coulomb field scattering in InAlN/AlN/GaN heterostructure field-effect transistors.
     (a) The influence of different gate areas on the2DEG electron mobility in In0.18Al0.82N/AlN/GaN HFETs.
     Using the measured capacitance-voltage curves of Ni Schottky contacts with different areas and the current-voltage characteristics for the rectangular and circular In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors (HFETs) at low drain-source voltage, the relationship between the2DEG electron mobility and the gate voltage can be calculated. It is shown that the2DEG electron mobility decreased with the increasing gate voltage in the In0.18Al0.82N/AlN/GaN HFETs with large gate area, but the2DEG electron mobility increased with the increasing gate voltage in the In0.18Al0.82N/AlN/GaN HFETs with small gate area. And the2DEG electron mobility increased with the increasing gate area at a certain gate voltage. Based on the measured scanning electron microscope with energy dispersive spectrometer (SEM-EDS) spectrum and the scattering mechanisms in In0.18Al0.82N/AlN/GaN HFETs (polarization Coulomb field scattering, polar optical-phonon scattering and interface roughness scattering), the above phenomenon was explained and the conclusion can be made that the Ohmic contact processing and the gate bias cause the irregular distribution of the polarization charges at the In0.18Al0.82N/AlN interface which generates the polarization Coulomb field, and the polarization Coulomb field scattering has an important influence on the2DEG electron mobility in both our rectangular and circular In0.18Al0.82N/AlN/GaN HFET devices as same as in AlGaN/AlN/GaN HFET devices.
     (b) Enhanced effect of side-Ohmic contact processing on the2DEG electron density and electron mobility of In0.17Al0.83N/AlN/GaN heterostructure field-effect transistors.
     Using the measured Capacitance-Voltage (C-V) cures and the Current-Voltage (I-V) characteristics for the circular and rectangular In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts and normal-Ohmic contacts, the relationship between the2DEG electron mobility and the gate voltage can be calculated when the source-drain voltage VDS is0.1V. It is shown that the2DEG electron densities of In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts are increased by more than twice compared with the2DEG electron density of the In0.17Al0.83N/AlN/GaN HFETs with normal-Ohmic contacts. And the trend of the2DEG electron mobility changed with the gate voltage for all the In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts is slower than that for the In0.17Al0.83N/AlN/GaN HFETs with normal-Ohmic contacts. Based on the measured SEM-EDS spectrum and the scattering mechanisms in In0.17Al0.83N/AlN/GaN HFETs (polarization Coulomb field scattering, polar optical-phonon scattering and interface roughness scattering), the above phenomenon was explained and the conclusion can be made that the polarization Coulomb field scattering (PCF) is closely related to the normal-Ohmic contact processing, and the PCF was weakened by the side-Ohmic contact processing in In0.17Al0.83N/AlN/GaN HFETs as same as in AlGaN/AlN/GaN HFET devices. Further, due to the stronger spontaneous polarization in the thinner In0.17Al0.83N barrier layer, the influence of the gate bias on the PCF in In0.17Al0.83N/AlN/GaN HFETs is greater than that in AlGaN/AlN/GaN HFETs. As a result, the PCF in In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts is stronger than that in AlGaN/AlN/GaN HFETs with side-Ohmic contacts. Moreover, the2DEG electron density in the In0.17Al0.83N/AlN/GaN HFETs with side-Ohmic contacts is increased by more than twice compared with the2DEG electron density in the In0.17Al0.83N/AlN/GaN HFETs with normal-Ohmic contacts.
     (c) A method to extract In0.18Al0.82N/AlN/GaN heterostructure Schottky barrier heights from forward Current-Voltage curves.
     From the forward current-voltage (Ⅰ-Ⅴ) characteristics of the circular and rectangular In0.18Al0.82N/AlN/GaN Schottky diodes, the flat-band voltage (V0) was analyzed and obtained. Then, the Schottky barrier heights of the prepared circular and rectangular Schottky diodes have been analyzed and calculated by self-consistently solving Schrodinger's and Poisson's equations. The calculated Schottky barrier heights for the prepared circular and rectangular Schottky diodes agree well with the photocurrent measured values.
     3. Comparison for the carrier mobility between the Ⅲ-Ⅴ nitrides and AlGaAs/GaAs heterostructure field-effect transistors
     Using the measured capacitance-voltage curves of Ni/Au Schottky contacts with different areas and the current-voltage characteristics for the AlGaAs/GaAs, AlGaN/AlN/GaN and In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors (HFETs) at low drain-source voltage, the two-dimensional electron gas (2DEG) electron mobility for the prepared HFETs was calculated and analyzed. It was found that there is obvious difference for the variation trend of the mobility curves between the Ⅲ-Ⅴ nitride HFETs and the AlGaAs/GaAs HFETs. In the Ⅲ-Ⅴ nitride HFETs, the variation trend for the curves of the2DEG electron mobility with the gate bias is closely related to the ratio of gate length to drain-to-source distance. While the ratio of gate length to drain-to-source distance has no effect on the variation trend for the curves of the2DEG electron mobility with the gate bias in AlGaAs/GaAs HFETs. The reason is attributed to the polarization Coulomb field scattering in the Ⅲ-Ⅴ nitride HFETs.
引文
[1]颜伟,韩伟华,张仁平,杜彦东,杨富华,器件与技术,48,79(2011)
    [2]郝跃,薛军帅,张进成,中国科学,42,1577(2012)
    [3]H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett.15,327 (1969)
    [4]S. Nakamura, Y. Harada and M. Seno, Appl. Phys. Lett.58,2021 (1991)
    [5]S. Nakamura, T. Mukai and M. Senoh, Jpn. J. Appl. Phys.30,1998 (1991)
    [6]R. Gaska, J. W. Yang, A. Osinsky, Q. Chen, M. A. Khan, A. O. Orlov, G. L. Snider and M. S. Shur, Appl. Phys. Lett.72,707 (1998).
    [7]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaars, J. S. Speck and U. K. Mishra, J. Appl. Phys.86,4520 (1999).
    [8]M. Gonschorek, J.-F. Carlin, E. Feltin, M. A. Py and N. Grandjean, Appl. Phys. Lett.89,062106(2006)
    [9]J. Q. Xie, X. F. Ni, M. Wu, J. H. Leach, U. Ozgur and H. Morkoc, Appl. Phys. Lett. 91,132116(2007)
    [10]W. C. Johnson, J. B. Parsons and M. C. Crew, J. Phys.Chem.36,2651 (1932)
    [11]M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan and J. Carter, Appl. Phys. Lett.60,3027(1992)
    [12]L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra, IEEE Electron Device Lett. 22,457(2001)
    [13]J. S. Lee, J. W. Kim, J. H. Lee, C. S. Kim, J. E. Oh, M. W. Shin and J. H. Lee, Electron. Lett.39,750 (2003)
    [14]V. M. Polyakov, F. Schwierz, I. Cimalla, M. Kittler, B. Lubbers, and A. Schober, J. Appl. Phys.106,023715 (2009)
    [15]M. Miyoshi, A. Imanishi, H. Ishikawa, T. Egawa, K. Asai, M. Mouri, T. Shibata, M. Tanaka and O. Oda, IEEE International Electron Devices Meeting,41,1031 (2004)
    [16]V. M. Polyakov, F. Schwierz, I. Cimalla, M. Kittler, B. Lubbers and A. Schober, J. Appl. Phys.106,023715 (2009)
    [17]M. A. Khan, Q. Chen, C. J. Sun, J. W. Yang, M. Blasingame, M. S. Shur and H. Park, Appl. Phys. Lett.68,514 (1996)
    [18]J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer and F. A. Ponce, Appl. Phys. Lett.92,101113 (2008).
    [19]Y. Jung, M. Mastro, J. Hite, C. R. Eddy Jr., J. Kim, Thin Solid Films,518,1747 (2010)
    [20]G. P. Liu, J. Wu, G. J. Zhao, S. M. Liu, W. Mao, Y. Hao, C. B. Liu, S. Y. Yang, X. L. Liu, Q. S. Zhu and Z. G. Wang,100,082101 (2012)
    [21]U. Singisetti, M. H. Wong, J. S. Speck and U. K. Mishra, IEEE Electron Device Lett.33,26(2012)
    [22]S. Kolluri, S. Keller, S. P. DenBaars and U. K. Mishra, IEEE Electron Device Lett.33,44 (2012)
    [23]M. A. Khan, A. Bhattarai, J. N. Kuznia and D. T. Olson, Appl. Phys. Lett.63, 1214(1993).
    [24]Y. Ando, Y. Okamoto, H. Miyamoto, T. Nakayama, T. Inoue and M. Kuzuhara, IEEE Electron Device Lett.24,289 (2003)
    [25]Y. F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra and P. Parikh, IEEE Electron Device Lett.25,117 (2004)
    [26]Y. F. Wu, M. Moore, A. Saxler, T. Wisleder and P. Parikh,64th Device Research Conf.151 (2006)
    [27]V. Adivarahan, M. Gaevski, A. Koudymov, J. Yang, G. Simin and M. A. Khan, IEEE Electron Device Lett.28,192 (2007)
    [28]S. Kollurin S. Keller, S. P. DenBaars and U. K. Mishra, IEEE Electron Device Lett.33,44(2012)
    [29]T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S. P. DenBaars, J. S. Speck and U. K. Mishra, IEEE Electron Device Lett.26,781 (2005)
    [30]V. Kumar, G. Chen, S. P. Guo and I. Adesida, IEEE Transactions on Electron Devices,53,1477 (2006)
    [31]M. Micovic, A. Kurdoghlian, P. Hashimoto, A. Schmitz, I. Milosavljevic, P. J. Willadsen, W. S. Wong, J. Duvall, M. Hu, M. Wetzel and D. H. Chow, IEDM Proceedings,1-3 (2006)
    [32]M. Micovic, A. Kurdoghlian, P. Hashimoto, M. Hu, M. Antcliffe, P. J. Willadsen, W. S. Wong, R. Bowen, I. Milosavljevic, Y. Yoon, A. Schmitz, M. Wetzel and D. H. Chow, Phys. Stat. Sol. (c) 5,2044 (2008)
    [33]Y. Pei, R. Chu, N. A. Fichtenbaum, Z. Chen, D. Brown, L. Shen, S. Keller, S. P. DenBaars and U. K. Mishra, Jpn. J. Appl. Phys.46, L1087 (2007)
    [34]M. Higashiwaki, T. Matsui and T. Mimura, IEEE Electron Device Lett.27,16 (2006)
    [35]M. Higashiwaki, T. Matsui and T. Mimura, Appl. Phys. Express,1,021103 (2008)
    [36]T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars and U. K. Mishra, IEEE Electron Device Lett.27,13 (2006)
    [37]K. Shinohara, D. Regan, I. Milosavljevic, A. L. Con-ion, D. F. Brown, P. J. Willadsen, C. Butler, A. Schmitz, S. Kim, V. Lee, A. Ohoka, P. M. Asbeck and M. Micovic, IEEE Electron Device Lett.32,1074 (2011)
    [38]U. Singisetti, M. H. Wong, J. S. Speck and U. K. Mishra, IEEE Electron Device Lett.33,26 (2012)
    [39]S. B. Driad, H. Maher, N. Defrance, V. Hoel, J. C. D. Jaeger, M. Renvoise and P. Frijlink, IEEE Electron Device Lett.34,36 (2013)
    [40]M. A. Khan, Q. Chen, C. J. Sun, J. W. Yang, M. Blasingame, M. S. Shur and H. Park, Appl. Phys. Lett.68,514 (1996)
    [41]W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda and I. Omura, IEEE Transactions Electron Devices,53,356 (2006)
    [42]T. Oka and T. Nozawa, IEEE Electron Device Lett.29,668 (2008)
    [43]Y. Cai, Y. G. Zhou, K. J. Chen and K. M. Lau, IEEE Electron Device Lett.26, 435 (2005)
    [44]Y. Cai, Y. G. Zhou, K. M. Lau and K. J. Chen, IEEE Transactions Electron Devices,53,2207 (2006)
    [45]J. Wuerfl, E. B. Treidel, F. Brunner, E. Cho, O. Hilt, P. Ivo, A. Knauer, P. Kurpas, R. Lossy, M. Schulz, S. Singwald, M. Weyers and R. Zhytnytska, Microelectronics Reliability,51,1710 (2011)
    [46]T. Fujii, N. Tsuyukuchi, M. Iwaya, S. Kamiyama, H. Amano and I. Akasaki, Jpn. J. Appl. Phys.45, L1048 (2006)
    [47]贾利芳,樊中朝,颜伟,杨富华,器件与技术,49,716(2012)
    [48]A. L. Corrion, M. Chen, R. Chu, S. D. Burnham, S. Khalil, D. Zehnder, B. Hughes and K. Boutros, Proceedings of Device Research Conference. Santa Barbara. CA. USA.213(2011)
    [49]C. Yi, R. Wang, W. Huang, W. C. W. Tang K. M. Lau and K. J. Chen, Proceedings of Electron Device Meeting (IEDM),389 (2007)
    [50]T. Mizutani, M. Ito, S. Kishimoto and F. Nakamura, IEEE Electron Device Lett. 28,549 (2007)
    [51]O. Hilt, F. Brunner, E. Cho, A. Knauer, E. B. Treidel and J. Wurfl, Proceeding of the 23rd International Symposium on Power Semiconductor Devices & IC's,239 (2011)
    [52]赵正平,中国电子科学研究院学报,6,257(2011)
    [53]Y. Cai, Z. Cheng, Z. Yang, C. W. Tang, K. M. Lau and K. J. Chen, IEEE Electron Device Lett.28,328 (2007)
    [54]K. Y. Wong, W. Chen and K. J. Chen, IEEE ISPSD,57 (2009)
    [55]N. Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars and U. K. Mishra, IEEE Electron Device Lett.21,421 (2000)
    [56]M. Yanagihara, Y. Uemoto, T. Ueda, T. Tanaka, and D. Ueda, Phys. Status Solidi A 206,1221 (2009).
    [57]E. B. Treidel, F. Brunner, O. Hilt, E. Cho, J. Wurfl and G. Trankle, IEEE Transactions on Electron Devices,57,3050 (2010)
    [58]M. A. Khan, J. Kuznia, A. Bhattarai et al. Proceedings of Material Reaearch Society Symposium,28,769 (1993)
    [59]S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu and H. Ohashi, Solid-State Electronics,50,1057 (2005)
    [60]S. Yagi, M. Shimizu, H. Okumura, H. Ohashi, K. Arai, Y. Yano and N. Akutsu, Proceedings of the 19th International on Power Semiconductor Devices & IC's,261 (2007)
    [61]N. Ikeda, S. Kaya, J. Li, T. Kokawa, M. Masuda and S. Katoh, Proceedings of the 21st International Symposium on Power Semiconductor Devices & IC's,251 (2009)
    [62]曾庆明,吕长治,刘伟吉,李献杰,赵永林,敖金平,徐晓春,功能材料与器件学报,6,170(2000)
    [63]孙殿照,胡国新,王晓亮,刘宏新,刘成海,曾一平,李晋闽,林兰英,半导体学报,22,1425(2001)
    [64]张锦文,闫桂珍,张太平,王玮,宁宝俊,武国英,半导体学报,23,424(2002)
    [65]张小玲,吕长治,谢谢雪松,李志国,曹春海,李拂晓,陈堂胜,陈效建,半导体学报,24,847(2003)
    [66]邵刚,刘新宇,和致经,刘键,魏珂,陈晓娟,吴德馨,电子器件,27,381(2004)
    [67]王勇,冯震,张志国,支撑技术,30,49(2005)
    [68]任春江,李忠辉,焦刚,董逊,李肖,陈堂胜,李拂晓,固体电子学研究进展,27,320(2007)
    [69]王晓亮,第十五届全国化合物半导体材料、微波器件和光电器件学术会议论文集,122(2008)
    [70]任春江,陈堂胜,焦刚,耿涛,薛舫时,陈辰,中国电子科学研究院学报4,157(2009)
    [71]刘果果,魏珂,黄俊,刘新宇,牛洁斌,红外与毫米波学报,30,289(2011)
    [72]J. Kuzmik, G. Pozzovivo, C. Ostermaier, G. Strasser, D. Pogany, E. Gornik, J. F. Carlin, M. Gonschorek, E. Feltin and N. Grandjean, J. Appl. Phys.106,124503 (2009)
    [73]李若凡,杨瑞霞,武一宾,张志国,许娜颖,马永强,物理学报,57,2450(2008)
    [74]J. Kuzmik, IEEE Electron Device Lett.22,510 (2001)
    [75]M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py and N. Grandjean, Appl. Phys. Lett.89,062106(2006)
    [76]O. Katz, D. Mistele, B. Meyler, G. Bahir, J. Salzman, Electronics Lett.40,1304 (2004)
    [77]M. Kariya, S. Nitta, S. Yamaguchi, H. Amano and I. Akasaki, Jpn. J. Appl. Phys. 38, L984 (1999)
    [78]M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py and N. Grandjean, Appl. Phys. Lett.89,062106(2006)
    [79]J. Q. Xie, X. F. Ni, M. Wu, J. H. Leach, U. Ozgur and H. Morkoc, Appl. Phys. Lett.91,132116(2007)
    [80]R. Tulek, A. Ilgaz, S. Gokden, A. Teke, M. K. Ozturk, M. Kasap, S. Ozcelikm E. Arslan and E. Ozbay, J. Appl. Phys.105,013707 (2009)
    [81]J. Kuzmik, IEEE Electron Device Lett.22,510 (2001)
    [82]M. Neuburger, T. Zimmermann, E. Kohn, A. Dadgar, F. Schulze, A. Krtschil, M. Gunther, H. Witte, J. Blasing, A. Krost, World Scientific,14,785 (2004)
    [83]O. Katz, D. Mistele, B. Meyler, G. Bahir and J. Salzman, Electronics Lett.40,20 (2004)
    [84]J. Kuzmik, A. Kostopoulos, G. Konstantinidis, J. F. Carlin, A. Georgakilas and D. Pogany, IEEE Transactions on Electron Devices,53,422 (2006)
    [85]N. Sarazin, E. Morvan, M. A. di F. Poisson, M. Oualli, C. Gaquiere, O. Jardel, O. Drisse, M. Tordjman, M. Magis and S. L. Delage, IEEE Electron Device Lett.31,11 (2010)
    [86]A. Crespo, M. M. Bellot, K. D. Chabak, J. K. Gillespie, G. H. Jessen, V. Miller, M. Trejo, G. D. Via, D. E. Walker, Jr. and B. W. Winningham, IEEE Electron Device Lett.31,2 (2010)
    [87]K. D. Chabak, M. Trejo, A. Crespo, D. E. Walker, Jr., J. W. Yang, R. Gaska, M. Kossler, J. K. Gillespie, G. H. Jessen, V. Trimble and G. D. Via, IEEE Electron Device Lett.31,561 (2010)
    [88]D. S. Lee, X. Gao, S. P. Guo, D. Kopp, P. Fay and T. Palacios, IEEE Electron Device Lett.32,1525(2011)
    [89]Y. Z. Yue, Z. Y. Hu, J. Guo, B.S. Rodriguez, G. W. Li, R. H. Wang, F. Faria, T. Fang, B. Song, X. Gao, S. P. Guo, T. Kosel, G. Snider, P. Fay, D. Jena and H. L. Xing, IEEE Electron Device Lett.33,988 (2012)
    [90]D. Denninghoff, J. Lu, M. Laurent, E. Ahmadi, S. Keller and U. K. Mishra, Proc. Device Res. Conf.1 (2012)
    [91]M. N. Gurusinghe. S. K. Davidsson, and T. G. Andersson, Phys. Rev. B 72, 045316(2005).
    [92]D. Jena, A. C. Gossard and U. K. Mishra, Appl. Phys. Lett.76,1707 (2000)
    [93]B. K. Ridley, B. E. Foutz, and L. F. Eastman, Phys. Rev. B 61,16862 (2000)
    [94]G. P. Liu, J. Wu, Y. W. Lu, G. J. Zhao, C. Y. Gu, C. B. Liu, L. Sang, S. Y. Yang, X. L. Liu, Q. S. Zhu and Z. G. Wang, Appl. Phys. Lett.100,162102 (2012)
    [95]D. Zanato, S. Gokden, N. Balkan, B. K. Ridley, and W. J. Schaff, Semicond. Sci. Technol.19,427 (2004)
    [96]J. Z. Zhao, Z. J. Lin, T. D. Corrigan, Z. Wang, Z. D. You, and Z. G. Wang, Appl. Phys. Lett.91,173507 (2007)
    [97]Y. J. Lv, Z. J. Lin, Y. Zhang, L. G. Meng, C. B. Luan, Z. F. Cao, H. Chen, and Z. G. Wang, Appl. Phys. Lett.98,123512 (2011)
    [1]王忆峰,唐利斌,光电技术应用24,36(2009)
    [2]S. Kaciulis, L. Pandolfi, S. Viticoli, M. Peroni and A. Passaseo, Appl. Surf. Sci. 253,1055 (2006).
    [3]W. S. Lau, W. T. Wong, Joy B. H. Tan and B. P. Singh, Microelectronics Reliability 48,794 (2009)
    [4]D. Selvanathan, Fitih M. Mohammed, J. O. Bae, I. Adesida and Katherine H. A. Bogart, J. Vac. Sci. Technol. B 23,2538 (2005)
    [5]L. Wang, Fitih M. Mohammed and I. Adesida, J. Appl. Phys.103,093516 (2008)
    [6]施敏,半导体器件物理与工艺(第二版)(第十二章)图形曝光与刻蚀,苏州大学出版社(2002)
    [7]童志义,电子工业专用设备,30,1(2001)
    [8]K.A.杰克逊,材料科学与技术丛书(第16卷)半导体工艺,科学出版社(1999)
    [9]E. Harush, S. Brandon, J. Salzman and Y. Paz, Semicond. Sci. Technol.17,510 (2002)
    [10]R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr. C. Tran and M. Schurman, Appl. Phys. Lett. 69,1119(1996)
    [11]薛舫时,微纳电子技术,9,1(2004)
    [12]杨燕,王文博,郝跃,半导体学报,27,1823(2006)
    [13]Q. Z. Liu, S. S. Lau, Solid State Electron,42,677 (1998)
    [14]Z. J. Lin, H. Kim, J. Lee, and W. Lu, Appl. Phys. Lett.84,1585 (2004).
    [15]Z. J. Lin, W. Lu, J. Lee, D. M. Liu, J. S. Flynn and G. R. Brandes, Appl. Phys. Lett.82,4364 (2003).
    [16]C. T. Lee, Y. J. Lin and D. S. Liu, Appl. Phys. Lett.79,2573 (2001)
    [17]K. Ibrahim, A. A. Aljubouri, Y. C. Lee, Z. Hassan and M. R. Hashim, SPIE,5353, 151 (2004)
    [18]Y. Liu, M. Z. Kauser, P. P. Ruden, Z. Hassan, Y. C. Lee, S. S. Ng and F. K. Yam, Appl. Phys. Lett.88,022109 (2006)
    [19]Y. Guhel, B. Boudart, E. Delos, M. Germain and Z. Bougrioua, Microelectronics Reliability,46,786 (2006)
    [20]J. P. Ao, D. Kikuta, N. Kubota, Y. Naoi and Y. Ohno, IEEE Electron Device Lett. 24,500 (2003)
    [21]L. J. V. D. Pauw, Phlips Tech. Rev.20,220 (1958)
    [22]冯锡淇,物理学报,22,967(1966)
    [23]H. Weiss, Oxford:Pergamon (1969)
    [24]J. Z. Zhao, Z. J. Lin, T. D. Corrigan, Z. Wang, Z. D. You and Z. G. Wang, Appl. Phys. Lett.91,173507(2007)
    [25]R. H. Fowler, Phys. Rev.38 45 (1931)
    [26]C. R. Crowell, W. G. Spitzer, L. E. Howarth, et al., Phys. Rev.127,2006(1962)
    [27]C. Zou, D. Kushner and S. Zhang, Appl. Phys. Lett.98,082905 (2011)
    [1]J. Z. Zhao, Z. J. Lin, T. D. Corrigan, Z. Wang, Z. D. You, and Z. G. Wang, Appl. Phys. Lett.91,173507(2007)
    [2]Y. J. Lv, Z. J. Lin, Y. Zhang, L. G. Meng, C. B. Luan, Z. F. Cao, H. Chen, and Z. G. Wang, Appl. Phys. Lett.98,123512 (2011)
    [3]D. Jena, A. C. Gossard and U. K. Mishra, Appl. Phys. Lett.76,1707 (2000)
    [4]B. K. Ridley, B. E. Foutz, and L. F. Eastman, Phys. Rev. B 61,16862 (2000)
    [5]Y. J. Ohmaki, M. Tanimoto, S. Akamatsu, and T. Mukai, Jpn. J. Appl. Phys.45, L1168 (2006)
    [6]Z. J. Lin and W Lu, J. Appl. Phys.99,014504 (2006)
    [7]Y. F. Gao, and M. Zhou, J. Appl. Phys.109,014310 (2011)
    [8]C. Rivera, and E. Munoz, Appl. Phys. Lett.94,053501 (2009)
    [9]Z. J. Lin, W. Lu, J. Lee, D. M. Liu, J. S. Flynn, and G. R. Brandes, Electron. Lett. 39,1412(2003)
    [10]F. Gonzalez-Posada Flores, C. Rivera, and E. Munoz, Appl. Phys. Lett.95, 203504(2009)
    [11]K. Hirakawa and H. Sakaki, Phys. Rev. B 33(12),8291 (1986)
    [12]K. Lee, M. S. Shur, T. J. Drummond, and H. Morkoc, J. Appl. Phys.54(11), 6432 (1983)
    [13]L. Hsu and W. Walukiewicz, Phys. Rev. B 56(3),1520 (1997)
    [14]D. N. Quang, V. N. Tuoc, and T. D. Huan, Phys. Rev. B 68,195316 (2003)
    [15]M. N. Gurusinghe. S. K. Davidsson, and T. G. Andersson, Phys. Rev. B 72, 045316(2005)
    [16]Y. J. Lv, Z. J. Lin, L. G. Meng, Y. X. Yu, C. B. Luan, Z. F. Cao, H. Chen, B. Q. Sun, and Z. G. Wang, Appl. Phys. Lett.99,123504 (2011)
    [17]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, J. Appl. Phys.87(1),334 (2000)
    [18]T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys.54(2),437 (1982)
    [19]P. J. Price, Surf. Sci.143,145 (1984)
    [20]D. Zanato, S. Gokden, N. Balkan, B. K. Ridley, and W. J. Schaff, Semicond. Sci. Technol.19,427 (2004)
    [21]B. L. Gelmont, M. Shur, and M. Stroscio, J. Appl. Phys.77(2),657 (1995)
    [22]D. K. Ferry and S. M. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, England,1997)
    [23]I. Daumiller, C. Kirchner, M. Kamp, K. J. Ebeling, and E. Kohn, IEEE Electron Device Lett.20,448(1999)
    [24]Y. Cai, Z. Q. Cheng, W. C. W. Tang, K. M. Lau, and K. J. Chen, IEEE Trans. Electron Devices 53,2223 (2006)
    [25]T. Egawa, G. Y. Zhao, H. Ishikawa, M. Umeno, and T. Jimbo, IEEE Trans. Electron Devices 48,603 (2001)
    [26]T. Hussain, M. Micovic, T. Tsen, M. Delaney, D. Chow, A. Schmitz, P. Hashinoto, D. Wong, J. S. Moon, M. Hu, J. Duvall, and A. McLaughlin, Electron. Let.39,1708(2003)
    [27]Y. J. Lv, Z. H. Feng, T. T. Han, S. B. Dun, G. D. Gu, J. Y Yin, B. C. Sheng, B. Liu, Y L. Fang, Y L. Fang, S. J. Cai, Z. J. Lin, C. B. Luan, and Q. H. Yang, Appl. Phys. Lett.103,113502(2013)
    [28]Y. J. Lv, Z. J. Lin, L. G. Meng, C. B. Luan, Z. F. Cao, Y X. Yu, Z. H. Feng and Z. G. Wang, Nanoscale Res. Lett.7,434 (2012)
    [29]R. H. Wang, P. Saunier, X. Xing, C. X. Lian, X. Gao, S. P. Guo, G. Snider, P. Fay, D. Jena, and H. L. Xing, IEEE Electron Device Lett.31,1383 (2010)
    [30]Y. X. Yu, Z. J. Lin, C. B. Luan, Y. J. Lv, Z. H. Feng, M. Yang, Y. T. Wang, and H. Chen, AIP Advances,3,092115 (2013)
    [1]B. E. Foutz, S. K. O'Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys.85, 7727(1999)
    [2]J. Z. Zhao, Z. J. Lin, T. D. Corrigan, Z. Wang, Z. D. You, and Z. G. Wang, Appl. Phys. Lett.91,173507 (2007)
    [3]Y. J. Lv, Z. J. Lin, Y. Zhang, L. G. Meng, C. B. Luan, Z. F. Cao, H. Chen, and Z. G. Wang, Appl. Phys. Lett.98,123512 (2011)
    [4]X. Z. Dang, R. J. Welty, D. Qiao, P. M. Asbeck, S. S. Lau, E. T. Yu, K. S. Boutros, and J. M. Redwing, IEEE Electron Lett.35,602 (1999)
    [5]M. E. Levinshtein, S. L. Rumyantsev, R. Gaska, J. W. Yang, and M. S. Shur, Appl. Phys. Lett.73,1089(1998)
    [6]E. T. Yu, X. Z. Dang, L. S. Yu, D. Qiao, P. M. Asbeck, S. S. Lau, G. J. Sullivan, K. S. Boutros, and J. M. Redwing, Appl. Phys. Lett.73,3917 (1998)
    [7]M. N. Gurusinghe, S. K. Davidsson, and T. G. Andersson, Phys. Rev. B 72, 045316(2005)
    [8]D. Jena, I. Smorchkova, A. C. Gossard, and U. K. Mishra, Phys. Stat. Sol. (b) 228, 617(2001)
    [9]B. K. Ridley, B. E. Foutz, and L. F. Eastman, Phys. Rev. B 61,16862 (2000)
    [10]K. Hirakawa, and H. Sakaki, Phys. Rev. B 33,8291 (1986)
    [11]F. Gonzalez-Posada Flores, C. Rivera, and E. Munoz, Appl. Phys. Lett.95, 203504 (2009)
    [12]Z. J. Lin, W. Lu, J. Lee, D. M. Liu, J. S. Flynn, and G. R. Brandes, Electron. Lett. 39,1412 (2003)
    [13]C. B. Luan, Z. J. Lin, Z. H. Feng, L. G. Meng, Y. J. Lv, Z. F. Cao, Y. X. Yu, and Z. G. Wang, J. Appl. Phys.112,054513 (2012)
    [14]Z. J. Lin and W. Lu, J. Appl. Phys.99,014504 (2006)
    [15]Y. F. Gao, and M. Zhou, J. Appl. Phys.109,014310 (2011)
    [16]C. Rivera, and E. Munoz, Appl. Phys. Lett.94,053501 (2009)
    [17]A. F. M. Anwar, R. T. Webster, and K. V. Smith, Appl. Phys. Lett.88,203510 (2006)
    [18]R. H. Fowler, Phys. Rev.38,45 (1931)
    [19]Y. J. Lv, Z. J. Lin, L. G. Meng, Y.X. Yu, C. B. Luan, Z. F. Cao, H.Chen, B. Q. Sun, and Z. G. Wang, Appl. Phys. Lett.99,123504 (2011)
    [20]Y. J. Lv, Z. J. Lin, T. D. Corrigan, J. Z. Zhao, Z. F. Cao, L. M. Meng, C. B. Luan, Z. G. Wang, and H. Chen, J. Appl. Phys.109,074512 (2011)
    [21]L. C. Guo, X. L. Wang, C. M. Wang, H. L. Xiao, J. X. Ran, W. J. Luo, X. Y. Wang, B. Z. Wang, C. B Fang, and G. X. Hu, Microelectronics Journal,39,777 (2008)
    [1]Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Kehias, S. P. Denbaars, and U. K. Mishra, IEEE Electron Device Lett.19,50 (1998)
    [2]G. J. Sullivan, M. Y. Chen, J. A. Higgins, J. W. Yang, Q. Chen, R. L. Pierson, and B. T. McDermott, IEEE Electron Device Lett.19,198 (1998)
    [3]Q. Chen, J. W. Yang, R. Gaska. M. A. Khan, M. S. Shur, G. J. Sullivan, A. L Sailor, J. A. Higgings, A. T. Ping, and I. Adesida, IEEE Electron Device Lett.19,44 (1998)
    [4]X. Z. Dang, P. M. Asbeck, E. T. Yu, G. J. Sullivan, M. Y. Chen, B. T. McDermott, K. S. Boutros, and J. M. Redwing, Appl. Phys. Lett.74,3890 (1999)
    [5]C. B. Luan, Z. J. Lin, Y. J. Lv, L. G. Meng, Y. X. Yu, Z. F. Cao, H. Chen, and Z. G. Wang, Appl. Phys. Lett.101,113501 (2012)
    [6]F. Gonzalez-Posada Flores, C. Rivera, and E. Munoz, Appl. Phys. Lett.95, 203504 (2009)
    [7]A. F. M. Anwar, R. T. Webster, and K. V. Smith, Appl. Phys. Lett.88,203510 (2006)
    [8]J. Z. Zhao, Z. J. Lin, T. D. Corrigan, Z. Wang, Z. D. You, and Z. G. Wang, Appl. Phys. Lett.91,173507(2007)
    [9]Y. J. Lv, Z. J. Lin, Y. Zhang, L. G. Meng, C. B. Luan, Z. F. Cao, H. Chen, and Z. G. Wang, Appl. Phys. Lett.98,123512 (2011)
    [10]K. Hirakawa, and H. Sakaki, Phys. Rev. B 33,8291 (1986)
    [11]B. K. Ridley, B. E. Foutz, and L. F. Eastman, Phys. Rev. B 61,16862 (2000)
    [12]Y. J. Lv, Z. J. Lin, L. G. Meng, C. B. Luan, Z. F. Cao, Y. X. Yu, Z. F. Feng and Z. G. Wang, Nanoscale Research Letters 7,434 (2012)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700