用户名: 密码: 验证码:
土壤微生物宏基因组Fosmid文库构建及杀线虫蛋白酶基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然环境中的微生物资源极其丰富。然而,只有不到1%的微生物是可纯培养的,99%以上的微生物是不可纯培养的。长期以来,人们用传统可纯培养方法来研究环境样品微生物,温室土壤样品也不例外,这就阻碍了对微生物多样性的研究和有益微生物资源的挖掘利用。因此,为全面弄清温室土壤中微生物群落结构组成,了解微生物与温室主栽植物、植物病原根结线虫以及微生物内部之间的互作关系;同时,从温室作物病虫害的发生与防控关系最为密切的微生物中筛选出有用的基因资源,本研究采用非培养的手段对微生物的群落结构组成和微生物功能基因的挖掘,尤其是杀线虫蛋白酶基因的挖掘做了初步研究,具体研究结果有以下几点:
     第一,通过构建古菌16S rRNA和真菌18S rRNA基因克隆文库来分析温室土壤古菌和真菌群落结构组成,为开发利用温室这一特殊的生态环境中丰富的微生物资源以及理解微生物与植物间的互作提供参考依据。采用研磨-冻融-溶菌酶-蛋白酶K-SDS热处理以及CTAB处理等理化方法,提取和纯化微生物总DNA,构建古菌16S rRNA和真菌18S rRNA基因克隆文库。利用DOUTER软件将古菌和真菌序列按照相似性97%的标准分成若干个可操作分类单元(OTUs)。土壤古菌克隆文库主要包括泉古菌门和未分类的古菌两大类,并有少部分广域古菌类群,所有泉古菌均属于热变形菌纲,共45个OTUs;真菌克隆文库包括真菌界的大多数亚门真菌,共24个OTUs,未发现担子菌门真菌。古菌多样性比较丰富,且发现少量的广域古菌(甲烷菌),出现这一情况的原因可能与温室长期高温高湿,高有机质含量,土壤处于缺氧环境中有关;土壤真菌的优势种群为子囊菌,占到土壤真菌的80%以上,这可能与大多数植物真菌性病害是通过菌丝体、菌核或子囊壳在土壤病残体中越冬有一定的关系。
     第二,采用16S rRNA基因克隆文库和宏基因组末端测序对温室黄瓜根围土壤细菌的多样性进行了初步分析。根据97%的序列相似性水平划分OUT,共有35个OUT分别属于γ-Proteobacteria、α-Proteobacteria、δ-Proteobacteria和Firmicutes,其中优势菌群是y-Proteobacteria,其次为Firmicutes, Bacillus为优势细菌。在优势种群上,末端测序结果与16S文库分析结果基本一致。但是,宏基因组末端测序包含了大多数的弱势种群,更能反映细菌多样性的真实水平。与露地土壤细菌16S文库相比较,土壤细菌多样性降低,这可能与温室多年连作,种植蔬菜种类单一直接相关。
     第三,本研究旨在通过非培养手段构建和筛选宏基因组文库,以求找到新型的杀线虫蛋白酶基因。采用密度梯度离心法提取和纯化温室土壤微生物总DNA,经平末端、连接、包装、转染后,构建宏基因组Fosmid文库。该文库库容31,008个克隆,平均插入片段36.5 kb,包含1.13 Gbp的微生物基因组信息,适合大规模的微生物功能基因筛选。同时,以脱脂奶为底物,以根结线虫为靶标,对文库进行功能初筛,共筛选到11个含蛋白酶基因的Fosmid克隆,其中,8个含杀线虫蛋白酶基因。
     最后,对P11做了进一步研究,构建和筛选出亚克隆(espl14a5),通过对基因结构进行了初步分析发现:esprol14a5是一种分泌型胞外蛋白酶,与来自于Maricaulis maris MCS10 (accession no. YP_756822 at NCBI)的丝氨酸蛋白酶S15仅有45%的同源性,有其保守的催化三元组:Asp469,His541和Ser348。杀线虫室内生物测定和盆栽实验表明:克隆发酵液在无需诱导剂,无需克隆载体上的启动子,就能起到杀线虫的作用。说明该蛋白酶基因有独立的启动子,同时,也说明该蛋白酶是一种分泌型胞外丝氨酸蛋白酶。
In the natural environment, microbial resources is extremely rich. However, only less than 1% of microorganisms can be cultured, over 99% of microorganisms cannot be cultured by the traditional culturable methods. For a long time, the traditional cultureable methods could be used to study the environmental samples, greenhouse soil samples were not exception, so it hindered the study of microbial diversity, it also restricted the excavation and utilization of benefical microbial resources. In order to understand the greenhouse soil microbial community composition fully, find out the interaction between microorganisms and greenhouse plant cultivars, plant pathogenic root-knot nematodes and among of themselves; at the same time, and to screen useful genetic resources from the microorganisms which related directly to the occurrence and the prevention of greenhouse crop diseases and pests. In these studies, uncultured methods could be used to survey the microbial community composition and to explore the microbial functional genes, especially the development and utilization of the nem-aticidal protease genes. The results were showed as follow:
     Firstly, in order to develope and utilize rich microbial resources in the particular greenhouse ecological environment, and to understand the interaction between micro-bes and plants, archaeal 16S rRNA and fungal 18S rRNA gene libraries were constru-cted to analyze the composition of archaeal and fungal community structure in green-house soil samples. Total greenhouse soil DNA was directly extracted and purified by skiving-thawing-lysozyme-proteinase K-SDS heating treatment and treatment of CTAB. Archaeal and fungal universal primers were used to amplify their specific ge-nes. After retrieving, ligating, transforming, screening of white clones, archaeal 16S rRNA and fungal 18S rRNA gene libraries were constructed. The sequences of archa-ea and fungi were defined into operational taxonomic units(OTUs) according to 97% similarity threshold for OTU assignment using the software program DOTUR. Phylo-genetic analysis showed that Crenarchaeota and unidentified-Archaea were the prima-ry two sub-groups and only a few of Euryarchaeota existed in the archaeal clone libra-ry, total 45 OTUs. All the Crenarchaeota belonged to Thermoprotei; except Basidiom- ycota, the other four sub-group fungi were discovered in the fungal library, total 24 OTUs. The diversity of archaea was very abundant and a few Euryarchaeota (methan-ebacteria) existed in the archaeal clone library. It is may be directly related to the long-term high temperature, high humidity, high content of organic matter environ-memt. The limitation of oxygen was the other reason to cause this phenomenon; Asc-omycotina(over 80%) were the dominant subgroups in fungal library. It was because most of the plant fungus diseases belonged to soil-borne diseases which gone through the winter by the ways of scierotium or perithecium and became the source of primary infection.
     Secondly, in order to study the bacterial diversity in cucumber rhizosphere soil samples,16S rRNA gene clone library and metagenomic end rondom sequencing were combined to analyze the bacterial diversity preliminarily.35 OTUs were obtained fro-m the library according to sequences similarity of 97%, which affiliated toγ-Proteob-acteria,α-Proteobacteria,δ-Proteobacteria,Firmicutes and so on.γ-Proteobacteria we-re the dominant bacterial groups followed by Firmicutes, and Bacillus were the domi-nant bacterial species.In terms of dominant bacteria, the results revealed by metagen-omic end rondom sequencing were similar to that of 16S rRNA gene library. However, method of metagenomic end rondom sequencing contained most of the vulnerable populations, so it could reflect the true level of bacterial diversity. Comparing to the exposed soil bacterial 16S rRNA gene library, the bacterial diversity was very low. This phenomenon may be directly related to Continuous cultivation for many years and plant a single vegetable species.
     Thirdly, in order to find out the novel nematicidal protease genes, a metagenomic fosmid library was constructed and screened by uncultured method. Method of dens-ity gradient centrifugation was used to extract and purify total greenhouse soil micro-bial DNA. After end-repair, ligation, packing and transformation, metagenomic fos-mid library was constructed. This library contained 31,008 clones with the average in-sert fragment of 36.5 kb, including 1.13Gbp microbial genetic information, so it was suitable for large-scale microbial functional gene screening. At the same time,in order to screen the library, function-driven screening was used as a potential strategy, skim milk was served as the substrate and root-knot nematodes were served as targets,11 Fosmid clones which contained putative protease genes could be screened, among them,8 Fosmid clones contained the putative nematicidal protease genes, included p11 and p7.
     Finally, further research was done on P11. The subclone library was constructed and the subclone espl14a5 which could degraded the protein was screened. After ana-lysis of gene structure, espl14a5 is a secreted extracellular protease and a database search for homologies revealed it possessed 45% identities with peptidase S15 from Maricaulis maris MCS10(accession no. YP 756822 at NCBI).It is a novel serine protease. Besides these, it has the serine protease-conserved catalytic triad residues, Asp469, His541 and the catalytic nucleophile Ser348.Indor biological nematicidal and potted tests showed that cloning broth could kill the nematodes without inducer and the promoter which existed in the clone plasmids. So this protease gene had its own promoter. At the same time,this protease is a secreted extracellular serine protease.
引文
[1]覃伟权,马子龙,吴多杨,等.几种引诱物对红棕象甲的诱集和田间监测[J].热带作物学报,2004,25(2):42—46.
    [2]李亮琴,卢民生,汪社层,等.保护地蔬菜根结线虫病的综合防治[J].现代农业科技,2008,16:134-135.
    [3]Strohl WR.The role of natural products in modern drug discovery[J].Drug Discov Today,2000,5:39-41.
    [4]Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiol Rev,1995, 59:143-169.
    [5]Hanada S.Filamentous anoxygenic phototrophs in hot spring[J].Microbes Environ,2003,18:51-61.
    [6]Kamagata Y. H.Tamaki. Cultivation of uncultured fastidious microbes[J]. Microbes Environ,2005,20:85-91.
    [7]Rappe MS, Giovannoni SJ. The uncultured microbial diversity[J]. Annu.Rev. Microbiol,2003,57:369-394.
    [8]Sekiguchi Y. Yet-to-be cultured microorganisms relevant to methane fermen-tation processes[J]. Microbes Environ,2006,21:1-15.
    [9]Handelsman J, Rondon M.R. Brady, S.F.,et al. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chem Biol,1998,5:245-249.
    [10]Whitman W, Coleman D, Wiebe W. Prokaryotes:the unseen majority[J]. Proc. Natl.Acad. Sci.USA,1998,95:6578-6583.
    [11]Brady,N.,and R.Weil.The nature and properties of soils[M]. Pearson Education, Inc., Upper Saddle River, NJ,2002.
    [12]Kennedy AC.Bacterial diversity in agroecosystems[J]. Agriculture,Ecosystems and Environment,1999,74:65-76.
    [13]Lopez-Garcia P, Gaill F, Moreira D.Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila[J]. Environ. Microbiol,2002,4:204-215.
    [14]Hedges SB. The origin and evolution of model organisms[J]. Nat Rev Genet. 2002,3:838-849.
    [15]Leister D. Chloroplast research in genomic age[J].Trends Genet.2003,19:47-56.
    [16]Zumft WG. Cell biology and molecular basis of denitrification[J]. Microbiol. Mol. Biol. Rev.1997,61(4):533-616.
    [17]Kowalchuk, GA, Stephen JR. Ammonia-oxidizing bacteria:a model for molec-ular microbial ecology[J]. Annu. Rev. Microbiol.2001,55:485-529.
    [18]Stetter KO. Extremophiles and their adaptation to hot environments[J]. FEBS Letters,1999,452(2):22-25.
    [19]Delong EF., Pace NR. Environmental diversity of bacteria and archaea[J].Syst Biol,2001,50:470-478.
    [20]Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes:The unseen majority[J]. Proc Nati Acad Sci USA,1998,95:6578-6583.
    [21]Hazen TC, Jimenez L, Lopez de Victoria G,et al. Comparison of bacteria from deep subsurface sediment and adjacent groundwater[J]. Microbial Ecology,1991, 22:293-304.
    [22]D'Hondt S, Rutherford S, Spivack AJ. Metabolic Activity of Subsurface Life in Deep-Sea Sediments[J]. Science,2002,295:2067-2070.
    [23]R RosselloL-Mora, R Amann. The species concept of prokaryotes[J]. FEMS Microbiology Reviews,2001,23:39-67.
    [24]Stackebrandt E, Frederiksen W, Garrity GM, et al. Report of the ad hoc comm-ittee for the re-evaluation of the species definition in bacteriology[J]. Int J Syst Evol Microbiol,2002,52:1043-1047.
    [25]Brenner DJ, Staley JT, Krieg NR. Classification of prokaryotic organisms and the concept of speciation[M]. Boone D, Castenholz R, Garrity G(eds). In bergey's manual of systematic bacteriology,2nd ed. Springer Verlag, New York.
    [26]Vandamme P, Pot B, Gillis M, et al. Polyphasic taxonomy, a consensus approach to bacterial systematics[J]. Microbiol.Rev.,1996,60(2):407-438.
    [27]Torsvik V, Goks(?)yr J, Daae FL. High diversity in DNA of soil bacteria[J]. Appl Environ Microbiol.1990,56(3):782-787.
    [28]Torsvik V, Daae FL, Sandaa RA, et al. Novel techniques for analysing microbial diversity in natural and perturbed environments[J]. Journal of Biotechnology,1998,64(1):53-62.
    [29]Ovreas L, Torsvik V. Microbial Diversity and Community Structure in Two Different Agricultural Soil Communities[J]. Microbial Ecology,1998,36:303-315.
    [30]Ovreas L, Daae FL, Heldal M, et al. Paper presented at the 9th international symposium on microbial ecology:Interaction in the microbial world[J]. Amsterdam, 2001,26 to 30 August.
    [31]Dykhuizen DE. Santa Rosalia revisited:why are there so many species of bacteria?[J]. Antonie Van Leeawenhoek.1998,73:25-33.
    [32]Treves DS, Xia B, Zhou J, et al. A Two-Species Test of the Hypothesis That Spatial Isolation Influences Microbial Diversity in Soil[J]. Microbial Ecology,2003, 45:20-28.
    [33]Hughes JB, Hellmann JJ, Ricketts TH, et al. Counting the Uncountable: Statistical Approaches to Estimating Microbial Diversity[J]. Applied and Environmental Microbiology,2001,67(10):4399-4406.
    [34]Torsvik V, Ovreas L. Microbial diversity and function in soil:from genes to ecosystems[J]. Current Opinion in Microbiology,2002,5(3):240-245.
    [35]Rondon MR, August PR, Bettermann AD, et al. Cloning the Soil Metagenome: a Strategy for Accessing the Genetic and Functional Diversity of Uncultured Microorganisms[J]. Appl Environ Microbiol,2000,66(6):2541-2547.
    [36]Beja O, Suzuki MT, Koonin EV, et al. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage[J]. Environ Microbiol,2008,2(5):516-529.
    [37]Stokes HW,Holmes AJ,Nield BS,et al. Gene Cassette PCR:Sequence Independ-ent Recovery of Entire Genes from Environmental DNA[J].Appl Environ Microbiol, 2001,67 (11):5240-5246.
    [38]DeLong EF, Wickham GS, Pace NR. Phylogenetic stains:ribosomal RNA based probes for the identification of single cells[J]. Science,1989,243:1360-1363.
    [39]Wintzingerode EV, Gobel UB, Stachebrandt E. determination of microbial diversity in environmental samples:pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev,1997,21:213-229.
    [40]Thompson JR, Marcelino LA, Polz MF. Heteroduplexes in mixed-template amplifications:formation, consequence and elimination by 'reconditioning PCR'[J]. Nucleic Acids Research,2002,30(9):2083-2088.
    [41]Hugenholtz P, Goebel BM, Pace NR. Impact of Culture-Independent Studies on the Emerging Phylogenetic View of Bacterial Diversity[J]. Journal of Bacteriology, 1998,180(18):4765-4774.
    [42]Huber HM, Hohn J, Rachel R, et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont[J]. Nature,2002,417:63-67.
    [43]Woese CR. Bacterial evolution[J]. Microbiol Rev,1987,51:221-271.
    [44]Bintrim SB, Donohue TJ, Handelsman J, et al. Molecular phylogeny of archaea from soil[J]. Proc Nati Acad Sci USA,1997,94:277-282.
    [45]Takai K, Moser DP, DeFlaun M, et al. Archaeal Diversity in Waters from Deep South African Gold Mines[J]. Appl Environ Microbiol,2001,67(12):5750-5760.
    [46]DeLong EF, Taylor LT, Marsh TL, et al. Visualization and Enumeration of Mar-ine Planktonic Archaea and Bacteria by Using Polyribonucleotide Probes and Fluore-scent In Situ Hybridization[J]. Appl Environ Microbiol,1999,65(12):5554-5563.
    [47]Watanabe K, Kodama Y, Hamamura N, et al. Diversity, Abundance, and Activity of Archaeal Populations in Oil-Contaminated Groundwater Accumulated at the Bottom of an Underground Crude Oil Storage Cavity[J]. Appl Environ Microbiol, 2002,68(8):3899-3907.
    [48]Torre J. de la, Christianson LM, Oded Beja. et al. Proteorhodopsin genes are distributed among divergent marine bacterial taxa[J]. Proc Natl Acad Sci USA,2003, 100:12830-12835.
    [49]Henne A, Schmitz RA, Bomeke M, et al. Screening of Environmental DNA Libraries for the Presence of Genes Conferring Lipolytic Activity on Escherichia coli[J]. Appl Environ Microbiol,2000,66(7):3113-3116.
    [50]Richardson TH, Tan X, Frey G, et al. A Novel, High Performance Enzyme for Starch Liquefaction:Discovery and optimization of a low pH, thermostable-amylase[J]. J Biol Chem,2002,277:26501-26507.
    [51]Perna NT, Plunkett G, Burland V, et al. Genome sequence of enterohaemorrha-gic Escherichia coli 0157:H7[J]. Nature,2001,409:529-533.
    [52]Welch RA, Burland V, Plunkett G, et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli[J]. Proc Nati Acad Sci USA,2002,99:17020-17024.
    [53]Shigenobu S, Watanabe H, Hattori M, et al. Genome sequence of the endocell-ular bacterial symbiont of aphids Buchnera sp. APS[J]. Nature,2000,7:81-86.
    [54]Galagan JE, Nusbaum C, Roy A, et al. The genome of M.acetivorans reveals extensive metabolic and physiological diversity[J]. Genome Rev,2002,12:532-542.
    [55]Fraser CM, Eisen J, Fleischmann RD, et al. Comparative genomics and under-standing of microbial biology[J]. Genomics,2000,6:505-512.
    [56]Liu Y, Zhou J, Omelchenko MV, et al. Transcriptome dynamics of Deinococ-cus radiodurans recovering from ionizing radiation[J].Proc Nati Acad Sci USA,2003, 100:4191-4196.
    [57]Moran NA. Microbial MinimalismGenome Reduction in Bacterial Pathogens [J]. Cell,2002,108(5):583-586.
    [58]Chen, K.,& Pachter, L. Bioinformatics for wholegenome shotgun sequencing of microbial communities[J].PLoS Computational Biology,2005,1,106-112.
    [59]Plamena E, Wolfgang L, Andre J,et al. Direct Cloning from Enrichment Cultures, a Reliable Strategy for Isolation of Complete Operons and Genes from Microbial Consortia[J]. Applied and Environmental Microbiology.2001,67(1):89-99.
    [60]Marc G. Dumont & J. Colin Murrell.Stable isotope probing - linking microbial identity to function[J]. Nature Reviews Microbiology.2005,3:499-504.
    [61]Carl B. Abulencia,Denise L. Wyborski, Joseph A. Garcia,et al.Environmental Whole-Genome Amplification To Access Microbial Populations in Contaminated Sediments[J].Applied and Environmental Microbiology.2006,72(5):3291-3301.
    [62]Reto Crameri and Mark Suter. Display of biologically active proteins on the surface of filamentous phages:a cDNA cloning system for selection of functional gene products linked to the genetic information responsible for their production[J].Gene. 1993,137(1)69-75.
    [63]Wu LY, Dorothea K.Thompson, Li GS, et al.Development and Evaluation of Functional Gene Arrays for Detection of Selected Genes in the Environment[J].Appli-ed and Environmental Microbiology,2001,67(12):5780-5790.
    [64]Philipp A, Hans L, Jurgen K, et al. Subnanoliter enzymatic assays on micro-arrays[J]. PROTEOMICS,2005,5(2):420-425.
    [65]Elizabeth A.G,Dionysios A.A and Bryan A. W.Suppressive subtractive hybr-idization as a tool for identifying genetic diversity in an environmental metagenome: the rumen as a model[J].Environmental Microbiology.2004,6:928-937.
    [66]Jonathan L. S, Frederick S. C and Ronald L. C,et al.Metagenomic Profiling: Microarray Analysis of an Environmental Genomic Library[J]. Applied and Environ-mental Microbiology,2003,69(8):4927-4934.
    [67]Cynthia D.G, Jan F S, Bruce E. T,et al.Open systems:panoramic views of gene expression[J]. Journal of Immunological Methods.2001,250(1-2):67-79.
    [68]Andrew E B, Claudia C,Tina S,et al.Isolation of high molecular weight DNA from soil for cloning into BAC vectors[J].FEMS. Microbiol Lett.2006,223(1):15-20.
    [69]M.Krsek arid E.M.H.Wellington.Comparison of different methods for the isola-tion and purification of total community DNA from soil[J]. Journal of Microbiological Methods.1999,39(1):1-16.
    [70]JL Stein,TL Marsh,KY Wu,et al.Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon[J]. App Environ Microbiol.1996,178(3):591-599.
    [71]Berry,A.E.,Chiocchini,C.,Selby,T.,Sosio,M,et al.Isolation of high molecular weight DNA from soil for cloning into BAC vectors[J].FEMS Microbiology Letters, 2003,223:15-20.
    [72]Liles MR, Williamson LL, Handelsman,J, Goodman RM. Isolation of high mo-lecular weight genomic DNA from soil bacteria for genomic library construction.In G. A. Kowalchuk, F. J. De Bruijn, I. M. Head, A. D. L.Akkermans,& J. D. Van Elsas (Eds.)Molecular microbial ecology manual Dordrecht, The etherlands:Kluwer. 2004,839-849.
    [73]Xu,J.P.Microbial ecology in the age of genomics and metagenomics:Concepts, tools, and recent advances[J] Molecular Ecology.2006,15,1713-1731.
    [74]Gabor,E. M.,Alkema,W. B. L.,& Janssen,D. B.Quantifying the accessibility of the metagenome by random expression cloning techniques[J].Environmental Microb-iology.2004a,6:879-886.
    [75]Youguo Li,Margaret Wexler,David J.Richardson,et al.Screening a wide host range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes[J] Environmental Microbiology,2005,7 (12):1927-1936.
    [76]Martinez A, Kolvek SJ, Yip CLT,et al.Genetically Modified Bacterial Strains and Novel Bacterial Artificial Chromosome Shuttle Vectors for Constructing Environ-mental Libraries and Detecting Heterologous Natural Products in Multiple Expression Hosts[J]. Appl Environ Microbiol.2004,70(4):2452-2463.
    [77]Daniel, R.The metagenomics of soil[J].Nat Rev Microbiol.2005,3:470-478.
    [78]Oded Beja,Eugene V.Koonin,L. Aravind,et al.Comparative Genomic Analysis of Archaeal Genotypic Variants in a Single Population and in Two Different Oceanic Provinces[J].Applied and Environmental Microbiology.2002,68(1):335-345.
    [79]Schmidt TM, DeLong EF, Pace NR. Analysis of a marine picoplankton comm-. unity by 16S rRNA gene cloning and sequencing[J].J Bacteriol.1991,173(14):4371-4378.
    [80]Barbara J, Campbell, Jeffrey L.Stein,and S. Craig Cary.Evidence of Chemoli-thoautotrophy in the Bacterial Community Associated with Alvinella pompejana,a Hydrothermal Vent Polychaete[J].Appl Enviro Microbiol.2003,69(9):5070-5078.
    [81]David M, Francisco RV, Purificacion LG. Metagenomic analysis of mesopelag-ic Antarctic plankton reveals a novel deltaproteobacterial group[J].Microbiology. 2006,152:505-517.
    [82]Liles MR, Manske BF, Bintrim SB,et al. A Census of rRNA Genes and Linked Genomic Sequences within a Soil Metagenomic Library [J].Appl Environ Microbiol, 2003,69(5):2684-2691.
    [83]Quaiser A,Ochsenreiter T,Klenk H.P,et al.First insight into the genome of an uncultivated crenarchaeote from soil[J]. Enviro Microbiol.2002,4(10):603-611.
    [84]Quaiser A,Ochsenreiter T,Lanz C,et al.Acidobacteria form a coherent but highly diverse group within the bacterial domain:evidence from environmental gen-omics[J]. Molecular Microbiology,2003,50 (2):563-575.
    [85]Vergin K.L.,Urbach E,Stein J.L.,et al.Screening of a Fosmid Library of Marine Environmental Genomic DNA Fragments Reveals Four Clones Related to Members of the Order Planctomycetales[J].Appl Environ Microbiol.1998,64(8):3075-3078.
    [86]Elshahed M.S.,Najar F.Z.,Aycock M.,et al.Metagenomic Analysis of the Micro-bial Community at Zodletone Spring (Oklahoma):Insights into the Genome of a Me-mber of the Novel Candidate Division OD1[J].Appl Environ Microbiol.2005;71(11): 7598-7602.
    [87]Nunoura T, Hirayama H, Takami H.,et al.Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments[J].Environ Microbiol.2005,7(12),1967-1984.
    [88]Nesb(?) C.L,Boucher Y,Dlutek M, et al. Lateral gene transfer and phylogenetic assignment of environmental fosmid clones[J].Env Microbio.2005,7 (12),2011-2026.
    [89]Oded Beja.To BAC or not to BAC:marine ecogenomics[J].Current Opinion in Biotechnology.2004,15 (3):187-190.
    [90]Schleper C, DeLong E.F., Preston C.M.,et al.Genomic Analysis Reveals Chromosomal Variation in Natural Populations of the Uncultured Psychrophilic Archaeon Cenarchaeum symbiosum[J].J Bacteriol.1998,180(19):5003-5009.
    [91]Treusch A.H., A Kletzin,G Raddatz,et al.Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea[J].Environmental Microbiology.2004,6:970-980.
    [92]Handelsman J. Metagenomics:Application of Genomics to Uncultured Micro-organisms[J]. Microbiol Molecu Biol Rev,2004,68(4):669-685.
    [93]Kimura N and Urushigawa Y. Metabolism of dibenzo-p-dioxin and chlorinated dibenzo-p-dioxin by a gram-positive bacterium, Rhodococcus opacus SAO101[J]. Journal of Bioscience and Bioengineering.2001,92(2):138-143.
    [94]Handelsman,J.Sorting out metagenomes[J].Nat.Biotechnol.2005,23:38-39.
    [95]Brzostowicz P.C.,Walters D.M.,Thomas S.M.,et al.mRNA Differential Display in a Microbial Enrichment Culture:Simultaneous Identification of Three Cyclohexan-one Monooxygenases from Three Species[J]Appl Env Microbiol.2003,69(1):334-342.
    [96]Henne A,Daniel R,Schmitz R.A.,et al.Construction of Environmental DNA Li-braries in E.coli and Screening for the Presence of Genes Conferring Utilization of 4-Hydroxybutyrate[J]Appl Environ Microbiol.1999,65(9):3901-3907.
    [97]Knietsch A,Waschkowitz T,Bowien S,et al.Construction and Screening of Met-agenomic Libraries Derived from Enrichment Cultures:Generation of a Gene Bank for Genes Conferring Alcohol Oxidoreductase Activity on Escherichia coli[J].Applied and Environmental Microbiology,2003,69 (3):1408-1416.
    [98]Wexler M,Bond P L.,Richardson D J.,et al.A wide host-range metagenomic lib-rary from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogen-ase[J].Environmental Microbiology.7(12):1917-1924.
    [99]Gabor E.M., Vries E J. and Janssen D B..Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases[J].Environmental Microbiology.2004,6(9),948-958. [100] Riesenfeld C.S.,Goodman R. M.and Handelsman.Uncultured soil bacteria are a reservoir of new antibiotic resistance genes[J].Env Microbiol.2004,6(9):981-989.
    [101]Diaz-Torres M.L.,R. McNab,Spratt D.A.,et al.Novel Tetracycline Resistance Determinant from the Oral Metagenome[J].Antimicrob Agents Chemother.2003,47(4): 1430-1432.
    [102]Diaz-Torres M.L., Villedieu A,Hunt N,et al.Determining the antibiotic resis-tance potential of the indigenous oral microbiota of humans using a metagenomic approach[J].FEMS Microbiology Letters.2006,258(2):257-262.
    [103]Yun J,Kang S,Park S,et al.Characterization of a Novel Amylolytic Enzyme Encoded by a Gene from a Soil-Derived Metagenomic Library[J].Applied and Envi-ronmental Microbiology,2004,70 (12):7229-7235.
    [104]Walter J, Mangold M, Tannock G W., et al. Construction, Analysis and B-Glucanase Screening of a Bacterial Artificial Chromosome Library from the Large-Bowel Microbiota of Mice[J].Appl Environ Microbiol.2005,71(5):2347-2354.
    [105]Voget S.,C.Leggewie,A.Uesbeck,et al.Prospecting for Novel Biocatalysts in a Soil Metagenome[J].Appl Environ Microbiol.2003,69(10):6235-6242.
    [106]Knietsch Anja, Waschkowitz Tanja,Bowien S.,et al.Metagenomes of Complex Microbial Consortia Derived from Different Soils as Sources for Novel Genes Confer-ring Formation of Carbonyls from Short-Chain Polyols on Escherichia coli[J].J.Mol. microbiol.biotechnol,2003,5:46-56.
    [107]Healy F.G.,R.M.Ray, H. C.Aldrich,et al.Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose[J]. Appl Environ Microbiol,1995,43 (4):667-674.
    [108]Cottrell M T.Jessica A.M,and David L. K.Chitinases from Uncultured Marine Microorganisms[J]. Appl Environ Microbiol.1999,65(6):2553-2557.
    [109]Knietsch A, Bowien S,Whited G,et al.Identification and Characterization of Coenzyme B12-Dependent Glycerol Dehydratase- and Diol Dehydratase-Encoding Genes from Metagenomic DNA Libraries Derived from Enrichment Cultures[J]. Applied and Environmental Microbiology.2003,69(6):3048-3060.
    [110]Ferrer M.,Golyshina O.,Chernikova T.,et al.Microbial Enzymes Mined from the Urania Deep-Sea Hypersaline Anoxic Basin.Chem Biol.2005,12(8):895-904.
    [111]Kim Y.J, Gi-Sub Choi, Kim S.B., et al. Screening and characterization of a novel esterase from a metagenomic library[J].Protein Expression and Purification.2006,45(2):315-323.
    [112]Rhee J.K, Ahn D.QKim G,et al.New Thermophilic and Thermostable Esterase with Sequence Similarity to the Hormone-Sensitive Lipase Family, Cloned from a Metagenomic Library[J]. Appl Environ Microbiol,2005,71 (2):817-825.
    [113]Kalyuzhnaya M G.,Bowerman S,Nercessian O,et al.Highly Divergent Genes for Methanopterin-Linked C1 Transfer Reactions in Lake Washington, Assessed via Metagenomic Analysis and mRNA Detection[J].Appl Environ Microbiol.2005,71 (12):8846-8854.
    [114]Ranjan R,A Grover,Kapardar R.,et al.Isolation of novel lipolytic genes from uncultured bacteria of pond water[J].Biochem Biophy Res Comm.2005,355(1):57-65.
    [115]Henne,A.,Daniel, R.,Schmitz, R. A.,et al.Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate[J].Appl Environ Microbiol.1999,65:3901-3907.
    [116]Majernik,A.,Gottschalk,G.,& Daniel, R.Screening of environmental DNA libraries for the presence of genes conferring Na+(Li+)/H+ antiporter activity on Escherichia coli:Characterization of the recovered genes and the corresponding gene products. Journal of Bacteriology,2001,183:6645-6653.
    [117]Cottrell M T.,Waidner L A.,Yu L.,et al.Bacterial diversity of metagenomic and PCR libraries from the Delaware River[J].Env Microbiol.2005,7(12):1883-1895.
    [118]Wintzingerode F V,U B Gobel, Erko Stackebrandt. Determination of micro-bial diversity in environmental samples:pitfalls of PCR-based rRNA analysis[J]. FEMS Microbiology Reviews.2006,21(3):213-229.
    [119]Tringe, S.G.,von Mering,C., Kobayashi, A., et al.Comparative metagenomics of microbial co mmunities[J].Science.2005,308:554-557.
    [120]Ram, R. J.,VerBerkmoes,N. C., Thelen,M.P.,et al.Community proteomics of a natural microbial biofilm[J].Science.2005,308:1915-1920.
    [121]Venter, J.C.,Remington, K., Heidelberg, J. F.,et al.Environmental genome shotgun sequencing of the Sargasso Sea[J].Science.2004,304:66-74.
    [122]Yutin N and Beja O.Putative novel photosynthetic reaction centre organizati-ons in marine aerobic anoxygenic photosynthetic bacteria:insights from metagenom-ics and environmental genomics[J]. Environ Microbiol.2005,7(12):2027-2033.
    [123]Rohwer,F.Global phage diversity[J].Cell.2003,113:141.
    [124]Gupta R., Gupta N and Rathi P. Bacterial lipases:an overview of production, purification and biochemical properties[J].Appl Environ Microbiol.2004,64:763-781.
    [125]Boubakri H, Melanie B, Pascal S.,et al.Development of metagenomic DNA shuffling for the construction of a xenobiotic gene[J].Gene.2006,375:87-94.
    [126]Kube M,Alfred B,Meyerdierks A.,et al.A catabolic gene cluster for anaerobic benzoate degradation in methanotrophic microbial Black Sea mats[J].Systematic and Applied Microbiology.2005,28(4):287-294.
    [127]Courtois,S.,Cappellano, C. M., Ball,et al.Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products[J].Appl Environ Microbiol,2003,69:49-55.
    [128]Piel J.A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles[J]. Proc Nati Acad Sci.USA. 2002,99(22):14002-14007.
    [129]Seow KT,G Meurer,M Gerlitz,et al.A study of iterative type Ⅱ polyketide synthases, using bacterial genes cloned from soil DNA:a means to access and use genes from uncultured microorganisms[J].J. Bacteriol 1997,179(23):7360-7368.
    [130]Brady S F.,Carol J.Chao,Jo Handelsman.,et al.Cloning and Heterologous Expression of a Natural Product Biosynthetic Gene Cluster from eDNA[J]. Org. Lett., 2001,3 (13):1981-1984.
    [131]Gillespie,Brady,Handelsman.et al.Isolation of Antibiotics Turbomycin A and B from a Metagenomic Library of Soil Microbial DNA[J].Applied Environmental Microbiology.2002,68:4301-4306.
    [132]Song J S,Jeon J H,Lee J H.,et al.Molecular Characterization of TEM-type β-Lactamases Identified in Cold-Seep Sediments of Edison Seamount[J].The Journal of Microbiology.2005,43(2):172-178.
    [133]. Richardson T H.,Tan X,Frey G,et al.A Novel, High Performance Enzyme for Starch Liquefaction Discovery and Optimization of a Low pH, Thermostable α-amylase[J].The Journal of Biological Chemistry.2002,277:26501-26507.
    [134]Eschenfeldt W H.,Lucy S,Helga R.,et al. DNA from Uncultured Organisms as a Source of 2,5-Diketo-D-Gluconic Acid Reductases[J].Applied and Environmental Microbiology.2001,67(9):4206-4214.
    [135]Okuta A, Kouhei Ohnishi and Shigeaki Harayama.PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes[J].Gene.1998,212(2):221-228.
    [136]LeCleir G R., Buchan A, and James T.Chitinase Gene Sequences Retrieved from Diverse Aquatic Habitats Reveal Environment-Specific Distributions[J].Applied and Environmental Microbiology.2004,70(12):6977-6983.
    [137]Lim H K, Eu Jin Chung, Kim J C.,et al. Characterization of a Forest Soil Metagenome Clone That Confers Indirubin and Indigo Production on Escherichia coli[J] Applied and Environmental Microbiology.2005,71(12):7768-7777.
    [138]Schirmer Andreas,Rishali G,Christopher D.R.,et al.Metagenomic Analysis Reveals Diverse PKS Gene Clusters in Microorganisms Associated with the Marine Sponge Discodermia dissolute[J].Appl Environ Microbiol.2005,71(8):4840-4849.
    [139]MacNeil I.A.,Tiong C. L.,Minor C.,et al.Expression and Isolation of Antimic-robial Small Molecules from Soil DNA Libraries[J].J.Mol.Microbiol.Biotechnol.2001, 3(2):301-308.
    [140]Brady S.F. and Clardy.Synthesis of Long-Chain Fatty Acid Enol Esters Isolated from an Environmental DNA Clone[J].Org.Lett.2003,5:121-124.
    [141]Hughes DS,H Felbeck and JL Stein.A histidine protein kinase homolog from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila[J].Appl. Environ. Microbiol.1997,63(9):3494-3498.
    [142]Zeidner G,Christina M.P,Delong E F.,et al.Molecular diversity among marine picophytoplankton as revealed by psbA analyses[J].Environmental Microbiology. 2003,5 (3):212-216.
    [143]Torre J. de la, Christianson L M., Oded Beja.et al. Proteorhodopsin genes are distributed among divergent marine bacterial taxa[J]. Proc Natl Acad Sci USA.2003,100:12830-12835.
    [144]Ginolhac A,Cyrille J, Benjamin G.,et al.Phylogenetic Analysis of Polyketide Synthase I Domains from Soil Metagenomic Libraries Allows Selection of Promising Clones[J]. Environmental Microbiology.2004,70(9):5522-5527.
    [145]Wang,G.Y.S.,Graziani,E., Waters, B.,et al.Novel natural products from soil DNA libraries in a Streptomycete host[J].Org.Lett.2000,2:2401-2404.
    [146]Meyer, F, Goesmann,A., McHardy, A.C, et al.GenDB-An open source gen-ome annotation system for prokaryote genomes[J]. Nucleic Acids Research.2003, 31:2187-2195.
    [147]Delcher,A.L.,Harmon,D.,Kasif, S.,et al.Improved microbial gene identification with GLIMMER[J].Nucleic Acids Research.1999,27:4636-4641.
    [148]Noguchi, H.. Park, J.,& Takagi, T.MetaGene:Prokaryotic gene finding from environmental genome shotgun sequences[J].Nuc Aci Res.2006,34,5623-5630.
    [149]Abe,T.,Sugawara, H.,Kinouchi,et al.Novel phylogenetic studies of genomic sequence fragments derived from uncultured microbe mixtures in environmental and clinical samples[J]. DNA Research.2005,12:281-290.
    [150]Teeling,H.,Waldmann,J.,Lombardot, T.,et al.TETRA:A web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences[J]. BMC Bioinformatics.2004,5:163.
    [151]Grant, S.,Grant,W.D.,Cowan, D. A., et al.Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples[J]. Applied and Environmental Microbiology.2006,72:135-143.
    [152]Wilmes P,and Philip L.B.Metaproteomics:studying functional gene expression in microbial ecosystems[J].Trends in Microbiology.2006,14(2):92-97.
    [153]Ram,R.J.,VerBerkmoes,N.C.,Thelen,M.P.,et al.Community proteomics of a natural microbial biofilm[J].Science.2005,308:1915-1920.
    [154]Lee DG, Jeong HJ,Min KJ, et al. Screening and characterization of a novel fibrinolytic metalloprotease from a metagenomic library[J]. Biotechnol Lett. 2007,29:465-472.
    [155]Waschkowitz T, Rockstroh S, Daniel R. Isolation and characterization of metalloproteases with a novel domain structure by construction and screening of metagenomic libraries[J]. Appl Environ Microbiol,2009,75(8):2506-2516.
    [156]Kalisz HM.Microbial proteinases[M].Adv Biochem Eng Biotechnol.1988,36: 1-65.
    [157]Kumar CG,Takagi H.Microbial alkaline proteases:from a bioindustrial view-point[J].Biotechnol Adv.1999,17:561-594.
    [158]Wells JA,Ferrari E, Henner DJ,et al.Cloning,sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis[J].Nucleic Acids Res. 1983,11:7911-7925.
    [159]Stahl M, Ferrari E.Replacement of the Bacillus subtilis subtilisin structural gene with in vitro-derived deletion mutant[J].J Bacteriol.1984,158:411-418.
    [160]Nakamura T,Yamagata Y,Ichishima E.Nucleotide sequence of the subtilisin NAT gene, aprN, of Bacillus subtilis (natto)[J].Biosci Biotechnol Biochem.1992, 56:1869-1871.
    [161]Neurath H.Evolution of proteolytic enzymes[J].Science.1984,224:350-357.
    [162]Koide Y,Nakmura A,Uozumi T,et al.Cloning and sequencing of the major in-tracellular serine protease gene of Bacillus subtilis[J].J Bacteriol.1986,167:110-116.
    [163]Graycar TP.Proteolytic cleavage, reaction mechanism. In:Flickinger MC, Drew SW (eds) Bioprocess technology:fermentation,biocatalysis and bioseparation [M].Wiley, New York,1999,2214-2222.
    [164]Ward OP.Proteolytic enzymes.In:Moo-Young M (ed)Comprehensive biotechnology,the practice of biotechnology:current commodity products[M].vol 3. Pergamon Press, Oxford,1985,789-818.
    [165]Siezen RJ,Leunissen JAM.Subtilases:the superfamily of subtilisin-like serine proteases[J]. Protein Sci.1997,6:501-523.
    [166]Rao MB,Tanksale AM,Ghatge MS,Deshpande VV.Molecular and biotechnol-ogical aspects of microbial proteases[J].Microbiol Mol Biol Rev.1998,62:597-635.
    [167]Morita Y,Hasan Q,Sakaguchi T,et al. Properties of a cold-active protease from psychrotrophic Flavobacterium balustinum P104[J].Appl Microbiol Biotechnol 1998,50:669-675.
    [168]Morihara K.Comparative specificity of microbial proteinases[J].Adv Enzymol. 1974,41:179-243.
    [169]Jansson HB, Nordbring, Hertz B. Diseases of Nematodes.1988,59-72.
    [170]Tunlid A,et al.Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Athrobotrys oligospora[J].J.Microbiol. 1994,140:1687-1695.
    [171]Ahman J,EKB,Rask L,et al.. Microbiology.1996,142:1605-1616.
    [172]Tunlid A,Jansson S.Proteases and their involvement in the infection and immobilization of nematodes by the nematophagous fungus Arthrobotrys oligospora [J] Appl Environ Microbiol.1991,57:2868-2872.
    [173]Zhao M.L,MoM H,Zhang KQ.Characterization of a neutral serine p rotease and its full-length cDNA from the nematode-trapping fungus A rthrobotrys oligospora[J].Mycologia.2004,96:16-22.
    [174]Segers RS, et al. FEMS Microbiology Letters.1995,126:227-231.
    [175]Bird A F,Bird J. The structure of nematode[M].2nd edu Academic Press. San Diego.USA.1991.
    [176]Gheysen G, Van der Eycken W, Barthels N,et al.The Exploitation of nematode-Responsive Plant Genes in Novel Nematode Control Methods[J]. Pestic Sci.1996,47:95-101.
    [177]赵明莲,张克勤,等.食线虫菌物胞外蛋白酶基因工程研究进展[J].中国生物工程杂志.2002,22(5):15—20.
    [178]Kerry B R,Bourne J M.The importance of rhizo-sphere interactions in the biological control of plant parasitic nematode- a case study using Verticillium chalamydosporium[J].Pestic Sci.1996,46:69-75.
    [179]Sikora,R A.Management of the antagonistic potential in agriculture ecosyste-ms for the biological control of plant parasitic nematodes[J].Annu Rev Phytopathol. 1992,30:245-270.
    [180]Siddiqui,Z.A.and Mahmood, I. Role of bacteria in the management of plant parasitic nematodes:a review[J]. Bioresour Technol.1999,69:167-179.
    [181]Crickmore,N.,Zeigler, D.R.,Feitelson, J., et al.Review of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiol Mol Biol Rev.1998, 62:807-813.
    [182]Feitelson,J.S.,Payne, J. and Kim, L.Bacillus thuringiensis:insects and beyond [J].Nat Biotechnol 1992,10:271-275.
    [183]Gardener,B.B.M.Ecology of Bacillus and Paenibacillus spp. in agricultural systems[J].Phytopathology.2004,94:1252-1258..
    [184]Priest,F.Systematics and ecology of Bacillus. In Bacillus subtilis and Other Gram-positive Bacteria[M]. Sonenshein,A.L., Hoch, J.A. and Losick, R.1993,pp. 3-16.Washington, DC:American Society for Microbiology Press.
    [185]A°hman, J., Johansson, T., Olsson, M., et al.Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity [J].Appl Environ Microbiol.2002,68:3408-3415.
    [186]Siddiqui,I.A.,Haas,D.and Heeb,S.Extracellular protease of Pseudomonas fluorescens CHAO, a biocontrol factor with activity against the root-knot nematode. Meloidogyne incognita[J].Appl Environ Microbiol.2005,71:5646-5649.
    [187]Tian,B Y., Li, N.,Lian, Zhang,K.Q.et al.Cloning, expression and deletion of the cuticledegrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4[J].Arch Microbiol.2006,186:297-305.
    [188]Meyer,S.L.F.,Huettel, R.N.,Liu, X.Z.,et al.Activity of fungal culture filtrates against soybean cyst nematode and root-knot nematode egg hatch and juvenile motility[J].Nematology.2004,6:23-32.
    [189]Morton,C.O.,Hirsch, P.R. and Kerry, B.R.Infection of plant-parasitic nema-todes by nematophagous fungi:a review of the application of molecular biology to understand infection processes and to improve biological control[J].Nematology. 2004,6:161-170.
    [190]Meyer,S.L.F.United States Department of Agriculture-Agriculture Research Service research programs on microbes for management of plant-parasitic nematodes [J]. Pest Manag Sci.2003,59:665-670.
    [191]Curtis,T. P.,W.T.Sloan,and J.W.Scannell.Estimating prokaryotic diversity and its limits[J]. Proc. Natl.Acad.Sci.USA.2002,99:10494-10499.
    [192]Fierer N, Breitbart M, Nulton J, et al. Metagenomic and Small-Subunit rRNA Analyses Reveal the Genetic Diversity of Bacteria, Archaea,Fungi,and Viruses in Soil. Applied and environmental microbiology.2007,73(21):7059-7066.
    [193]刘玮琦,茆振川,杨宇红,谢丙炎.应用16S rRNA基因文库技术分析土壤细菌群落的多样性[J].微生物学报(Acta Microbiologica Sinica),2008,8 (10): 1344-1350.
    [194]赵勇,周志华,李武,等.土壤微生物分子生态学研究中总DNA的提取[J].农 业环境科学学报(Journal of Agro-environment Science).2005,24(5):854-860.
    [195]Zhou JZ, Bruns MA, Tiedje JM. DNA Recovery from Soils of Diverse Composition[J].Appl Environ Microbiol.1996,62(2):316-322.
    [196]Yeates C., Gillings M.R., Davison A.D.Methods for microbial DNA extracti-on from soil for PCR amplification[J]. Biology Procedure.1998,1 (1):40-47.
    [197]孟祥伟,茆振川,谢丙炎,等.西藏米拉山土壤古菌16S rRNA及amoA基因多样性分析[J].微生物学报(Acta Microbiologica Sinica).2009,49(8):994-1002.
    [198]Mccaig AE,Glover LA,Prosser JI.Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures[J].Applied and Environmental Microbiology.1999,65:1721-1730.
    [199]Kumar S,Tamura K,Nei M.MEGA3 Integrated software for Molecular Evolu-tionary Genetics Analysis and sequence alignment.Briefings in Bioinformatics.2004, 5:150-163.
    [200]Good IL. The population frequencies of species and the estimation of popula-tion parameters. Biometrika,1953,40:237-264.
    [201]Stackebrandt,E,Goebel,BM.Taxonomic note:a place for DNA-DNA reassoci-ation and 16S rRNA sequence analysis in the present species definition in bacteriolo-gy.Internat J. Syste Evolu Microbiol[J].1994,44(4):846-849.
    [202]Hunt J, Boddy L, Randerson PF, Rogers HJ. An Evaluation of 18S rDNA Approaches for the Study of Fungal Diversity in Grassland Soils[J]. Microbial Ecology,2004,47:385-395.
    [203]O'Brien HE, Parrent JL, Jackson JA, et al. Fungal Community Analysis by Large-Scale Sequencing of Environmental Samples[J].Appl Environ Microbiol,2005, 71 (9):5544-5550.
    [204]Jurgens,G.,F.Glockner,R.Amann,et al. Identification of novel archaea in bact-erioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization[J].FEMS Microbiol. Ecol.2000,34:45-56.
    [205]Yan B, Hong K, Yu ZN. Archaeal Communities in Mangrove Soil Character-ized by 16S rRNA Gene Clones[J]. J.Microbiol.2006,44(5):566-571.
    [206]Leclerc M, Delgenes J P and Godon J J.Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing[J].Environ Microbiol.2004,6(8),809-819.
    [207]Sekiguchi,Y.,Kamagata,Y.,Nakamura, et al..Fluorescence in situ hybridizati-on using 16S rRNA-targeted oligonucleoides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules[J].Appl Environ Microbiol.1999,65:1280-1288.
    [208]Lovely DR, Dwyer DF, Klug MJ. Kinetic analysis of competition betw-een sulfate reducers and methanogens for hydrogen in sediments[J]. Appl.Environ. Microbiol,1982,43,1373-1379.
    [209]胡元森,刘亚峰,吴坤.黄瓜连作土壤微生物区系变化研究[J].土壤通报.2006,37(1):126—129.
    [210]Daniell TJ, Husband R, Fitter AH, et al. W.Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops[J].FEMS Microbiol Ecol,2001,36:203-209.
    [211]Coleman DC, Whitman WB. Linking species richness,biodiversity and ecosy-stem function in soil systems[J]. Pedobiologia,2005,49:479-497.
    [212]Ehrlich HL. How microbes influence mineral growth and dissolution[J].Chem Geol,1996,132:5-9.
    [213]Doran JW, Zeiss MR.Soil health and sustainability:managing the biotic comp-onent of soil quality [J]. Appl Soil Ecol,2000,15:3-11.
    [214]Chaysavanh M,Charles EC, Lionel F, et al.A comparison of random sequence reads versus 16S rDNA sequences for estimating the biodiversity of a metagenomic library[J]. Nucleic Acids Research,2008,36(16):5180-5188.
    [215]Bertrand H, Poly F, Van VT, et al. High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction[J]. J Microbial Meth,2005,62 (1):1-11.
    [216]Schloss P D, Handelsman J. Introducing DOTUR, a computer program for de-fining operational taxonomic units and estimating species richness[J]. Appl Environ Microbiol,2005,71 (3):1501.
    [217]Rani A, Porwal S, Sharma R, et al. Assessing microbial diversity by culture-dependent and independent approaches for efficient functioning of effluent treatment plants[J]. Bioresour Technol,2008,99:7098-7107.
    [218]Borneman J, Skroch PW, Palus JA, et al. Molecular microbial diversity of anagricultural soil in Wisconsin[J]. Applied and Environmental Microbiology,1996, 62:1935-1943.
    [219]Lin YT,Huang YJ,Tang SL,et al.Bacterial community diversity in undisturbed uerhumid montane forest foils in Taiwan[J].Soil Microbiology,2009,42:(4):378-388.
    [220]陈志谊,李德全,刘永锋,刘邮洲,魏巍.离子注入选育枯草芽孢杆菌生防菌B-916高效菌种[J].江苏农业学报,2004,20(4):240—243.
    [221]Ekundayo EO. Effect of common pesticides used in the Niger delta basin of southern Nigeria on soil microbial populations[J]. Environmental Monitoring and As-sessment,2003,89:35-41.
    [222]Marsh TL. Terminal restriction fragment length polymorphism (T-RFLP):An emerging method for characterizing diversity among homologous populations of amplification[J]. Current Opinion in Microbiology,1999,2 (3):323-327.
    [223]Xia X, Bollinger J, Ogram A. Molecular genetic analysis of response of three soil microbial communities to the application of 2,4-D. Molecular Ecology,1995,4: 17-28.
    [224]刘玮琦,茂振川,杨宇红,谢丙炎.保护地根结线虫发生地土壤微生物群落多样性的研究[J]中国生物防治.2008,24(4):318—324.
    [225]Leveau JHJ.The magic and menace of metagenomics:prospects for the study of plant growth-promoting rhizobacteria[J].Eur J Plant Pathol,2007,119:279-300.
    [226]Tebbe CC, Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant-DNA from bacteria and a yeast[J]. Applied and Environmental Microbiology,1993,59:2657-2665.
    [227]Bakken LR, Lindahl V. Evaluation of methods for extraction of bacteria from soil[J]. FEMS Microbiol Ecol,1995,16(2):135-142.
    [228]Lee SW, Won K, Lim HK., et al. Screening for novel lipolytic enzymes from uncultured soil microorganisms [J]. Appl Microbiol Biotechnol,2004,65:720-726.
    [229]Goto SG Expression of Drosophila homologue of senescence marker pr-otein-30 during cold acclimation[J]. J.Inse Physiol,2000,46 (7) 1111-1120.
    [230]Tyson GW, Chapman J, Hugenholtz P, et al.Community structure and metabo-lism through reconstruction of microbial genomes from the environment[J].Nature, 2004,428 (6978):37-43.
    [231]Bendtsen JD, Nielsen H, Heijne G, et al.Improved prediction of signal peptid-es:SignalP 3.0[J] Journal of Molecular Biology,2004,340:783-795.
    [232]Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome[J]. Comput Chem,2000,26:51-56.
    [233]Rawlings ND, Morton FR, Barrett AJ.MEROPS.the peptidase database.Nucle-ic Acids Research,2006,34:270-272.
    [234]Huang XW,Zhao NH,Zhang KQ.Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host[J].Res Microbiol. 2005b,115:811-816.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700