用户名: 密码: 验证码:
短程硝化反硝化联合脱氮工艺运行策略与硝化生物膜特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来日益加剧的水体富营养化对废水生物脱氮技术提出了新的要求,然而我国目前的生活污水和工业废水的生物处理技术对于有机污染物的控制比较有效,对氮素的去除效果不甚理想,因此开发应用高效、低能耗的新型生物脱氮工艺显得尤为重要。短程硝化和自养反硝化等脱氮工艺节省曝气量,不需要投加有机碳源,大大降低了运行费用,越来越受到研究者的关注。但是许多研究者都是通过不同功能的反应器串联来运行新型联合脱氮工艺,在单一反应器中的综合控制策略研究很少,因此联合脱氮工艺的研究还存在很多的问题,如工艺运行可控性、稳定性、影响因素等还有待于进一步探索。本课题立足于国内外新型生物脱氮的研究成果,对短程硝化和不同电子供体进行的异养与自养反硝化联合工艺进行基础性研究,考察了单一反应器中短程硝化联合脱氮工艺的实现和稳定运行的可行性与控制策略,探讨了碳源和电子供体对脱氮微生物种群结构和生物膜特性的影响。研究结果如下:
     1、系统研究了新型复合固定床生物膜反应器中短程硝化异养反硝化工艺快速启动和稳定运行的最佳控制策略,发现将硝化反应体系氮负荷在0.89kgN-NH4+m-3d-1条件下稳定运行,亚硝化比率达到85%以上,总氮去除率基本上稳定在90%以上。硝化生物膜表面生长的p亚群氨氧化菌属占全菌比例为64.1±5.0%,硝化菌属占全细菌的比例仅为5%左右,氨氧化菌主要分布在生物膜表面的0-80μm范围内,亚硝酸盐氧化菌主要分布在生物膜表层80μm以下的范围。
     2、对短程硝化硫自养反硝化联合工艺实现和稳定运行控制策略进行了研究,探讨了不同的因素对工艺稳定运行的影响效应。结果发现当硫氮摩尔比为3:2时工艺运行稳定,总氮去除率稳定在90%以上;高浓度的氨氮、亚硝酸盐氮和硫化物对微生物均会产生抑制作用,高浓度的硝酸盐对亚硝酸盐的反硝化过程存在竞争性抑制作用,同时硫化物易于转化为硫酸盐。观察生物膜发现自养菌生物膜和异养菌生物膜结构和微生物种群存在一定的差异,氨氧化菌和自养反硝化菌的优势菌种分别为亚硝化单胞菌和硫氧化菌。
     3、探索在自养反硝化脱氮工艺的基础上启动半短程硝化与厌氧氨氧化联合脱氮工艺的可行性,分析了半亚硝化工艺实现的最佳控制条件与稳定控制策略,结果证实进水中添加适量的碱度和水力停留时间可以很好的实现半短程硝化。联合工艺持续运行了4个多月的结果表明反应器可以稳定实验半短程硝化工艺,最后出水总氮去除率为52%,去除比值约为l:1.2-1:2.3之间。运行末期反硝化生物膜中硫氧化细菌的数量仍然占比重较大,同时存在一定数量的厌氧氨氧化菌微生物生长在生物膜内层。
     4、揭示了工艺运行过程中异养硝化生物膜和自养硝化生物膜的胞外聚合物成分与结构特性,结果发现提取出的自养生物膜中蛋白质、多糖、腐殖质和DNA提取总量和提取层差异较大,自养生物膜中蛋白质与多糖的比值(PN/PS)约为4-7之间,增加了自养生物絮体的疏水性能,相对于异养的絮体其结构也更加稳定,生物膜的胞外多聚物更难以提取。它们主要存在紧密附着的EPS和提取剩余物中,其中自养生物膜中有94%的蛋白质和89%的多糖在这两个提取层中,松散附着的EPS和可溶性EPS中含量较少。
The classical biotechnology has been widely applied in biological nitrogen removal process of wastewater. But the new requirement has challenged the classical biotechnology of removal nitrogen with the progressive eutrophication. The organic substances in wastewater have been removed effectively from domestic and industrial wastewater by classical biotechnology, but nitrogen removal efficiency always couldn't reach the wastewater discharge standard. Therefore it is important that researching and developing new nitrogen removal biotechnology which is free from the use of organic carbon and save the consumption of energy. In recent years, the new biotechnologies have been the focus of research all around the world. Whereas the most new nitrogen removal processes running in different reactors, few researchers was effort to implemented combined nitrogen removal processes in sole reactor. It has been many problems in those processes when it was applied in single reactor. The problems include lower stability and the difficulty of controlling. Our research based on domestic and foreign new biological nitrogen removal achievements and implemented the shortcut nitrification and autotrophic denitrification process, examined the feasibility and the stable control strategy of nitrogen removal in the single reactor. This report adopted the new biotechnology of nitrogen removal provide certain theoretical basis for the nitrogen removal technology to treatment the actual wastewater. The conclusions are as follows:
     1. This study examined the feasibility and the stable control strategy of shortcut nitrification and denitrification in the novel united fixed bed biofilm reactor. At the end of start-up period, the NLR was 0.89 kg N-NH4+m-3 d-1 and ammonium was almost entirely converted to nitrite. The nitrite ratio (NO2--N/(NO2--N+NO3--N)) was above 85% and total nitrogen removal percentage above 90% during the steady period. The results showed that the ammonia oxidation bacteria (AOB) community of the bioreactor consists almost entirely of Nitrosomonas spp. and Nitrosospira spp.. AOB were 64.1±5.0% of the total volume on the biofilm which reproduced in 0-80μm of the biofilm surface. Nitrite-oxidizing bacteria (NOB) were 5% of the total volume of the biofilm samples which reproduced under the 80μm of the biolfilm surface.
     2. Simultaneous elimination of sulfide and ammonia from synthetic wastewaters was investigated using the fixed bed biofilm reactor to evaluate the feasibility, the stable control strategy and effect of sulfide and nitrite ratios and substrate concentrations on the process performance. The effluent fluctuation at S/N ratio of 3:2 was less than at the other two ratios and nitrogen removal percentage reached 90%. High ammonia, nitrite, sulfide and nitrate concentrations in the bioreactor contributed towards the inhibition of the combined process. The observation of biofilm results proved that the autotrophic and heterotrophic biofilm structure and microbial populations were different, preponderant bacteria in nitrifier and denitrification biofilm were Nitrosomonas spp. and sulfur oxidation bacteria, respectively.
     3. This study investigated the feasibility and the stable control strategy of successfully achieved stable partial nitrification and Anammox processes of synthetic ammonium rich wastewater in the fixed bed biofilm reactor. The results conformed HRT plays an important role in the 50% nitrite accumulation, while half alkalinity plays a critical role in achieving the desired 50% partial nitrification in the effluent. The effluent from the bioreactor could be quite easily and very stably used as a feed to the Anammox reactor for the course of the experiment. The combination of this system with the subsequent ANAMMOX process has great potential and nitrogen removal percentage reached 52% after four months running, ammonium and nitrite removal rates were between 1:1.2 and 1:2.3. The results showed that the sulfur oxidation bacteria community of the bioreactor consists most of bacteria and Anammox bacteria reproduced in bottom of the biofilm.
     4. In this study, we examined the composition and distribution of extracellular polymeric substances (EPS) that were extracted from autotrophic nitrifying biofilm and activated sludge. The results for EPS content, including carbohydrates, proteins, humic and DNA, with different layers changed great. Autotrophic biofilm PN/PS ratios were 4-7 and the cell hydrophobicity were increased which make the extraction of EPS became harder. The TB-EPS and pellets are mainly composed of carbohydrates and proteins. There are about 94% proteins and 89% carbohydrates associated with TB-EPS and pellets layers. In contrast, there were almost no proteins in slime and LB-EPS.
引文
Abeling, U., Seyfried, C.F.,1992. Anaerobic-aerobic treatment of hi-strength ammonia wastewater nitrogen removal via nitrite [J]. Water Sci. Technol.,26(5-6): 1007-1015.
    Aguilera, A., Souza-Egipsy, V., Martin-Uriz, P.S., Amils, R.,2008. Extraction of extracellular polymeric substances from extreme acidic microbial biofilms [J]. Appl. Microbiol. Biotechnol.,78:1079-1088.
    Alleman J.E.,1984. Elevated Nitrite Occurrence in Biological Wastewater Treatment System [J]. Water Sci. Technol.,17(1):409-419.
    Amann, R.,1995. In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes [M]. Molec. Microb. Ecol. Manual,1-15.
    Aoi, Y., Shiramasa, Y., Kakimoto, E., Tsuneda, S., Hirata, A., Nagamune, T.,2005. Single-stage autotrophic nitrogen-removal process using a composite matrix immobilizing nitrifying and sulfur-denitrifying bacteria [J]. Appl. Microbiol. Biotechnol.,68:124-130.
    APHA,1998. Standard Methods for the Examination of Water and Wastewater [M], 20thed. United Book Press, USA.
    Bandpi, A.M., Elliott, D.J., Mazdeh, A.M.,1999. Denitrification of groundwater using acetic acid as a carbon source [J]. Water Sci. Technol.,40:53-59.
    Barbesti, S., Citterio, S., Labra, M., Baroni, M.D., Neri, M.G., Sgorbati, S.,2000. Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria [J]. Cytometry,10:214-218.
    Berent, N., Peng, D.C.,2001. Nitrification at low oxygen concentration in biofilm reactor [J]. J. Environ. Eng. ASCE,127(3):266-271.
    Bigambo, T., Mayo, A.W.,2005. Nitrogen transformation in horizontal subsurface flow constructed wetlands Ⅱ:Effect of biofilms [J]. Phys. Chem. Earth,30: 668-672.
    Brezonik, P.L.,1977. Denitrification in natural waters [J]. Prog. Water Technol.,8:
    373-392.
    Brown, M.J., Lester, J.N.,1980. Comparison of bacterial extracellular polymer extraction methods [J]. Appl. Environ. Microbiol.,40:107-185.
    Cebron, A., Coci, M., Gamier, J., et al.,2004. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower seine river:impact of paris wastewater effluents [J]. Appl. Environ. Microbiol.,70(11): 6726-6737.
    Cole, A.C., Semmens, M.J., LaPara, T.M.,2004. Stratification of activity and bacterial community structure in biofilms grown on membranes transferring oxygen [J]. Appl. Environ. Microbiol.,70:1982-1989.
    Comte, S., Guibaud, G, Maudu, M.,2006a. Extraction of extracellular polymers (EPS) from activated sludge. Part Ⅰ. comparison of eight extraction methods [J]. Enzyme Microbiol. Technol.,38:237-245.
    Comte, S., Guibaud, G, Maudu, M.,2006b. Extraction of extracellular polymers (EPS) from activated sludge. Part Ⅱ. consequences of EPS extraction methods on Pb and Cd complexation properties [J]. Enzyme Microbiol. Technol.,38:237-245.
    Daims, H., Nielsen, J.L., Nielsen, P.H., Schleifer, K.H., Wagner, M.,2001. In situ characterisation of Nitrospira-like nitrite-oxidizing bacteria in wastewater treatment plants [J]. Appl. Environ. Microbiol.,67:5273-5283.
    Dijkman, H., Strous, M.,1999. Process for ammonium removal from wastewater [P]. Patent, PCT/NL99/00446.
    Ehrich, S., Behrens, D., Lebedeva, E., et al.,1995. A New obligately chemolitboantotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship [J]. Arch. Microbiol.,164(1):16-23.
    Eilersen, A.M., Arvin, E., Henze, M.,2004. Monitoring toxicity of industrial wastewater and specific chemicals to a green alga, nitrifying bacteria and an aquatic bacterium [J]. Water Sci. Technol.,50(6):277-283.
    Fdz-Polanco, F., Fdz-Polanco, M., Fernandez, N., Uruena, M.A., Garcia, P.A., Villaverde, S.,2001. New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions [J]. Water Res.,35(4):1111-1114.
    Fernandez, N., Sierra-Alvarez, R., Field, J.A., Amils, R., Sanz, J.L.,2008. Microbial community dynamics in a chemolithotrophic denitrification reactor inoculated with methanogenic granular sludge [J]. Chemosphere,70:462-474.
    Francis, C.A., Beman, J.M., Kuypers, M.M.M.,2007. New processes and players in the nitrogen cycle:The microbial ecology of anaerobic and archaeal ammonia oxidation [J]. ISME,1:19-27.
    Frolund, B., Griebe, T., Nielsen, P.H.,1995. Enzymatic activity in the activated sludge floc matrix [J]. Appl. Microbiol. Biotechnol.,43:755-761.
    Frolund, B., Palmgren, R., Keiding, K., Nielsen, P.H.,1996. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Res.,30:1749-1758.
    Fux, C., Boehler, M.,2002. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant [J]. J. Biotechnol.,99:295-306.
    Gadekar, S., Nemati, M., Hill, G.A.,2006. Batch and continuous biooxidation of sulphide by thiomicrospira sp. CVO:reaction kinetics and stoichiometry [J]. Water Res.,40:2436-2446.
    Gai, H., Jiang, Y., Qian, Y., Kraslawski, A.,2008. Conceptual design and retrofitting of the coal-gasification wastewater treatment process [J]. J. Chem. Engin.,1: 84-94.
    Gali', A., Dosta, J.M., Loosdrecht, C.M., Alvarez, J.M.,2007. Two ways to achieve an anammox influent from real reject water treatment at lab-scale:Partial SBR nitrification and SHARON process [J]. Process Biochem.,42:715-720.
    Gaudy, A.F.,1962. Colorimetric determination of protein and carbohydrate [J]. Ind. Water Wastes,7:17-22.
    Gehr, R., Henry, J.G.,1983. Removal of extracellular material, techniques and pitfalls [J]. Water Res.,17:1743-1748.
    Guibaud, G., Comte, S., Bordas, F., Dupuy, S., Baudu, M.,2005. Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel [J]. Chemosphere,59:629-638.
    Guibaud, G, Hullebusch, E.V., Bordas, F.,2006. Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges: pH-sorption edge tests and mathematical equilibrium modeling [J]. Chemosphere, 64:1955-1962.
    Hao, X.D., Heijnen, J.J., Van Loosdreeht, M.C.M.,2002. Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process [J]. Biotechnol. Bioengin.,77(3):266-277.
    Hasegawa, K., Shimizu, K., Hanaki, K.,2004. Nitrate Removal with Low N2O Emission by Application of Sulfur Denitrification in Actual Agricultural Field [J].Water Sci. Technol.,50(8):145-151.
    Hellinga, C., Schellen, A.A.J.C., van Loosdrecht, J.W.M., Heijne, J.J.,1998. The SHARON process and innovative method for nitrogen removal from ammoniu-rich wastewater [J]. Water Res.,31(9):133-142.
    Helmer, C., Kunst S.,1998. Simultaneous nitrification/denitrification in anaerobic biofilfilm system [J]. Water Sci. Technol.,37(4):183-187.
    Helmer, C., Kunst, S., Juretschko, S., Schmid, M.C., Schleifer, K.H.,1999. Nitrogen loss in a nitrifying biofilm system [J]. Water Sci. Technol.,39(7):13-21.
    Herrmann, M., Saunders, A.M., Schramm, A.,2008. Archaea dominate the ammonia oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora [J]. Appl. Environ. Microbiol.,74:3279-3283.
    Hippen, A., Rosenwinkel, K.H., Baumgarten, G, et al.,1997. Aerobic deammonification:A new experience in the treatment of wastewaters [J]. Water Sci.Technol.,35(10):111-120.
    Hisashi, S., Hideki, O., Bian R., et al.,2004. Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors [J]. Water Res.,38:1633-1641.
    Hockenbury M.R., Grady C.P.L.,1977. Inhibition of nitrification effects of selected organic compounds [J]. JWPCE,49(7):768-777.
    Itokawa, H., Hanaki, K., Matsuo, T.,2001. Nitrous oxide production in high loading
    biological nitrogen removal process under low COD/N ratio condition [J]. Water Res.,35(3):657-664.
    Jassen, A.J.H., Ma, S.C., Lens, P., Lettinga, G,1997. Performance of a sulfide oxidizing expended bed reactor supplied with dissolved oxygen [J]. Biotechnol. Bioengin.,53:32-40.
    Jetten M.S.M.,1997. Towards a more sustainable wastewater treatment system [J]. Water Sci. Technol.,35(9):171-180.
    Jetten, M.S.M., Op den Camp, H.J.M., Kuenen, J.G, et al.,2009. Taxonomic description of the family Anammoxaceae, Bergey's Manual of Systematic Bacteriology [M].2nd edition, New York:Springer.
    Kalyuzhnyi, S., Gladchenko, M., Mulder, A., Versprille, B.,2006. DEAMOX-new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide driven conversion of nitrate into nitrite [J]. Water Res.,40: 3637-3645.
    Karapanagiotis, N.K., Rudd, T., Sterrit, R.M., Lester, J.N.,1989. Extraction and characterization of extracellular polymers in digested sewage sludge [J]. J. Chem. Technol. Biotechnol.,44:107-120.
    Kim, J., Park, K., Cho, K., Nam, S., Park, T., Bajpai, R.,2005. Aerobic nitrification-denitrification by heterotrophic bacillus strains [J]. Bioresour. Technol.,96:1897-1906.
    Kim, D.J., Kim, S.H.,2006. Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics [J]. Water Res.,40:887-894.
    Klangduen, P., Jurg, K.,1999. Study of factors Affecting Simultaneous Nitrification and Denitrification (SND) [J].Water Sci. Technol.,39(6):61-68.
    Klangduen, P.,1999. Study of factors affecting simulataneous nitrification and denitrification(SND) [J]. Water Sci. Technol.,39(6):61-68.
    Koenig, A., Zhang, T., Liu, L.H., et al.,2005. Microbial community and biochemistry process in autosulfurotrophic denitrifying biofilm [J]. Chemosphere,58: 1041-1047.
    Kowalchuk, G.A., Stephen, J.R.,2001. Ammonia-oxidizing bacteria:A model for molecular microbial ecology [J]. Annu. Rev. Microbiol.,55:485-529.
    Krishnakumar, B., Manilal, V.B.,1999. Bacterial oxidation of sulphide under denitrifying conditions [J]. Biotechnol. Lett.,21(5):437-440.
    Krishnakumar, B., Majumdar, S., Manilal, V.B., Haridas, A.,2005. Treatment of sulfide containing wastewater with sulfur recovery in a novel reverse fluidized loop reactor (RFLR) [J]. Water Res.,39:639-647.
    Krul, J.M.,1976. Dissimilatory nitrate and nitrite reduction under aerobic conditions by an aerobically and anaerobically grown Alcaligenes sp.and by activated sludge [J]. J. Appl. Bacteriol.,40:245-260.
    Kuenen, J.G., Robertson, L.A.,1994. Combined nitrification denitrification processes [J]. FEMS Microbiol. Rev.,15:109-117.
    Kurai, L.P., Verstraete, W.,1998. Ammonium removal by the oxygen-limited autotrophic nitrificaiton-denitrification system [J]. Appl. Environ. Microbiol., 64(11):4500-4506.
    Kurt, M., Dunn, I.J., Bourne, J.R.,1987. Biological denitrification of drinking water using autotrophic organisms with H2 in a fluidized-bed biofilm reactor [J]. Biotechnol. Bioengin.,29:493-501.
    Larsen, P., Nielsen, J.L., Svendsen, T.C., Nielsen, P.H.,2008. Adhesion characteristics of nitrifying bacteria in activated sludge [J]. Water Res.,42:2814-2826.
    Laspidou, C.S., Rittmann, B.E.,2002. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass [J].Water Res.,36:2711-2720.
    Meiberg, J.B.M., Bruinenberg, P.M. Harder, W.,1980. Effect of dissolved oxygen tension on the metabolism of methylated amines in Hyphomiccrobium X in the absence and presence of nitrate:evidence for "aerobic denitrification" [J]. Gen. Microbiol.,120:453-463.
    Madigan, M., Martinko, J.M., Parker, J.,2000. Brock biology of microorganisms [M]. Prentice Hall, Upper Saddle River, NJ.
    Mahmood, Q., Zheng, Ping., Cai, J., Wu, D.L., Hu, B.L., Li, J.Y.,2007a. Anoxic sulfide biooxidation using nitrite as electron acceptor [J]. J. of Hazard. Mater., 147:249-256.
    Mahmood, Q., Zheng, Ping., Cai, J., Wu, D.L., Hu, B.L., Islam, E., Muhammad R.A., 2007b. Comparison of anoxic sulfide biooxidation using nitrate/nitrite as electron acceptor [J]. Environ. Progress,26:167-177.
    Malamis, S., Andreadakis, A.,2009. Fractionation of proteins and carbohydrates of extracellular polymeric substances in a membrane bioreactor system [J]. Biosource Technol.,100:3350-3357.
    Mapanda, F., Nyamadzawo, G., Nyamangara, J., Wuta. M.,2007. Effects of discharging acid-mine drainage into evaporation ponds lined with clay on chemical quality of the surrounding soil and water. Phys. Chem. Earth,32: 1366-1375.
    McSwain, B.S., Irvine, R.L., Hausner, M., Wilderer, P.A.,2005. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge [J]. Appl. Environ. Microbiol.,71:1051-1057.
    Mike, S.M., Jetten, M.S.M.,1997. Novel principle in the microbial conversion of nitrogen compounds [J]. Antonie van Leeuwenhoek,71(1-2):75-93.
    Mobarry, B.K., Wagner, M., Urbain, V., Rittmann, B.E., Stahl, D.A.,1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria [J]. Appl. Environ. Microbiol.,62:2156-2162.
    Mohhamed, S.S.,1993. Factors affecting DBP formation during Pzone bromide reactions [J]. AWWA,12:63-72.
    Monique, R., Elisabeth, G.N., Etienne, P., Dominique, L.,2008. A high yield multi-method extraction protocol for protein quantification in activated sludge [J]. Bioresour. Technol.,99:7464-7471.
    Mulder A., Van de Graaf A.A., et al.,1995. Anaerobic ammonium oxidaton discovered in a denitrifying fluidized bed reactor [J]. FEMS Microbiol. Lett.,16: 177-184.
    Mulder, J.W., Van Kempen, R.N.,1997. N-Removal by Sharon [J]. Water Qual. International,3(4):30-31.
    Mulder, J.W., Van Loosdreeht, M.C.M., Hellinga, C., et al.,2001. Full-scale application of the SHARON Process for treatment of rejection water of digested sludge dewatering [J]. Water Sci. Technol.,43(11):127-134.
    Ni, B.J., Fang, F., Xie, W.M., Yu, H.Q.,2008. Growth, maintenance and product formation of autotrophs in activated sludge:Taking the nitrite-oxidizing bacteria as an example [J]. Water Res.,42:4261-4270.
    Nicol, G.W., Schleper, C.,2006. Ammonia-oxidising Crenarchaeota:important players in the nitrogen cycle [J]? Trends Microbiol.,14:207-212.
    Nold, S.C., Zhou, J., Devol, A.H., Tiedje, J.M.,2000. Pacific Northwest marine sediments contain ammonia-oxidizing bacteria in the beta subdivision of the Proteobacteria [J]. Appl. Environ. Microbiol.,66:4532-4535.
    Nootong, K., Shieh, W.K.,2008. Analysis of an upflow bioreactor system for nitrogen removal via autotrophic nitrification and denitrification [J]. Bioresour. Technol., 99:6292-6298.
    Nugroho, R., Takanashi, C., Hirata, M., Hano. T.,2002. Denitrification of Industrial wastewater with sulfur and limestone packed column [J]. Water Sci. Technol., 46(11-12):99-104
    Nyamadzawo, G, Mapanda, F., Nyamugafata, P., Wuta, M., Nyamangara. J.,2007. Short-term impact of sulphate mine dump rehabilitation on the quality of surrounding groundwater and river water in mazowe district, Zimbabwe [J]. Phys. Chem. Earth,32:1376-1383.
    Okabe, S., Oozawa, Y., Hirata, K., Watabe, Y,1996. Relationship between pollution dynamics of nitrifiers in biofilms reactors performance at various C/N ratios [J]. Water Res.,30(7):1563-1572.
    Park, H.D., Regan, J.M., Noguera, D.R.,2002. Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic orbal processes [J]. Water Sci. Technol.,46:273-280.
    Park, H.D., Wells, G.F., Bae, H., Criddle, C.S., Francis, C.A.,2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors [J]. Appl. Environ. Microbiol.,72:5643-5647.
    Peccia, J., Marchand, E.A., Silverstein J., Hernandez, M.,2000. Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the Genus Acidiphilium [J]. Appl. Environ. Microbiol., 66:3065-3072.
    Philip, L., Deshuddes, M.A.,2003. Sulfur sioxide treatment from flue gases using a bio-trickling filter-bioreactor System [J]. Environ. Sci. Technol.,37(9): 1978-1982.
    Platt, R.M., Geesey, G.G., Davis, J.D., White, D.C.,1985. Isolation and chemical analysis of firmly bound exopolysaccharides from adherent cells of a fresh water sediment bacterium [J]. Can J. Microbiol.31,675-680.
    Pollice, A., Tandoi, V., Lestinggi, C.,2002. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate [J]. Water Res.,36:2541-2546.
    Pricic, A., Mahne, I., Megusar, F., et al.,1998. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater [J]. Appl. Environ. Microbiol.,64(10):3584-3590.
    Prosser, J.I.,1989. Autotrophic Nitrification in Bacteria [J]. Adv. Microbiol. Physiol., 30:125-181.
    Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M.C., Koops, H.-P., Wagner, M.,2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis:Implications for molecular diversity surveys [J]. Appl. Environ. Microbiol.,66:5368-5382.
    Ramesh, A., Lee, D.J., Hong, S.G.,2006. Soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge [J]. Appl. Microbiol. Biotechnol.,73:219-225.
    Reyes, S.A., Ricardo, B.C., Margarita, S., Jorge, G., Elias, R.F., Field, J.A.,2007. Chemolithotrophic Denitrification with Elemental Sulfur for Groundwater Treatment [J]. Water Res.,41:1253-1262.
    Robertson, L.A., Kuenen, J.G.,1984. Aerobic denitrification:a controversy revived [J]. Arch. Microbiol.,139:351-354.
    Rodrigues, A.C., Boroski, M., Shimada, N.S., Garcia, J.C., Nozaki, J., Hioka, N.,
    2008. Treatment of paper pulp and paper mill wastewater by coagulation-flocculation followed by heterogeneous photocatalysis [J]. J. Photochem. Photobiol.,194:1-10.
    Ruiz, G, Jeison, D., Chamy, R.,2003. Nitrification with high nitrite accumulation for treatment of wastewater with high mmonia concentration [J]. Water Res.,37(6): 1371-1377.
    Schmidt, I., Bock, E.,1997. Anaerobic ammaonia oxidation with nitrogen dioxide by Nitroaomonas eutropha [J]. Arch. Microbiol.,167:106-111.
    Schouten, S., Strous, M., Kuypers, M.M.M., Rijpstra, W.I.C., Baas, M., Schubert, C.J., Jetten, M.S.M., Damste, J.S.S.,2004. Stable carbon isotopic Fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria [J]. Appl. Environ. Microbiol.,70(6):3785-3788.
    Sharma B., Ahlertr C.,1977. Nitrification and nitrogen removal [J]. Water Res.,11(9): 897-925.
    Sinha B., Annachhatre A.P.,2007. Assessment of partial nitrification reactor performance through microbial population shift using quinone profile, FISH and SEM [J]. Bioresour. Technol.,98:3602-3610.
    Shina, J.H., Sanga, B.I., Chung, Y.C., Choung, Y.K.,2005. The removal of nitrogen using an autotrophic hybrid hollow-fiber membrane biofilms reactor [J]. Desalination,183:447-454.
    Sliekers, A.O., Third, K.A., Abma, W., et al.,2003. CANON and Anammox in a gas-lift reactor [J]. FEMS Microbiol. Lett.,218(2):339-344.
    Sivan, A., Szanto, M., Pavlov, V.,2006. Biofilm development of the polyethylenedegrading bacterium Rhodococcus rubber [J]. Appl. Microbiol. Biotechnol.,72:346-352.
    Staats, N., Winder, B.D., Stal, L.J., Mur, L.R.,1999. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navilcula salinarum [J]. Eur. J. Phycol.,34:161-169.
    Starr, M.P., Schmidt, J.M.,1995. Genus Planctornyces Gimesi [M]. Bergey's Manual of Systematic Bacteriology. New York:Springer.
    Strous, M., Gerven, E.V., Zheng, P., Kuenen, J.G., Jetten, M.S.M.,1997. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations [J]. Water Res., 31 (8):1955-1962.
    Strous, M., Heijnen, J.J., Kuenen, J.G., Jetten, M.S.M.,1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Appl. Microbiol. Biotechnol.,50(5): 589-596.
    Strous, M.,1999. Missing lithotroph identified as new planctomycete [J]. Nature,400: 446-449.
    Sumino, T., Isaka, K., Ikuta, H., Saiki, Y, Yokota, T.,2006. Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor [J]. J. Biosci. Bioengin.,102(4):346-351.
    Sunil, S.A., Lee, D.J.,2008. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure [J]. J. Hazard. Mater.,154, 1120-1126.
    Sutherson, S., Ganczarczyk, J.J.,1986. Inhibition of nitrite oxidation during nitrification:some observation [J]. Water Poll. Res. J. Can,21:257-266.
    Takai, K., Suzuki, M., Nakagawa, S., Miyazaki, M., Suzuki, Y, Inagaki, F., Horikoshi, K.,2006. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen-and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas [J]. Int. J. Syst. Evol. Microbiol., 56:1725-1733.
    Tay, J.H., Liu, Q.S., Liu, Y,2001. The role of cellular polysaccharides in the formation and stability of aerobic granules [J]. Lett. Appl. Microbiol.,33: 222-226.
    Teske, A., Aim, E., Regan, J.M., et al.,1994. Evolutionary relationships among ammonia and nitrite oxidizing bacteria [J]. J. Bacteriol.,176:6623-6630.
    Third, K.A., Paxman, J., Schmid, M., Strous, M., Jetten, M.S.M., Cord-Ruwisch, R., 2005. Enrichment of Anammox from activated sludge and its application in the CANON process [J]. Microbial Ecology,49:236-244.
    Tokutomi, T.,2004. Operation of a nitrite-type airlift reactor at low DO concentration [J]. Water Sci. Technol.,49 (5-6):81-88.
    Tsuneda, S., Nagano, T., Hoshino, T., Ejiri, Y., Noda, N., Hirata, A.,2003. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor [J]. Water Res.,37:4965-4973.
    Turk, N., Manila, D.S.,1989. Maintaining nitrite build-up in a system acclimated to free ammonia [J]. Water Res.,23(2):1383-1388.
    Underwood, G.J.C., Paterson, D.M., Parkes, R.J.,1995. The measurement of microbial carbohydrate exopolymers from intertidal sediments [J]. Limnol. Oceanogr.,40:1243-1253.
    Van de Graaf, A.A., De Bruijn, P., Robertson L.A., et al.,1997. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fluidized bed reactor [J]. Microbiology,143:2415-2421.
    Van de Star, W.R.L., Abma, W.R., Bolmmers, D., et al.,2007. Startup of reactors for anoxic ammonium oxidation:experiences from the first full scale anammox reactor in Rotterdam [J]. Water Res.,41(18):4149-4163.
    Van Dongen, U., Jetten, M.S.M., van Loosdrecht, M.C.M.,2001. The SHARON-Anmamox Process of treatment of ammonium rich wastewater [J]. Water Sci. Technol.,44(1):153-160.
    Van Kempen, R., Mulder, J.W., Uijterllnde, C.A., et al.,2001. Overview:full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering [J]. Water Sci. Technol.,44:145-152.
    Votes, J.P.,1975. Removal of nitrogen from highly nitrogenous wastewater [J]. JWPCF,47:394-398.
    Walter, B., Haase, C., Rabiger, N.,2005. Combined nitrification/denitrification in a membrane reactor [J]. Water Res.,39:2781-2788.
    Wagner, M., Rath, G, Amann, R., Koops, H.P., Schleifer, K.H.,1995. In situ identification of ammonium-oxidizing bacteria. Syst [J]. Appl. Microbiol.,18: 251-264.
    Wagner, M., Rath, G., Koops, H.P., Flood, J., Amann, R.,1996. In situ analysis of nitrifying bacteria in sewage treatment plants [J]. Water Sci. Technol.,34: 237-244.
    Wang, J., Long, M.C., Zhang, Z.J., Chi, L.N., Qiao, X.L., Zhu, H.X., Zhang, Z.F., 2008. Removal of organic compounds during treating printing and dyeing Wastewater of different process units [J]. Chemosphere,71:195-202.
    Wang, Z., Banks, C.J.,2007. Treatment of a high-strength sulphate-rich alkaline leachate using an anaerobic filter [J]. Waste Management,27(3):359-366.
    Wang, Z.P., Liu, L.L., Yao, J., Cai, W.M.,2006. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors [J]. Chemosphere, 63:1728-1735.
    Whitby, C.B., Saunders, J.R., Rodriguez, J., Pickup, R.W., McCarthy, A.,1999. Phylogenetic differentiation of two closely related Nitrosomonas spp. that inhabit different sediment environments in an oligotrophic freshwater lake [J]. Appl. Environ. Microbiol.,65:4855-4862.
    Wiesman, U.,1994. Biological nitrogen removal from wastewater [J]. Adv. Biochem. Eng.,51:113-154.
    Wittebolle, L., Vervaeren, H., Verstraete, W., Boon, N.,2008. Quantifying Community Dynamics of Nitrifiers in Functionally Stable Reactors [J]. Appl. Environ. Microbiol.,74(1):286-293.
    Yamamoto, T., Takaki, K., Koyama, T., Furukawa, K.,2008. Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox [J]. Bioresour. Technol.,99:6419-6425.
    Yang, L., Alleman J.E.,1992. Investigation of batch wise nitrite build-up by an enriched nitrification culture [J]. Water Sci. Technol.,26(5-6):997-1005.
    Yu, G.H., He, P.J., Shao, L.M.,2009. Characteristics of extracellular polymeric substances (EPS) fractions from excess sludges and their effects on bioflocculability [J]. Biosour. Technol.,100:3193-3198.
    Zhang, S.H., Zheng, P., Hua, Y.M.,2004. Anommox transited from denitrification in upflow biofilm reactor [J]. J. Environ. Sci. China,16(6):1041-1045.
    Zhang, X.Q., Bishop, P.L.,2003. Biodegradability of biofilm extracellular polymeric substances [J]. Chemosphere,50:63-69.
    Zhao, Q.L., Li, W., You, S.J.,2006. Simultaneous removal of ammonium nitrogen and sulphate from wastewaters with an anaerobic attached growth bioreactor [J]. Water Sci. Technol.,54(8):27-35.
    Zheng, P., Lin, F.M., Hu, B.L., Chen, J.S.,2004. Start-up of ammonia oxidation bioreactor with nitrifying activated sludge [J]. J. Environ. Sci. China,16(1): 13-16.
    蔡靖,郑平,胡宝兰,金仁村,2008a.硫氮比对厌氧生物同步脱氮除硫工艺性能的影响[J].环境科学学报,28(8):1506-1514.
    蔡靖,郑平,胡宝兰,金仁村,蒋坚祥,2008b.pH和碱度对同步厌氧生物脱氮除硫工艺性能的影响[J].化工学报,59(15):1264-1270.
    蔡靖,郑平,2009a.基质浓度冲击对同步厌氧生物脱氮除硫反应器性能的影响[J].中国环境科学,29(4):374-379.
    蔡靖,郑平,2009b.亚硝酸盐型同步厌氧生物脱氮除硫工艺的运行性能[J].生物工程学报.25(11):1684-1689.
    陈岭,明镇寰,2004.硝化池中氨氧化细菌amoA基因的检测及其多样性研究[J].浙江大学学报:理学版,31(5):565-569.
    程晓如,杨开,1996.设计A/O生物脱氮工艺应注意的几个问题[J].环境与开发,11(4):1-4.
    高大文,彭永臻,潘威,2003.SBR法短程硝化-反硝化生物脱氮工艺的研究[J].环境污染治理技术与设备,4(6):1-4.
    高廷耀,夏四清,周增炎,1999.城市污水生物脱氮除磷机理研究进展[J].上海环境科学,18(01):16-18.
    胡宝兰,陈旭良,郑平等,2005.两种Anammox反应器性能的对比研究[J].环境科学学报,25(4):545-551.
    李田,严世,1996.固定膜光催化氧化反应器深度净化自来水研究[J].中国给水 排水,12(3):7-8
    李巍,赵庆良,刘颢,2008.缺氧附着生长反应器同步脱氮除硫除碳运行效果探讨[J].环境科学,29(7):1855-1859.
    刘军,潘登,王斌,2003.SBR工艺中DO和C/N对同步硝化反硝化的影响[J].北京工商大学学报(自然科学版),21(2):7-10.
    马勇,2006.AO生物脱氮工艺处理生活污水中试二系统性能和SND研究[J].环境科学学报,26(5):710-715.
    钱易,现代废水处理新技术[M],中国科学技术出版社,北京,1992.
    宋学起,彭永臻,王淑莹等,2005.投加抑制剂实现短程硝化反硝化[J].水处理技术,31(4):38-42.
    王浩源,缪应祺,2001.高浓度硫酸盐废水治理技术的研究[J].环境导报,1:22-25.
    谢曙光,张晓建,王占生,2002.地表水处理中的好氧反硝化[J].中国给水排水,18(3):7-9.
    张丹,徐慧,刘耀平,张颖,陈冠雄,Oswald, V.C., Willy, V.,2003. OLAND生物脱氮系统运行及其硝化菌群的分子生物学检测术[J].应用与环境生物学报,9(5):530-533.
    张蕾,郑平,何玉辉,金仁村,2008.硫酸盐型厌氧氨氧化性能的研究[J].中国科学,B辑:化学,38(12):1113-1119.
    张小玲,王志盈,2003.低溶解氧下活性污泥法的短程硝化研究[J].中国给水排水,19(7):1-4.
    张秀红,周集体,郭海燕,曲宝成,2007.生物膜反应器脱氮性能及其硝化细菌的研究[J].化工环保,27(3):209-231.
    占国强,王晓梅,何晓红,陶勇,高平,李大平,2010.高温自养硝化反硝化工艺研究[J].应用与环境生物学报,16(1):122-125.
    赵旭涛,1995.硝化作用特征分析及讨论[J].环境科学研究,8(1):18-21.
    赵宗升,李炳伟,刘鸿亮,2002.高氨氮渗滤液处理的好氧反硝化工艺研究[J].中国环境科学,22(5):412-415.
    竺美,杨平,郭勇,郑德会,2008.一体式厌氧好氧流化床反应器同步脱氮除硫实验[J].环境科学学报,28(10):1993-1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700