用户名: 密码: 验证码:
给水生物预处理系统中微生物的群落结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微污染原水中的溶解性有机物与氨氮问题难以用传统的净水工艺解决,在常规净水工艺之前增设生物预处理工艺,对给水水质的改善有十分重要的作用。在生物预处理系统中,生物膜内的原核微生物是微污染原水中碳元素和其他营养物质去除的主要承担者。原水中氨氮和亚硝氮的去除由化能自养的氨氧化细菌(AOB)和亚硝酸盐氧化细菌相继完成,其中由AOB完成的将氨转化为亚硝酸盐的过程是硝化反应的限速步骤。给水生物预处理反应器提供了特殊的贫营养生物膜环境,对反应器中微生物群落及生态功能的全面认识有助于了解影响污染物降解效率和稳定性的因素,并将为环境微生物生态学研究提供有意义的信息。
     本论文综合使用多种分子生物学手段,包括核酸提取、分子克隆文库构建、16S rDNA序列同源性分析、反转录PCR、变性梯度凝胶电泳(DGGE)和实时荧光定量PCR技术等,分析用于给水预处理的生物接触氧化反应器系统中的微生物群落组成,并重点对反应器内的氨氧化细菌群落进行研究,结合相关参数,探讨氨氧化细菌种群动态变化、环境因子变化以及反应器氨氮去除效率间的相互关系,探索以分子手段对反应器运行进行动态实时监测的可行性。
     对细菌16S rDNA片段克隆文库的克隆子序列同源性分析结果表明,生物接触氧化反应器中细菌群落多样性丰富,至少包含了细菌域的13个细菌类群,其中属于α-、β-、γ-变形菌纲的克隆子是克隆文库中的优势细菌类群。反应器内富集了各种贫营养细菌,属于α-变形菌纲的紫色非硫细菌Rhodobacter可能是反应器中进行有机物分解的重要细菌种群,Nitrospira属细菌是反应器中亚硝酸盐氧化反应的承担者。经由纯培养方法得到的细菌群落结构与克隆文库方法相比存在很大的差异。
     对上海惠南水厂和航头水厂生物接触氧化反应器中生物膜样品的AOB群落通过不同的目标片段(16S rRNA片段和编码氨单加氧酶活性部位的amoA片段)结合不同的实验技术路线进行分析。结果表明在进行氨氧化细菌生态学研究时选择合适的目标片段、引物对、以及合理的分析手段和实验流程的重要性。给水生物接触氧化反应器中的AOB至少由3种种群组成:属于Nitrosomonas oligotropha lineage的AOB种群、属于Nitrosomonas communis lineage并与其中的Nitrosomonas nitrosa同源性较高的AOB种群、以及一种尚未得到纯培养物的未知AOB种群。结合DNA来源和RNA来源的AOB 16S rRNA和amoA片段扩增产物进行的DGGE分析结果表明在两个水厂的生物接触氧化反应器中的AOB显示了相同的种群结构和季节变迁特征,说明AOB种群在给水生物预处理反应器中遵循特定的环境变化适应机制。对基于RNA的扩增片段进行DGGE指纹图谱分析能够更敏感地反映生物膜样品中AOB的种群结构变化。研究结果还表明同源于N. nitrosa的AOB对环境温度的改变较敏感,在温度较高时显示了较高的生理活性和功能活性。
     运用实时荧光定量PCR技术对生物膜样品中总细菌和总氨氧化细菌的16S rDNA片段进行定量分析,结果表明在生物接触氧化反应器内总细菌和总AOB的细胞数量在一年内的波动高达4个数量级。总AOB细胞数占总细菌数的0.23%至1.8%。统计学分析表明生物膜内细胞数量的这种波动与原水的温度变化相关,且生物膜内总氨氧化细菌的细胞数量与反应器的氨氮去除效率呈正相关。
     对生物接触氧化反应器内3种AOB种群的amoA基因片段进行实时荧光定量PCR分析,结果表明,一年内生物膜中的AOB种群结构变化很大,类N. oligotropha和类N. nitrosa氨氧化细菌在一年中交替成为反应器的优势AOB种群。统计学分析表明同源于N. nitrosa的AOB种群和未知AOB种群的细胞数量变化与反应器的氨氮去除效率波动呈正相关,且后者更加显著相关,表明未知AOB种群很可能就是反应器内影响氨氮去除效率的关键种群。且该种群细胞数量变化与温度变化不相关,在12月至1月的低水温环境中该种群具有较高的竞争优势,这一研究结果对给水生物预处理反应器在低温环境的运行优化有重要的意义。本文还证明了实时荧光定量PCR是一种快速有效的分子监测手段,在反应器的运行过程中,加强对细菌群落和关键氨氧化细菌种群的监测,将帮助预测反应器运行效果,并有根据地对反应器进行干预和调控。
Biological pretreatment process in the water treatment train could improve the conventional treatment processes for better dissolved organics and ammonia removal. Communities of prokaryotic microorganisms present in the biological pretreatment reactors are responsible for most of the carbon and nutrient removal from raw water and thus represent the core component of the reactors. Nitrification is the process of converting ammonia to nitrate via nitrite and is catalyzed by aerobic chemoautotrophic ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. Ammonia oxidation is thought to be the rate-limiting step for nitrification in most systems. Microbial community structure in the biological water pretreatment reactors may be unique because of the much lower substrate concentration in the influent water and the different operational parameters compared to other systems. However, the microbial communities, which directly govern substrate utilization performance of the process, are poorly understood.
     In this study, microbial community structures in full-scale aerated submerged biofilm reactors for micropolluted raw water pretreatment were investigated using molecular techniques, including nucleic acids extraction, clone library construction, 16S rDNA sequence homology analysis, reverse transcription-PCR, denaturing gradient gel electrophoresis (DGGE), and quantitative real-time PCR techniques. Investigations of community composition and population dynamics of AOB were emphasized due to the particular ammonia removal require in the processes. The relationship between AOB populations, specific reactor operational characteristics and the reactor performance was examined.
     16S rRNA gene clone libraries revealed 13 bacterial divisions in the biofilm reactor. The majority of clone sequences were related to the Alpha-, Beta- and Gamma-proteobacteria. A variety of oligotrophic bacterial sequences were identified, some sequences related to bacteria owning high potential metabolic capacities were detected in biofilm samples, such as Rhodobacter-like rRNA gene sequences. Nitrospira-like bacteria was found to be the nitrite-oxidizing bacteria in the reactor. There was a significant difference between results of the bacterial community diversity gained from culture-dependent and culture-independent methods.
     AOB communities in the biological water pretreatment reactors of Huinan and Hangtou Waterworks were characterized by analysis of 16S rRNA gene and the functional gene amoA, respectively. Results of different investigation routes demonstrated that it is important to apply suitable molecular markers, useful primers or probes and reasonable strategies in investigating the ecology of AOB in environments. Phylogenetic analysis revealed at least three AOB groups in the biofilm reactors, which affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage (Nitrosomonas nitrosa-like AOB) and an unknown Nitrosomonas group. DGGE profiles of both molecular markers showed identical temporal shifts of AOB communities in Huinan and Hangtou bioreactors, indicating their identical ecological adaption directions in both reactors. DGGE analysis based on the RNA approaches exhibited more variable patterns of temporal changes of AOB communities than the DNA-derived approaches during the study, and the RNA approaches were more functional to reflect the dynamics and physiological conditions of AOB communities. The results also suggested that the activity of N. nitrosa-like AOB was more sensitive to low temperature.
     The population sizes of total bacteria and betaproteobacterial AOB in the biofilm reactor of Hangtou Waterworks were quantified with 16S rRNA gene real-time PCR assay. The results showed that bacterial number detected throughout a year varied substantially, by up to four orders of magnitude. Cell numbers of AOB corresponded to 0.23-1.8% of the total bacterial fraction. Water temperature was shown to have major influence on AOB population size in the reactor by the statistic analysis, and a positive correlation between AOB cell numbers and ammonia removal efficiency was suggested.
     Based on the quantitative results of the three specific AOB groups by real-time PCR assays, a change in competitive dominance between AOB of N. oligotropha lineage and N. communis lineage was observed. A positive correlation between cell numbers of N. communis lineage and ammonia removal efficiency was suggested. And a more significant positive correlation between cell numbers of the unknown Nitrosomoans group and ammonia removal efficiency was also revealed. Statistic analysis showed that variation of water temperature did not correlate to population size of this unknown AOB group, which is significative for optimizing the ammonia removal performance in the reactor in winter. Quantitative real-time PCR technique was proved to be a quick and effective molecular monitor method for quantifying microbial communities in the reactors, which will give directions for forecast and improvement of reactor performance in the future.
引文
[1] 周才扬, 穆宏强. 我国的水污染现状及防治对策. 长江职工大学学报. 2002, 19(4): 8-9
    [2] 刘林章, 江菊叶. 地表水污染及其防治. 水土保持研究. 2007, 14(4): 335-337
    [3] 王占生, 刘文君. 微污染水源饮用水处理. 北京: 中国建筑工业出版社. 1999
    [4] 张贵春, 王亚军, 王占生. 饮用水处理工艺对水的致突变活性及水中有机污染物的影响. 见: 给水与废水处理国际会议论文集. 北京: 中国建筑工业出版社. 1994, p.213-218
    [5] 陈淑美, 干侣仙. 水源水、饮用水中氯仿、四氯化碳含量与微核率相关性研究. 中国环境科学. 1995, 15(1): 55-58
    [6] 叶辉, 许建华. 饮用水中的氨氮问题. 中国给水排水. 2000, 16(11): 31-34
    [7] 于鑫, 李旭东. 饮用水原水微污染及其处理技术. 四川环境. 1998, 17(1): 24-30
    [8] 李永秋. 生物预处理对饮用水致突活性影响研究.中国给水排水. 1996,12(2):7-9
    [9] 魏建荣, 王振刚. 饮用水中消毒副产物研究进展. 卫生研究. 2004, 33(1): 115-118
    [10] 徐祥宽, 毛超云, 蔡建民等. 氯消毒饮水与癌症关系的病例对照研究. 环境与健康. 1988, 5(4): 40-43
    [11] 谭智, 许建华. 污染水源的生物法顶处理. 水处理技术. 1995, 21(4): 231-237
    [12] Bouwer EJ, Crowe PB. Biological processes in drinking water treatment. J. Am. Water Works Ass. 1988, 80(9): 82–93
    [13] 许建华, 万英, 汤利华. 微污染原水的生物接触氧化法预处理技术研究.同济大学学报. 1995, 23(4): 376-381
    [14] 李伟英. 给水生物预处理工艺中生物相变迁规律及作用. 环境与开发. 2000, 15(2): 5-8
    [15] 黄明明, 张蕴华. 给水排水规范实施手册[M]. 北京: 中国建筑工业出版社.1993, p.10
    [16] 任智勇, 齐岩松, 李然. 饮用水生物预处理除氮技术. 城市环境与城市生态. 2002, 15(3): 54-56
    [17] Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 2001, 55: 485-529
    [18] 吴百力. 高浓度氨氮废水处理技术及其发展趋势. 环境保护科学. 2006, 2(32): 22-24
    [19] 琚姝, 周长林, 窦洁. 高硝化活性亚硝酸盐氧化细菌的培养和应用研究. 微生物学通报. 2005, 32(5): 56-61
    [20] 高兴波, 谢锐, 张立桅. A/O 工艺处理混合化工废水的生产实践. 化工科技. 2000, 8(1): 39-43
    [21] Kuzetsov SI, Dubinia GA, Lapteva NA. Biology of oligotrophic bacteria. Ann. Rev. Microbiol. 1979, 33(3): 337-387
    [22] Loy A, Daims H, Wagner M. Activated sludge-molecular techniques for determining community composition. In: Bitton G. The Encyclopedia of Environmental Microbiology. New York: John Wiley & Sons. 2002, p.26-43
    [23] Kanagawa T, Kamagata Y, Aruga S et al. Phylogenetic analysis of and oligonucleotide probe development for Eikelboom type 021N filamentous bacteria isolated from bulking activated sludge. Appl. Environ. Microbiol. 2000, 66(11): 5043-5052
    [24] Seviour EM, Blackall LL, Christensson C et al. The filamentous morphotype Eikelboom Type 1863 is not a single genetic entity. J. Appl. Microbiol. 1997, 82(4): 411-421
    [25] Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotech. 2002, 13: 218-227
    [26] Amann RI, Ludwig E, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 59(1):143-169
    [27] Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Anton. Leeuw. 1998, 73: 127-141
    [28] Muyzer G, Ramsing NB. Molecular methods to study the organization of microbial communities. Water Sci.Tech. 1995, 32(8): 1-9
    [29] Liu WT, Marsh TL, Cheng H et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 1997, 63(11): 4516-4522
    [30] Muyzer G, Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59(3): 695-700
    [31] Amann R, Ludwig W. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol. Rev. 2000, 24: 555-565
    [32] 黄立南, 聂湘平, 蓝崇钰. 核酸杂交技术在微生物生态学上的应用. 生态科学. 2001, 20(2): 115-120
    [33] Amann R, Fuchs BM, Behrens S. The identification of microorganisms by fluorescence in situ hybridization. Curr. Opin. Biotech. 2001, 12: 231-236
    [34] Bollmann A, Schmidt I, Saunders AM et al. Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis. Appl. Environ. Microbiol. 2005, 71(3): 1276-1282
    [35] Zhang T, Herbert H, Fang P. Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl. Microbiol. Biot. 2006, 70(3): 281-289
    [36] Wu L, Thompson DK, Li G et al. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 2001, 67(12): 5780-5790
    [1] Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotech. 2002, 13: 218-227
    [2] 刘双江, 刘志培, 王保军等. 水源水生物预处理反应器微生物学特征. 城市环境与城市生态. 1994, 7(2): 1-5
    [3] Staley JT, Konopka A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 1985, 39: 321-346
    [4] Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 1985, 49 (1): 1-7
    [5] Moll DM, Summers RC, Fonseca AC et al. Impact of temperature on drinking water biofilter performance and microbial community structure. Environ. Sci. Technol. 1999, 33(14): 2377-2382
    [6] Williams MM, Domingo JWS, Meckes MC et al. Phylogenetic diversity of drinking water bacteria in a distribution system simulator. J. Appl. Microbiol. 2004, 96(5): 954-964
    [7] Chen CL, Liu WT, Chong ML et al. Community structure of microbial biofilms associated with membrane-based water purification processes as revealed using a polyphasic approach. Appl. Microbiol. Biot. 2004, 63(4): 466-473
    [8] Graham JH, Hodge NC, Morton JB. Fatty acid methyl ester profiles for characterization of Glomalean fungi and their endomycorrhizae. Appl. Environ. Microbiol. 1995, 61(1): 58-64
    [9] Wang SG, Hou YL. Application of phospholipid fatty acid method in soil microbial analysis. Microbiology. 2004, 31(1): 114-117
    [10] Giovannoni SJ, Britschgi TB, Moyer CL et al. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990, 345(6270): 60-63
    [11] Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 1994, 44: 846-849
    [12] Tanner MA, Goebel BM, Dojka MA et al. Specific ribosomal DNA sequence from diverse environmental settings correlate with experimental contaminant. Appl. Environ. Microbiol.1998, 64(8): 3110-3113
    [13] Sekiguchi H, Watanabe M, Nakahara T et al. Succession of bacterial community structure along the Changjiang river determined by denaturing gradient gel electrophoresis and clone library analysis. Appl. Environ. Microbiol. 2002, 68(10): 5142-5150
    [14] Zwart G, Crump BC, Agterveld MPK et al. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat. Microb. Ecol. 2002, 28: 141-155
    [15] Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. National Acad. Sci. USA. 1977, 74 (11): 5088-5090
    [16] Crocetti GR, Hugenholtz P, Bond PL et al. Identification of polyphosphate- accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol. 2000, 66(3): 1175-1182
    [17] Sekiguchi Y, Takahashi H, Kamagata Y et al. In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl. Environ. Microbiol. 2001, 67(12): 5740-5749
    [18] Brosius J, Palmer JL, Kennedy HP et al. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. National Acad. Sci. USA. 1978, 75(10): 4801-4805
    [19] Stackebrandt E, Goebel M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Bacteriol. 1994, 44: 846-849
    [20] Good IL. The population frequencies of species and the estimation of population parameters. Biometrika. 1953, 40(3-4): 237-264
    [21] Magurran AE. Ecological Diversity and its Measurement. London: Chapman and Hall. 1988, p.179
    [22] Brümmer IH, Felske A, Wagner-D?bler I. Diversity and seasonal variability of beta-Proteobacteria in biofilms of polluted rivers: analysis by temperature gradient gel electrophoresis and cloning. Appl. Environ. Microbiol. 2003, 69(8): 4463-4473
    [23] 黄晓东, 于达丰, 王占生等. 受污染珠江水源水的生物预处理试验研究. 给水排水. 1998, 7: 35-37
    [24] 夏辉, 梁运祥. 1 株净水贫营养细菌的筛选及其低营养特性的初步研究. 华中农业大学学报. 2006, 25(5): 530-534
    [25] Kindaichi T, Ito T, Okabe S. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl. Environ. Microbiol. 2004, 70(3): 1641-1650
    [26] Madigan MT, Martinko JM, Parker J. Brock biology of microorganisms, 10th edn. New Jersey: Pearson Education. 2003
    [27] Gonzalez C, Gutierrez C, Grande T. Bacterial flora in bottled uncarbonated drinking water. Can. J. Microbiol. 1987, 33(12): 1120-1125
    [28] Hoefel D, Monis PT, Grooby WL et al. Profiling bacterial survival through a water treatment process and subsequent distribution system. J. Appl. Microbiol. 2005, 99(1): 175-186
    [29] Brümmer IHM, Fehr W, Wagner-D?bler I. Biofilm community structure in polluted rivers: abundance of dominant phylogenetic groups over a complete annual cycle. Appl. Environ. Microbiol. 2000, 66(7): 3078-3082
    [30] Wanner O, Gujer W. A multispecies biofilm model. Biotechnol. Bioeng. 1986, 28: 314-328
    [31] Gl?ckner FO, Fuchs BM, Amann R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 1999, 65(8): 3721-3726
    [32] Gl?ckner FO, Zaichikov E, Belkova N et al. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl. Environ. Microbiol. 2000, 66(11): 5053-5065
    [33] Whiteley AS, Bailey MJ. Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl. Environ. Microbiol. 2000, 66(6): 2400-2407
    [34] Snaidr J, Amann R, Huber I et al. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 1997, 63(7): 2884-2896
    [35] Wagner M, Amann R, Lemmer H et al. Probing activated sludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 1993, 59(5): 1520-1525
    [36] Regan JM, Harrington GW, Baribeau H et al. Diversity of nitrifying bacteria in full-scale chloraminated distribution systems. Water Res. 2003, 37: 197-205
    [37] Siripong S, Rittmann BE. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res. 2007, 41: 1110-1120
    [38] Seeger M, Zielinski M, Timmis KN et al. Regiospecificity of dioxygenation of Di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl. Environ. Microbiol.1999, 65(8): 3614-3621
    [39] Zhang H, Sekiguchi Y, Hanada S et al. Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int. J. Syst. Evol. Micr. 2003, 53: 1155-1163
    [1] Robertson LA, van Niel EWJ, Torremans RAM et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Environ. Microbiol. 1988, 54(11): 2812-2818
    [2] Coolen MJL, Abbas B, van Bleijswijk J et al. Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environ. Microbiol. 2007, 9(4): 1001-1016
    [3] Schmid M, Twachtmann U, Klein M et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonia oxidation. Syst. Appl. Microbiol. 2000, 23(1): 93-106
    [4] Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 2001, 55: 485-529
    [5] Watson SW, Bock E, Harms H et al. Nitrifying bacteria. In: Staley JT, Bryant MP, Pfennig N et al. Bergey’s manual of systematic bacteriology, vol. 3. Baltimore: Williams and Wilkins. 1989, p.1808-1834
    [6] Koops HP, Pommerening-R?ser A. Distribution and ecophysiology of the nitrifying bacteria mphasizing cultured species. FEMS Microbiol. Ecol. 2001, 37: 1-9
    [7] Bock E, Schmidt I, Stuven R et al. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. Microbiol. 1995, 163: 16-20
    [8] Schmidt I, Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch. Microbiol. 1997, 167: 106-111
    [9] Woese CR, Weisburg WG, Hahn CM et al. The phylogeny of purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 1985, 6: 25-33
    [10] Woese CR, Weisburg WG, Paster BJ et al. The phylogeny of purple bacteria: the beta subdivision. Syst. Appl. Microbiol. 1984, 5: 327-336
    [11] Head IM, Hiorns WD, Embley TM et al. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J. Gen. Microbiol. 1993, 139: 1147-1153
    [12] Stephen JR, McCaig AE, Smith Z et al. Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 1996, 62(11): 4147-4154
    [13] Pommerening-R?ser A, Rath G, Koops H-P. Phylogenetic diversity within the genus Nitrosomonas. Syst. Appl. Microbiol. 1996, 19: 344-351
    [14] Purkhold U, Wagner M, Timmermann G et al. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int. J. Syst. Evol. Micr. 2003, 53: 1485-1494
    [15] Purkhold U, Pommerening-R?ser A, Juretschko S et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl. Environ. Microbiol. 2000, 66(12): 5368-5382
    [16] Koops H-P, Purkhold U, Pommerening-R?ser A et al. The lithoautotrophic ammonia-oxidising bacteria. In: Dworkin M, Falkow S, Rosenberg E et al. The Prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. New York: Springer-Verlag. 2003
    [17] McCaig AE, Embley TM, Prosser JI. Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol. Lett. 1994, 120: 363-368
    [18] Fox GE, Wisotzkey JD, Jurtshuk P. How close is close: 16S rDNA identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 1992, 42: 166-170
    [19] Hyman MR, Wood PM. Suicidal inactivation and labeling of ammoniamonooxygenase by acetylene. Biochem. J. 1985, 227(3): 719-725
    [20] McTavish H, Fuchs JA, Hooper AB. Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J. Bacteriol. 1993, 175(8): 2436-2444
    [21] Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997, 63(12): 4704-4712
    [22] Klotz MG, Norton JM. Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria. FEMS Microbiol. Lett. 1998, 168: 303-311
    [23] Gurtler V, Stanisich VA. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology. 1996, 142: 3-16
    [24] Aakra A, Ut?ker JB, Nes IF. RFLP of rRNA genes and sequencing of the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach. Int. J. Syst. Bacteriol. 1999, 49: 123-30
    [25] Gorra R, Coci M, Ambrosoli R et al. Effects of substratum on the diversity and stability of ammonia-oxidizing communities in a constructed wetland used for wastewater treatment. J. Appl. Microbiol. 2007, 103(5): 1442-1452
    [26] Park H-D, Regan JM, Noguera DR. Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic Orbal processes. Water Sci. Technol. 2002, 46(1-2): 273-280
    [27] Hoefel D, Monis PT, Grooby WL et al. Culture-independent techniques for rapid detection of bacteria associated with loss of chloramine residual in a drinking water system. Appl. Environ. Microbiol. 2005, 71(11): 6479-6488
    [28] Hiorns WD, Hastings RC, Head IM et al. Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of Nitrosospiras in the environment. Microbiology. 1995, 141(11): 2793-2800
    [29] Bano N, Hollibaugh JT. Diversity and distribution of DNA sequences with affinityto ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in the Arctic Ocean. Appl. Environ. Microbiol. 2000, 66(5): 1960-1969
    [30] Jones RD, Morita RY, Koops H-P et al. A new marine ammonium-oxidizing bacterium, Nitrosomonas cryotolerans sp. Can. J. Microbiol. 1988, 34(10): 1122-1128
    [31] Mota C, Ridenoure J, Cheng J et al. High levels of nitrifying bacteria in intermittently aerated reactors treating high ammonia wastewater. FEMS Microbiol. Ecol. 2005, 54: 391-400
    [32] Gieseke A, Bjerrum L, Wagner M et al. Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm. Environ. Microbiol. 2003, 5 (5): 355-369
    [33] O’Mullan GD, Ward BB. Relationship of temporal and spatial variabilities of ammonia-oxidizing bacteria to nitrification rates in Monterey Bay, California. Appl. Environ. Microbiol. 2005, 71(2): 697-705
    [34] Ward BB, Martino DP, Diaz MC et al. Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences. Appl. Environ. Microbiol. 2000, 66(7): 2873-2881
    [35] Schramm A, de Beer D, Wagner M et al. Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 1998, 64(9): 3480-3485
    [36] Limpiyakorn T, Shinohara Y, Kurisu F et al. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol. 2005, 54: 205-217
    [37] Bernhard AE, Donn T, Giblin AE et al. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ. Microbiol. 2005, 7(9): 1289-1297
    [38] Park HD, Noguera DR. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res. 2004, 38:3275-3286
    [39] Gieseke A, Purkhold U, Wagner M et al. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl. Environ. Microbiol. 2001, 67(3): 1351-1362
    [40] Kowalchuk GA, Naoumenko ZS, Derikx PJL et al. Molecular analysis of ammonia-oxidising bacteria of the β?subdivision of the class Proteobacteria in compost and composting materials. Appl. Environ. Microbiol. 1999, 65(2): 396-405
    [41] Lipponen MTT, Martikainen PJ, Vasara RE et al. Occurrence of nitrifiers and diversity of ammonia-oxidizing bacteria in developing drinking water biofilms. Water Res. 2004, 38: 4424-4434
    [42] Cébron A, Berthe T, Garnier J. Nitrification and nitrifying bacteria in the lower Seine River and Estuary (France). Appl. Environ. Microbiol. 2003, 69(12): 7091-7100
    [43] Stehr G, B?ttcher B, Dittberner P et al. The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiol. Ecol. 1995, 17: 177-186
    [44] Stehr G, Z?rner S, B?ttcher B et al. Exopolymers: an ecological characteristic of a flock-attached, ammonia-oxidizing bacterium. Microb. Ecol. 1995, 30: 115-126
    [45] Dionisi HM, Layton AC, Harms G et al. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from fullscale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol. 2002, 68(1): 245-253
    [46] Gómez-Villalba B, Calvo C, Vilchez R et al. TGGE analysis of the diversity of ammonia-oxidizing and denitrifying bacteria in submerged filter biofilms for the treatment of urban wastewater. Appl. Microbiol. Biotechnol. 2006, 72: 393-400
    [47] Nicolaisen MH, Ramsing NB. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Meth. 2002, 50: 189-203
    [48] Lydmark P, Lind M, S?rensson F et al. Vertical distribution of nitrifyingpopulations in bacterial biofilms from a full-scale nitrifying trickling filter. Environ. Microbiol. 2006, 8(11): 2036-2049
    [49] Kuo DW, Robinson KG, Layton AC et al. Real-time PCR quantification of ammonia-oxidizing bacteria (AOB): solids retention time (SRT) impacts during activated sludge treatment of industrial wastewater. Environ. Eng. Sci. 2006, 23(3): 507-520
    [50] Okabe S, Satoh H, Watanabe Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 1999, 65(7): 3182-3191
    [51] Schramm A, Larsen LH, Revsbech NP et al. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 1996, 62(12): 4641-4647
    [52] Juretschko SG, Timmermann M, Schmid K-H et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 1998, 64(8): 3042-3051
    [53] Bollmann A, Bar-Gilissen M-J, Laanbroek HJ. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 2002, 68(10): 4751-4757
    [1] Fischer SG, Lerman LS. Length-independent separation of DNA restriction fragments in two dimensional gel electrophoresis. Cell. 1979, 16(1): 191-200
    [2] Muyzer G, Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol.1993, 59(3): 695-700
    [3] 邢德峰, 任南琪. 应用DGGE研究微生物群落时的常见问题分析. 微生物学报. 2006, 46(2): 331-335
    [4] Watanabe K, Kodama Y, Harayama S. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Methods. 2001, 44: 253-262
    [5] Sheffield VC, Cox DR, Lerman LS et al. Attachment of a 40-base pair G+C-rich sequence (GCclamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA. 1989, 86: 232-236
    [6] Muyzer G, Hottentr?ger S, Teske A et al. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA: a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, van Elsas JD, de Bruijn FJ. Molecular microbial ecology manual, vol. 3. The Netherlands: Kluwer Academic Publishers. 1996, p.4.4.1-4.4.23
    [7] Kowalchuk GA, Stephen JR, Boer WD et al. Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 1997, 63(4): 1489-1497
    [8] Rowan AK, Snape JR, Fearnside D et al. Composition and diversity ofammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol. Ecol. 2003, 43: 195-206
    [9] Cébron A, Coci M, Garnier J et al. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the Lower Seine River: impact of Paris wastewater effluents. Appl. Environ. Microbiol. 2004, 70(11): 6726-6737
    [10] Oved T, Shaviv A, Goldrath T et al. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl. Environ. Microbiol. 2001, 67(8): 3426-3433
    [11] Nicolaisen MH, Ramsing NB. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Meth. 2002, 50: 189-203
    [12] Mota CR, Head MA, Ridenoure JA et al. Effects of aeration cycles on nitrifying bacterial populations and nitrogen removal in intermittently aerated reactors. Appl. Environ. Microbiol. 2005, 71(12): 8565-8572
    [13] Weller R, Weller JW, Ward DM. 16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed complementary DNA. Appl. Environ. Microbiol. 1991, 57(4): 1146-1151
    [14] Gieseke A, Bjerrum L, Wagner M et al. Structure and activity of multiple nitrifying bacterial populations co-existing in a biofilm. Environ. Microbiol. 2003, 5(5): 355-369
    [15] Kowalchuk GA, Naoumenko ZS, Derikx PJL et al. Molecular analysis of ammonia-oxidising bacteria of the β-subdivision of the class Proteobacteria in compost and composting materials. Appl. Environ. Microbiol. 1999, 65(2): 396-405
    [16] Freitag TE, Prosser JI. Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Appl. Environ. Microbiol. 2003, 69(3): 1359-1371
    [17] Aoi Y, Masaki Y, Tsuneda S et al. Quantitative analysis of amoA mRNA expression as a new biomarker of ammonia oxidation activities in a complex microbialcommunity. Lett. Appl. Microbiol. 2004, 39(6): 538-544
    [18] Griffiths RI, Whiteley AS, O’Donnell AG et al. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA and rRNA-based microbial community composition. Appl. Environ. Microbiol. 2000, 66(12): 5488-5491
    [19] McCaig AE, Embley TM, Prosser JI. Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol. Lett. 1994, 120: 363-368
    [20] Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 2001, 55: 485-529
    [21] Gieseke A, Purkhold U, Wagner M et al. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl. Environ. Microbiol. 2001, 67(3): 1351-1362
    [22] Stephen JR, McCaig AE, Smith Z et al. Molecular diversity of soil and marine 16S rDNA sequences related to β-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 1996, 62(11): 4147-4154
    [23] Vallaeys T, Topp E, Muyzer G et al. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol. Ecol. 1997, 24: 279-285
    [24] Nogueira R, Melo LF, Purkhold U et al. Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon. Water Res. 2002, 36: 469-481
    [25] Park HD, Noguera DR. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res. 2004, 38: 3275-3286
    [26] Purkhold U, Pommerening-R?ser A, Juretschko S et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl. Environ. Microbiol.2000, 66(12): 5368-5382
    [27] Koops H-P, Purkhold U, Pommerening-R?ser A et al. The lithoautotrophic ammonia-oxidising bacteria. In: Dworkin M, Falkow S, Rosenberg E et al. The Prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. New York: Springer-Verlag. 2003
    [28] Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 1994, 44: 846-849
    [1] Kowalchuk GA, Naoumenko ZS, Derikx PJL et al. Molecular analysis of ammonia-oxidising bacteria of the β?subdivision of the class Proteobacteria in compost and composting materials. Appl. Environ. Microbiol. 1999, 65(2): 396-405
    [2] Kowalchuk GA, Stienstra AW, Heilig GHJ et al. Changes in the community structure of ammonia-oxidising bacteria during secondary succession of calcareous grasslands. Environ. Microbiol. 2000, 2(1): 99-110
    [3] Wagner M, Rath G, Amann R et al. In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 1995, 18(2): 251-264
    [4] Kowalchuk GA, Stephen JR. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 2001, 55: 485-529
    [5] Konuma S, Satoh H, Mino T et al. Comparison of enumeration methods for ammonia-oxidizing bacteria. Water Sci. Technol. 2001, 43: 107-114
    [6] Rittmann BE, Laspidou CS, Flax J et al. Molecular and modeling analyses of the structure and function of nitrifying activated sludge. Water Sci. Technol. 1999, 39: 51-59
    [7] Manz W, Szewzyk U, Ericsson P et al. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl. Environ. Microbiol. 1993, 59(7): 2293-2298
    [8] Mendum TA, Sockett RE, Hirsch PR. Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the β?subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Appl. Environ. Microbiol.1999, 65(9): 4155-4162
    [9] Phillips CJ, Paul EA, Prosser JI. Quantitative analysis of ammonia oxidizing bacteria using competitive PCR. FEMS Microbiol. Ecol. 2000, 32: 167-175
    [10] Zhang T, Herbert H, Fang P. Applications of real-time polymerase chain reactionfor quantification of microorganisms in environmental samples. Appl. Microbiol. Biotechnol. 2006, 70: 281-289
    [11] 张晶, 张惠文, 张成刚. 实时荧光定量 PCR 及其在微生物生态学中的应用. 生态学报. 2005, 25(6): 1445-1450
    [12] 袁媛, 陈强, 陈思祗等. 实时荧光定量 PCR 技术及其在生命科学领域中的应用(一). 海峡预防医学杂质. 2006, 12(4): 18-20
    [13] Aakra A, Utaker JB, Nes IF. RFLP of rRNA genes and sequencing of the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach. Int. J. Syst. Bacteriol. 1999, 49: 123-130
    [14] Klotz MG, Norton JM. Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria. FEMS Microbiol. Lett. 1998, 168: 303-311
    [15] Purkhold U, Pommerening-R?ser A, Juretschko S et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl. Environ. Microbiol. 2000, 66(12): 5368-5382
    [16] Layton AC, Dionisi H, Kuo HW et al. Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Appl. Environ. Microbiol. 2005, 71(2): 1105-1108
    [17] Hermansson A, Lindgren P. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl. Environ. Microbiol. 2001, 67(2): 972-976
    [18] Okano Y, Hristova KR, Leutenegger CM et al. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl. Environ. Microbiol. 2004, 70(2): 1008-1016
    [19] Harms G, Layton A, Dionisi H et al. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 2003, 37(2): 343-351
    [20] Horz H-P, Barbrook A, Field CB et al. Ammonia-oxidizing bacteria respond to multifactorial global change. PNAS. 2004, 101(42): 15136-15141
    [21] Limpiyakorn T, Kurisu F, Yagi O. Development and application of real-time PCR for quantification of specific ammonia-oxidizing bacteria in activated sludge of sewage treatment systems. Appl. Microbiol. Biotechnol. 2006, 72: 1004-1013
    [22] Hoefel D, Monis PT, Grooby WL et al. Culture-independent techniques for rapid detection of bacteria associated with loss of chloramine residual in a drinking water system. Appl. Environ. Microbiol. 2005, 71(11): 6479-6488
    [23] Bernhard AE, Tucker J, Giblin AE et al. Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ. Microbiol. 2007, 9(6): 1439-1447
    [24] Fernández A, Huang S, Seston S et al. How stable is stable? Function versus community composition. Appl. Environ. Microbiol. 1999, 65(8): 3697-3704
    [25] Dionisi HM, Harms G, Layton AC. Power analysis for real-time PCR quantification of genes in activated sludge and analysis of the variability introduced by DNA extraction. Appl. Environ. Microbiol. 2003, 69(11): 6597-6604
    [26] Klappenbach JA, Saxman PR, Cole JR et al. rrndb: The ribosomal RNA operon copy number database. Nucleic Acids Res. 2001, 29(1): 181-184
    [27] McTavish H, Fuchs JA, Hooper AB. Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J. Bacteriol. 1993, 175(8): 2436-2444
    [28] Limpiyakorn T, Shinohara Y, Kurisu F et al. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol. 2005, 54: 205-217
    [29] Kindaichi T, Kawano Y, Ito T et al. Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR. Biotechnol. Bioeng. 2006, 94(6): 1111-1121
    [30] Graham DW, Knapp CW, van Vleck ES et al. Experimental demonstration ofchaotic instability in biological nitrification. ISME J. 2007, 1(5): 385-393
    [31] 田伟君, 郝芳华, 王超等. 太湖典型入湖河道中氨氮去除研究. 生态环境. 2006, 15(6): 1138-1141
    [32] Persson F, Wik T, Sorensson F et al. Distribution and activity of ammonia oxidizing bacteria in a large full-scale trickling filter. Water Res. 2002, 36: 1439-1448
    [33]Burrell PC, Phalen CM, Hovanec TA. Identification of bacteria responsible for ammonia oxidation in freshwater aquaria. Appl. Environ. Microbiol. 2001, 67(12): 5791-5800
    [34] Limpiyakorn T, Kurisu F, Sakamoto Y et al. Effects of ammonium and nitrite on communities and populations of ammonia-oxidizing bacteria in laboratory-scale continuous-flow reactors. FEMS Microbiol. Ecol. 2007, 60: 501-512
    [35] Park HD, Noguera DR. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res. 2004, 38: 3275-3286
    [36] Carnol M, Kowalchuk GA, de Boer W. Nitrosomonas europaea-like bacteria detected as the dominant β-subclass Proteobacteria ammonia oxidisers in reference and limed forest soils. Soil Biol. Biochem. 2002, 34(7): 1047-1050
    [37] Kuo DW, Robinson KG, Layton AC et al. Real-time PCR quantification of ammonia-oxidizing bacteria (AOB): solids retention time (SRT) impacts during activated sludge treatment of industrial wastewater. Environ. Eng. Sci. 2006, 23(3): 507-520
    [38] Juliette LY, Hyman MR, Arp DJ. Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: thioethers are oxidized to sulfoxides by ammonia monooxygenase. Appl. Environ. Microbiol. 1993, 59(11): 3718-3727
    [39] An SM, Joye SB. Enhancement of coup led nitrification denitrification by benthic photosynthesis in shallow estuarine sediments. Limnol. Oceanogr. 2001, 46: 62-74
    [40] 郑兴灿, 李亚新. 污水除磷脱氮技术. 北京: 中国建筑工业出版社. 1998, p.50-60
    [41] Siripong S, Rittmann BE. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res. 2007, 41: 1110-1120
    [42] Magalhaes CM, Joye SB, Moreira RM et al. Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River Estuary, Portugal. Water Res. 2005, 39: 1783-1794
    [43] Koops H-P, Purkhold U, Pommerening-R?ser A et al. The lithoautotrophic ammonia-oxidising bacteria. In: Dworkin M, Falkow S, Rosenberg E et al. The Prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. New York: Springer-Verlag. 2003
    [44] Gieseke A, Purkhold U, Wagner M et al. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl. Environ. Microbiol. 2001, 67(3): 1351-1362
    [45] Bollmann A, Bar-Gilissen M-J, Laanbroek HJ. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 2002, 68(10): 4751-4757
    [46] Bollmann A, Schmidt I, Saunders AM et al. Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis. Appl. Environ. Microbiol. 2005, 71(3): 1276-1282

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700