用户名: 密码: 验证码:
激肽释放酶—激肽系统基因相关SNPs及其单体型与长沙汉族人群脑出血的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:脑卒中是当今世界公认的三大主要疾病死因之一,脑出血为其中的头号杀手,对人类生命与健康危害极大。脑出血在脑卒中所占的比例在不同的地域及种族存在差异。国外的流行病学资料表明脑出血在脑卒中所占的比例大约在6.5-19.6%之间。通过近20年的流行病学监测,我们发现1986~2000年长沙市地区人群脑卒中年平均发病率为236.6/10万,其中脑出血的发病率131.0/10万,占脑卒中的55.4%,长沙为世界脑出血的高发区之一,但该地区脑出血的原因尚不明确。为此我们进行了一系列的病因学研究。在研究中,我们发现长沙地区脑出血具有家族聚集现象,遗传因素可能是该地区脑出血高发的原因之一。候选基因筛查是目前研究脑出血这类复杂多基因病的主要手段。目前有相当多的证据表明与高血压及血管重构相关的激肽释放酶-激肽系统(kallikrein-kinin system,KKS)代谢通路在小动脉硬化、颅内动脉瘤形成乃至心脑血管疾病的“候选基因”研究中占有相当重要的地位,KKS系统可能在脑出血发病的病理生理机制中起着重要的作用。但KKS系统相关SNPs和单体型分子标志与有家族聚集现象的脑出血之间的关系研究,目前国内外迄今为止未见报道。本课题首次通过研究不同群体包括正常人群、散发性脑出血患者,有家族聚集现象的脑出血患者及其家系成员的相关基因,包括激肽原(KNG1)基因、组织型激肽释放酶(KLK1)基因和血管紧张素转化酶(ACE)基因的SNPs位点及单体型分子标志分布情况。从而比较不同群体的基因型的差异及其对脑出血的易感性,从分子水平探讨脑出血的发病机理,为预防和治疗脑出血提供理论依据。
     材料和方法:收集2006年1月至2008年10月在湘雅医院神经内科就诊的脑出血患者及部分家属的资料,所有病例均经CT和/或MRI确诊(依照第四届全国脑血管病学术会议诊断标准);对照组来自湖南省长沙地区汉族健康体检人员。对照组成员、脑出血患者及脑出血家系成员均为湖南省长沙地区汉族人,并签署知情同意书。所有的研究对象具体分组如下:(1)有家族聚集现象的脑出血家系(cerebralhemorrhage with family history,CHFH):38个家系共有200人,包括脑出血患者61例,Ⅰ级亲属95例,Ⅱ级亲属23例和健康无血缘关系亲属21例。(2)散发性脑出血组(sporadic cerebral hemorrhage,SCH):273例。(3)对照组:140例。病例组与对照组的年龄、性别具可比性。采用多重单碱基延伸SNP分型技术(Multiplex Snapshot)对组织型激肽释放酶(KLK1)基因rs3212855、rs5515、rs5516和rs5517位点,血管紧张素素转化酶(ACE)基因rs4291、rs4343位点和激肽原(KNG1)基因rs1656922、rs2304456等相关SNPs位点进行基因分型;采用聚合酶链式反应结合琼脂糖凝胶电泳分析方法检测血管紧张素转化酶(ACE)基因第16内含子的I/D多态位点(rs4646994)。在进一步对基因分型结果的统计分析中,首先在基于人群的病例对照研究中,通过卡方检验比较散发性脑出血组和对照组基因型分布和等位基因频率的差异,从而确定与疾病关联的基因;进一步在以家系为基础的关联研究中,用FBAT软件进行传递不平衡检验(TDT),确认与长沙汉族人群脑出血相关的SNPs及单体型分子标志。
     结果:1.组织型激肽释放酶基因(KLK1)rs3212855、rs5515、rs5516和rs5517位点基因分型结果的分析:①在本研究样本中未能证实rs5515是多态性位点(所有检测的样本均为GG型纯合子,未见GA及AA基因型)。②其它三个多态性位点在散发性脑出血组和对照组的比较:rs3212855和rs5516位点的基因型和等位基因频率在两组间分布无差异(P>0.05);而散发性脑出血组rs5517多态位点基因型分布与对照组比较存在显著差异(P<0.05),散发性脑出血组rs5517 A等位基因频率显著高于对照组(P<0.05)。③家系关联研究:在以家系为基础的关联检验(FBAT)中,有两个多态性位点显示等位基因传递具有统计学显著性(rs5516的G:Z=2.422,P=0.015424;rs5517的A:Z=2.963,P=0.003049)。多态性位点间的连锁不平衡检验显示三个多态性位点(rs3212855、rs5516和rs5517)紧密连锁,在一个单体型块(haplotype block)中,可以构建三个多态性位点组成的单体型模式。对三位点组成的单体型传递的总体检验显示KLK1基因与脑出血存在关联(x~2=12.664,自由度=4,P=0.013042),单个单体型的分析也显示rs3212855、rs5516、rs5517三位点构成的单体型CGA在患者中过度传递,差异有显著性(Z=2.881,P=0.003969)。
     2.激肽原基因(KNG1)rs1656922和rs2304456位点基因分型结果的分析:①散发性脑出血组和对照组的比较:rs1656922的基因型分布和等位基因频率在两组间无差异(P>0.05);rs2304456的基因型分布和等位基因频率在两组间无差异(P>0.05)。②家系关联研究:rs1656922和rs2304456两SNPs位点在以家系为基础的关联检验(FBAT)中,显示等位基因传递没有统计学显著性(P>0.05)。多态性位点间的连锁不平衡检验显示这两个多态性位点呈连锁不平衡,在一个单体型块(haplotype block)中,可以构建两个多态性位点组成的单体型模式。单体型传递的总体检验及单个单体型的分析均未显示单体型存在过度传递现象(P>0.05)。
     3.血管紧张素转化酶基因(ACE)的rs4291、rs4646994和rs4343位点基因分型结果的分析:①在散发性脑出血组和对照组的比较:rs4291、rs4646994和rs4343三个多态性位点的基因型分布和等位基因频率在两组间无差异(P>0.05)。②家系关联研究:以家系为基础的关联检验(FBAT)中,显示三个多态性位点的等位基因的传递均没有统计学显著性(P>0.05)。多态性位点间的连锁不平衡检验显示三个多态性位点(rs4291、rs4646994和rs4343)紧密连锁,在一个单体型块(haplotype block)中,可以构建三个多态性位点组成的单体型模式。单体型传递的总体检验及单个单体型的分析均未显示单体型存在过度传递现象(P>0.05)。
     结论:
     1.组织型激肽释放酶基因(KLK1)的rs5517位点A等位基因及rs3212855、rs5516、rs5517三位点构成的单体型CGA可能与湖南长沙汉族人群脑出血发病有关。
     2.激肽原基因(KNG1)的rs1656922和rs2304456多态性位点及其构成的单体型可能与湖南长沙汉族人群脑出血发病无关。
     3.血管紧张素转化酶基因(ACE)的rs4291、rs4646994和rs4343多态性位点及其构成的单体型可能与湖南长沙汉族人群脑出血发病无关。
Background and objective:Cerebral hemorrhage(CH) is a major cause of death in the world and is characterized by high rates of cases fatality and disability.CH is a multifactorial disease and the prevalence of CH varies widely among different population.Epidemiology study showed that in Europe and North America,up to 6.5-19.6%of strokes are attributed to CH,but there is a tendency for a higher proportion of CH in China.Especially in the recent Changsha city study,the author concluded that Changsha was one of the areas with high incidence of CH reported and also had a high proportion of CH among all subtypes of stroke (accounted for 55.4%of all strokes).The prevalence risk factors of stroke and CH cannot give a perfect explanation for the reason of the high incidence and high proportion of CH in this area,so we carried out a series of etiology researches about CH.We find the phenomenon of familial aggregation of CH,which strongly indicate that genetic influence in the pathogenesis of CH.Genetic study may play an important role for uncovering the etiology of CH.
     Results from pathologic studies of CH showed that most CHs originate from the rupture of small,deep arteries with diameters between 50 and 200μm and remodeling(including hyalinosis and aneurysm formation) of these arterioles is the underlying pathologic change resulting in CH.It is well known that vascular remodeling and aneurysm formation are partially caused by gene defect.The kallikrein-kinin system(KKS) is an endogenous metabolic cascade,triggering of which results in the release of vasoactive kinins.The pharmacologically active kinins are implicated in many physiological and pathological processes such as hypertension,vascular remodeling and aneurysm formation, which are involved in the pathogenesis of CH.In this study,we observed the relationship between CH and SNPs in the genes coding for the key enzymes(KLK1 and ACE) and precursors(KNG1) involved in the kinins metabolism pathway.The aim is to determine whether genetic variation in KKS system is associated with increased risk of CH in Changsha Han Chinese.
     Methods:Collecting the CH patients who were in the department of Neurology,Xiangya Hospital of Central South University from Jan 2006 to Oct 2008 and part of their family members.All cases were diagnosed by CT and/or MRI and fulfilled the diagnose criteria of the fourth national annual meeting of cerebrovascular disease.The subjects of the control group were eliminated cerebrovascular disease by clinical examination,CT and/or MRI,and were made sure without family history of cerebrovascular disease.All subjects were Han Chinese in Changsha area and given informed consent,which were composed of three groups:①38 Chinese Han pedigree of CH including 200 subjects which consisted of 61 CH patients,95 first degree relatives and 23 second degree relatives and 21 non-blood relationships spouse of the family members.②273 sporadic cerebral hemorrhage(SCH) patients③140 healthy control subjects.The age and sex between SCH and control group were not significant.We examined single-nucleotide polymorphisms (SNPs) of genes involved in the kinins metabolism pathway in attempting to examine whether SNPs or haplotype molecular markers would confer a significant susceptibility to CH.The SNPs present in the genes coding for KLK1(rs3212855、rs5515、rs5516 and rs5517),ACE(rs4291 and rs4343) and KNG1(rs1656922 and rs2304456) were analyzed by Multiplex Snapshot method;The ACE I/D polymorphism(rs4646994) was analyzed by PCR and agarose gel electrophoresis.For the genotyping data,we performed a two-step analysis.The first step was to carry out the polymorphism screening for a genetic association between SNPs and phenotypes in 273 SCH patients and in 140 healthy subjects.The second step was to validate the initial findings resulting from the above case-control study by using the family-based association tests(FBAT) in 38 pedigree of CH,aiming to determine weather the SNPs or haplotype is associated with CH in Changsha Han Chinese.
     Result:
     1.We completed an association analysis with four SNPs(rs3212855, rs5515,rs5516 and rs5517) located within the KLK1 gene using the case control association tests,the results showed that the rs5515 is not a polymorphic site in Changsha Han Chinese.As for other three SNPs,the results showed that the frequecy of A allele in rs5517 were significantly higher in SCH patients than control subjects(P<0.05);while genotye and allele frequecy in rs3212855 and rs5516 were found not different between SCH patients and control subjects(P>0.05).Furthermore,we completed a transmission disequilibrium test with three SNPs(rs3212855,rs5516 and rs5517) located within the KLK1 region using the family-based association tests(FBAT) in 38 CH pedigree.We found significant transmission desequilibrium between CH and two of the SNPs markers (rs5516 G:Z=2.422,P=0.015424 and rs5517 A:Z=2.963,P=0.003049, repectively).Three SNPs(rs3212855,rs5516 and rs5517) were in strong linkage disequilibrium by linkage disequilibrium analysis.They were in the same haplotype block.The global chi-square test for the haplotype transmission also revealed a strong association(x~2=12.664,df=4,P= 0.013042).Haplotype CGA showed the excess transmission to affected individuals(Z=2.881,P=0.003969).
     2.We completed an association analysis with two SNP(rs1656922 and rs2304456) located within the KNG1 gene using the case control association tests,the results showed that genotye and allele frequecy in the two SNPs were foud not different between SCH patients and control subjects(P>0.05).Furthermore,we completed a transmission disequilibrium test with two SNPs(rs1656922 and rs2304456) located within the KNG1 gene using the family-based association tests(FBAT) in 38 CH pedigree.We found no evidence for transmission disequilibrium with CH(P>0.05).Two SNPs(rs1656922 and rs2304456) were in strong linkage disequilibrium by linkage disequilibrium analysis.They were in the same haplotype block.The haplotype analysis also revealed no evidence for transmission disequilibrium with CH(P>0.05).
     3.We completed an association analysis with three SNP(rs4291, rs4646994 and rs4343) located within the ACE gene using the case control association tests,the results showed that genotye and allele frequecy in the three SNPs were found not different between SCH patients and control subjects(P>0.05).Furthermore,we completed an transmission disequilibrium test with three SNPs(rs4291,rs4646994 and rs4343) located within the ACE gene using the family-based association tests(FBAT) in 38 CH pedigree.We found no evidence for transmission disequilibrium with the SNP markers(P>0.05).Three SNPs(rs4291, rs4646994 and rs4343) were in strong linkage disequilibrium by linkage disequilibrium analysis.They were in the same haplotype block.The haplotype analysis also revealed no evidence for transmission disequilibrium with CH(P>0.05).
     Conclusion:
     1.Our preliminary results provide evidence that the rs5517 A alelle of KLK1 gene may be important risk factors for the development of CH in the population.The haplotype CGA which composed of the rs3212855 C,rs5516 G and rs5517 A alleles significantly increased the susceptibility of CH.
     2.Our results do not support the association between these SNPs (rs1656922 and rs2304456) of KNG1 gene and CH susceptibility in the population.The results suggest that haploype composed of alleles of these SNPs of KNG1 gene do not contribute significantly to the predisposition to develop CH in our sample.
     3.Our results do not support the association between these SNPs (rs4291,rs4646994 and rs4343) of ACE gene and CH susceptibility in the population.The results suggest that haploype composed of alleles of these SNPs of ACE gene do not contribute significantly to the predisposition to develop CH in our sample.
引文
[1]Feigin VL,Lawes CM,Bennett DA,et al.Stroke epidemiology:a review of population-based studies of incidence,prevalence,and case-fatality in the late 20th century.Lancet Neurol.2003;2:43-53.
    [2]Yang QD,Niu Q,Zhou YH,et al.Incidence of cerebral hemorrhage in the changsha community,a prospective study from 1986 to 2000.Cerebrovasc Dis.2004;17:303-313.
    [3]张乐,杨期东,曾艺,等.载脂蛋白B基因C7673T多态与有家族聚集现象脑出血的关系.中华医学遗传学杂志,2008;25:145-9.
    [4]Cole FM,Yates PO.Intracranial microaneurysms and small cerebrovascular lesions.Brain 90:759,1967.
    [5]Cole FM,Yates PO.Pseudo-aneurysms in relationship to massive cerebral hemorrhage.J Neurol Neurosurg Psychiatry 30:61,1967.
    [6]Rosenblum WI:Miliary aneurysms and "fibrinoid" degeneration of cerebral blood vessels.Hum Pathol 8:133,1977.
    [7]Fisher CM.Cerebral miliary aneurysms in hypertension.Am J Pathol.1972;66:313-30.
    [8]Fisher CM.Pathological observations in hypertensive cerebral hemorrhage.J Neuropathol Exp Neurol.1971,30:536-50.
    [9]Qureshi A,Tuhrim S,Broderick JP,et al.Spontaneous intracerebral hemorrhage.N Engl J Med.2001,344:1450-1460.
    [10]Feldmann E.Intracerebral hemorrhage.Stroke.1991;22:684-691.
    [11]Woo D,Sauerbeck LR,Kissela BM,et al.Genetic and environmentalrisk factors for intracerebral hemorrhage:preliminary results of apopulation-based study.Stroke.2002,33:1190-1196.
    [12]Hoshina K,Sho E,Sho M,et al.Wall shear stress and strain modulate experimental aneurysm cellularity.J Vasc Surg.2003,37:1067-74.
    [13]Ibrahim J,Miyashiro JK,Berk BC.Shear stress is differentially regulated among inbred rat strains.Circ Res.2003,92;1001.
    [14]Catto A,Cart er AM,Barrett JH,et al.Angiotensin converting enzyme insertion/deletion polymorphism and cerebrovascular disease.Stroke.1996,27:435-440.
    [15]Ueda S,Weir CJ,Inglis GC,et al.Lack of association between angiotensin converting enzyme gene insertion/deletion polymorphism and stroke.J Hypertens.1995,13:1597-1601.
    [16]Zee RY,Ridker PM,Stampfer MJ,et al.Prospective evaluation of the angiotensin converting enzyme insertion/deletion polymorphism and the risk of stroke.Circulation.1999,99:340-343.
    [17]Slowik A,Turaj W,Dziedzic T,et al.DD genotype of ACE gene is a risk factor for intracerebral he mor rhage.Neurology.2004;63(2):359-361.
    [18]杨志杰,于敏,谢汝萍,等.血管紧张素转化酶基因多态性与脑出血的相关研究.中国实用内科杂志.2001,10:608-609.
    [19]Biros E,Golledge J.Meta-analysis of whole-genome linkage scans for intracranial aneurysm.Neurosci Lett.2008,431:31-5.
    [20]Norihiro Kato,Toru Nabika,Yi-Qiang Liang,et al.Isolation of a chromosome 1region affecting blood pressure and vascular disease traits in the stroke-prone rat model.Hypertension.2003,42:1191-1197.
    [21]Turnbull F,Neal B,Algert C,et al.Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus:results of prospectively designed overviews of randomized trials.Arch Intern Med.2005,165:1410-1419.
    [22]Verdecchia P,Reboldi G,Angeli F,et al.Angiotensin-converting enzyme inhibitors and calcium channel blockers for coronary heart disease and stroke prevention.Hypertension.2005,46:386-92.
    [23]Landmesser U,Drexler H.Effect of angiotensin Ⅱ type 1 receptor antagonism on endothelial function:role of bradykinin and nitric oxide.J Hypertens.2006,24:S39-S43.
    [24]Yang XP,Liu Yh,Mehta D,et al.Diminished cardioprotective response to inhibition of angiotensin-converting enzyme and angiotensin Ⅱ type 1 receptor in B2 kinin receptor gene knockout mice.Circ Res.2001,88:1072-1079.
    [25]W Linz,G Wiemer,P Gohlke,et al.Contribution of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors.Pharmacol Rev.1995,47:25-49.
    [26]Clements J,Hooper J,Dong Y,et al.The expanded human kallikrein(KLK)gene family:genomic organisation,tissuespecific expression and potential functions. Biol Chem. 2001;382:5-14.
    [27] Mahabeer R, Bhoola KD. Kallikrein and kinin receptor genes.Pharmacol Ther. 2000;88:77-89.
    [28] Marcondes S, Antunes E. The plasma and tissue kininogen kallikrein-kinin system: role in the cardiovascular system. Curr Med Chem Cardiovasc Hematol Agents. 2005;3:33-44.
    [29] Kaplan AP, Joseph K, Shibayama Y, et al. Bradykinin formation. Plasma and tissuepathways and cellular interactions. Clin Rev Allergy Immunol. 1998;16:403-429.
    [30] Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens,and kininases. Pharmacol Rev. 1992,44:1-80.
    [31] Tan SJ, Jin LR, Chen WC. Effect of kallikrein on PDGF induced proliferation of cultured rat aortic vascular smooth muscle cell. Shanghai Med J. 1999, 22:112-114.
    [32] Cloutier F, Couture R. Pharmacological characterization of the cardiovascular responses elicited by kinin B1 and B2 receptor agonists in the spinal cord of streptozotocin2diabetic rats. Br J Pharmacol. 2000,130:375-385.
    [33] Rhaleb NE, Yang XP, Nanba M, et al. Carretero OA. Effect of chronic blockade of the kallikrein-kinin system on the development of hypertension in rats. Hypertension. 2001,37 :121-128.
    [34] Schmaier AH. The plasma kallikrein-kinin system counter balances the rennin-angiotensin system. J Clin Invest. 2002,109:1007-1009.
    [35] Carbini LA, Scicli AG, Carretero OA. The molecular biology of the kallikrein-kinin system: Ⅲ. The human kallikrein gene family and kallikrein substrate. J Hypertens. 1993;11:893-898.
    [36] Slim R, Torremocha F, Moreau T, et al. Loss-of-function polymorphism of the human kallikrein gene with reduced urinary kallikrein activity. J Am Soc Nephrol. 2002,13:968-76.
    [37] Azizi M, Boutouyrie P, Bissery A, et al. Arterial and renal consequences of partial genetic deficiency in tissue kallikrein activity in humans. J Clin Invest. 2005,115(3):588-91.
    [38] Meneton P, Bloch-Faure M, Hagege AA et al. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice. Proc Natl Acad Sci U S A. 2001;98:2634-2639.
    [39] Margolius HS. Tissue kallikreins structure, regulation, and participation in mammalian physiology and disease. Clin Rev Allergy Immunol. 1998, 16:337-349.
    [40] Zinner SH, Margolius HS, Rosner B, Kass EH. Stability of blood pressure rank and urinary kallikrein concentration in childhood: an eight-year follow-up. Circulation. 1978;58:908-915.
    [41] Bergaya S, Meneton P, Bloch-Faure M et al. Decreased flow-dependent dilation in carotid arteries of tissue kallikrein-knockout mice. Circ Res. 2001; 88:593-599.
    [42] Hilgers RH, Bergaya S, Schiffers PM et al. Uterine artery structural and functional changes during pregnancy in tissue kallikrein-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23:1826-1832.
    [43] Bergaya S, Matrougui K, Meneton P et al. Role of tissue kallikrein in response to flow in mouse resistance arteries. J Hypertens. 2004;22:745-750.
    [44] Hua H, Zhou S, Liu Y et al. Relationship between the regulatory region polymorphism of human tissue kallikrein gene and essential hypertension. J Hum Hypertens. 2005;19:715-721.
    [45] Kitamura N, Kitagawa H, Fukushima D, et al. Structural organization of the human kininogen gene and a model for its evolution. J Biol Chem. 1985, 260:8610-8617.
    [46] Zhao W, Wang L, Lu X et al. A coding polymorphism of the kallikrein 1 gene is associated with essential hypertension: a tagging SNP-based association study in a Chinese Han population. J Hypertens. 2007;25:1821-1827.
    [47] Sandra Filippinil , Ana Blanco , Ana Fernandez-Marmiesse, et al. Multiplex Snapshot for detection of BRCAl/2 common mutations in Spanish and Spanish related breast/ovarian cancer families. BMC Medical Genetics 2007, 8:40.
    [48] Silvia Fuselli, Isabelle Dupanloup, Elena Frigato, et al. Molecular diversity at the CYP2D6 locus in the Mediterranean region. European Journal of Human Genetics . 2004,12, 916-924.
    [49] E.S.Lander, N.J.Schork. Genetic dissection of complex traits. Science. 1994, 265:2037-2048.
    [50] C.T.Falk, P.Rubinstein. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. A nn.Hum.Genet. 1987,51:227-33.
    [51] Spielman R S, McGinnis R E, Ewens W J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus(1DDM). Am J Hum Genet. 1993, 52:506-516.
    [52] Curtis D. Use of siblings as controls in case control association studies. Ann Hum Genet. 1997, 61:319-333.
    [53] SpielmanRS, EwensWJ. A sibship test for linkage in the presence of association:the sib transmission/disequilibrium test. Am J Hum Genet. 1998, 62:450-458.
    [54] Horvath S, Laird NM. A discordant sibship test for disequilibrium and linkage: no need for parental data. Am J Hum Genet. 1998, 63:1886-1897.
    [55] D.Rabinowitz, N.Laird. A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered. 2000, 50:211-223.
    [56] Xu Q, Jia YB, Zhang BY, et al. Association study of an SNP combination pattern in the dopaminergic pathway in paranoid schizophrenia: a novel strategy for complex disorders. Mol Psychiatry. 2004, 9:510-521.
    [57] Jiang R, Duan J ,Windermuth A, et al. Genome wide evaluation of the public SNP data bases. Pharmacogenomics, 2003 , 4 (6 ): 779-789.
    [58] Lewontin RC. The Interaction of Selection and Linkage. Ii. Optimum Models. Genetics. 1964;50:757-782.
    [59] Pritchard JK, Przeworski M. Linkage disequilibrium in humans :models and data. Am J Hum Genet.2001,6 9:1 -14.
    [60] The International HapMap Consortium. The international HapMap project. Nature , 2003, 426: 789-796.
    [61] Evans BA, Yun ZY, Close JA, et al. Structure and chromosomal localization of the human renal kallikrein gene. Biochemistry. 1988, 27:3124-3129.
    [62] Zhang JJ, Chao L, Chao J. Adenovirus-mediated kallikrein gene delivery reduces aortic thickening and stroke-induced death rate in Dahl salt-sensitive rats. Stroke. 1999;30:1925-1931; discussion 1931-1922.
    [63] Kitamura N, Kitagawa H, Fukushima D, et al. Structural organization of the human kininogen gene and a model for its evolution. J. Biol. Chem, 1985. 260: 8610-8617.
    [64] Cheung P. P, Cannizzaro L. A, Colman R.W. Chromosomal mapping of human kininogen gene (KNG) to 3q26-qter. Cytogenet. Cell Genet, 1992 59: 24-26.
    [65] Fong, D, Smith, D. I, Hsieh W.-T. The human kininogen gene (KNG) mapped to chromosome 3q26-qter by analysis of somatic cell hybrids using the polymerase chain reaction. Hum. Genet., 1991.87: 189-192.
    [66] Cloutier F, Couture R. Pharmacological characterization of the cardiovascular responses elicited by kinin B1 and B2 receptor agonists in the spinal cord of streptozotocin2diabetic rats. Br J Pharmacol. 2000,130 :375-385.
    [67] Rhaleb NE, Yang XP, Nanba M, et al. Effect of chronic blockade of the kallikrein-kinin system on the development of hypertension in rats. Hypertension. 2001,37:121-128.
    [68] Schmaier AH. The plasma kallikrein-kinin system counter balances the rennin-angiotensin system. J Clin Invest. 2002,109:1007-1009.
    [69] Biros E, Golledge J. Meta-analysis of whole-genome linkage scans for intracranial aneurysm. Neurosci Lett. 2008,431:31-5.
    [70] Stoll M, Cowley AW Jr, Tonellato PJ, et al. A genomic systems biology map for cardiovascular function. Science. 2001, 294: 1723-1726.
    [71] Kaschina E, Stoll M, Sommerfeld M, et al. Genetic kininogen deficiency contributes to aortic aneurysm formation but not to atherosclerosis. Physiol Genomics. 2004, 19:41-9.
    [72] Charcot JM, Bouchard C. Nouvelles recherches sur la pathogenie de The morragie cerebrate. Arch Physiol Norm Pathol,1868 1:110.
    [73] Green FHK. Miliary aneurysms in the brain. J Pathol Bacteriol, 1930,33:71.
    [74] Cole FM, Yates PO: Intracranial microaneurysms and small cerebrovascular lesions. Brain 90:759, 1967.
    [75] Anim JT, Kofi AD. Hypertension, cerebral vascular changes and stroke in Ghana. 1. Microaneurysm formation and stroke. J Pathol. 1984; 143:177-182.
    [76] Ross Russell RW: Observations on intracerebral aneurysms. Brain, 86:425, 1963.
    [77] Cole FM, Yates PO. The occurrence and significance of intracerebral microaneurysms. J Pathol Bacteriol 93:393, 1967.
    [78] Majima M, Mizogami S, Kuribayashi Y et al. Hypertension induced by a nonpressor dose of angiotensin II in kininogen-deficient rats. Hypertension. 1994:24:111-119
    [79] Grange JJ, Davis V, and Baxter BT. Pathogenesis of abdominal aortic aneurysm: an update and look toward the future. Cardiovasc Surg , 1997.5: 256-265.
    [80] Muller-Esterl W, Fritz H, Machleidt W, et al. Human plasma kininogens are identical with alpha-cysteine proteinase inhibitors. Evidence from immunological, enzymological and sequence data. FEBS Lett,1985. 182: 310-314.
    [81] Punturieri A, Filippov S, Allen E, et al. Regulation of elastinolytic cysteine proteinase activity in normal and cathepsin K-deficient human macrophages. J Exp Med , 2000.192: 789-799.
    [82] Turk B, Stoka V, Bjork I, et al. High-affinity binding of two molecules of cysteine proteinases to low-molecular-weight kininogen. Protein Sci , 1995.4:1874-1880.
    [83] Dorer F, Ryan JW, Stewart JM. Hydrolysis of bradykinin and its higher homologues by angiotensin-converting enzyme. Biochem J. 1974;141:915-917
    [84] Ng KK, Vane JR. Conversion of angiotensinⅠ to angiotensin Ⅱ. Nature. 1967;216:762-766.
    [85] Ehlers MR, Riordan JF. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry. 1989;28:5311-5318.
    [86] Soubrier F, Hubert C, Testut P et al. Molecular biology of the angiotensin I converting enzyme: I. Biochemistry and structure of the gene. J Hypertens. 1993; 11:471-476.
    [87] Hubert C, Houot AM, Corvol P, Soubrier F. Structure of the angiotensin Ⅰ-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J Biol Chem. 1991;266:15377-15383.
    [88] Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half of the variance of serum enzyme levels. J Clin Invest. 1990,86:1343-1346.
    [89] Krege JH, Kim HS, Moyer JS et al. Angiotensin-converting enzyme gene mutations, blood pressures, and cardiovascular homeostasis. Hypertension. 1997;29:150-157.
    [90] Huang W, Gallois Y, Bouby N et al. Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proc NatlAcad Sci U S A. 2001 ;98:13330-13334.
    [91] Staessen JA, Wang JG, Ginocchio G et al. The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk.J Hypertens.1997;15:1579-1592.
    [92]Samani NJ,Thompson JR,O'Toole L,et al.A meta analysisofthe association of the deletion allele of the angiotensinconverting enzyme gene with myocardial infarction.Circulation.1996,94:708-712.
    [93]Sharma P.Meta-analysis of the ACE gene in ischemic stroke.J NeurolNeurosurg Psychiatry 1998,64:227-230.
    [94]聂莹雪,李莉,陈阳,等.ACE基因多态性与脑出血的相关性研究.中风与神经疾病杂志.2000,1:41-43.
    [95]尚蔚,窦相峰,张红叶,等.血管紧张素转换酶基因多态性与脑出血的关系.中风与神经疾病杂志.2004,5:388-390.
    [96]Marchini J,Cardon LR,Phillips MS,et al.The effects of human population structure on large genetic association studies.Nat Genet.2004,36:512-517.
    [97]Laird NM,Lange C.Family-based designs in the age of large scale gene-association studies.Nat Rev Genet.2006,7:385-394.
    [98]Barrett JH,Sheehan NA,Cox A,et al.Family based studies and genetic epidemiology:theory and practice.Hum Hered.2007,64:146-148.
    [99]Francoise P,D ominique C,Eva B,et al.Genotype-phenotype relation ships for the rennin-angiotensin-aldosterones systerones system in normal population.Hypertension.1999,34:423.
    [100]WilliamsA G,Rayson M P,Jubb M,et al.The ACE gene and muscle performance.Nature.2000,403:64.
    [101]Zhu X,Bouzekri N,Southam L et al.Linkage and association analysis of angiotensin I-converting enzyme(ACE)-gene polymorphisms with ACE concentration and blood pressure.Am J Hum Genet.2001;68:1139-1148.
    [102]Heeneman S,Sluimer JC,Daemen MJ.Angiotensin-converting enzyme and vascular remodeling.Circ Res.2007,101:441-454.
    [1]Alberts MJ,McCarron MO,Hoffman KL,et al:Familial clustering of intracerebral hemorrhage:A prospective study in North Carolina.Neuroepi-demiology,2002,18(2):18-20.
    [2]Woo D,Sauerbeck LR,Kissela BM,et al.Genetic and environmental risk factors for intracerebral hemorrhage:Preliminary results of a population-baseds tudy.Stroke,2002,33(5):1190-1195.
    [3]Catto A,Carter AM,Barrett JH,et al.Angiotensin-converting enzyme insertion/deletion polymorphism and cerebrovascular disease.Stroke,1996,27(3):435-440.
    [4]Ueda S,Weir CJ,Inglis GC,et al.Lack of association between angiotensin converting enzyme gene insertion/deletion polymorphism and stroke.J Hypertens,1995,13(12 Pt2):1597-1601.
    [5]Zee RY,Ridker PM,Stampfer MJ,et al.Prospective evaluation of the angiotensin-converting enzyme insertion/deletion polymorphism and the risk of stroke.Circulation,1999,99(3):340-343.
    [6]Tiret L,Blanc H,Ruidavets JB,et al.Gene polymorphisms of the renin-angiotensin system in relation to hypertension and parental history of myocardial infarction and stroke:the PEGASE study.J Hypertens,1998,16(1):37-44.
    [7]Mueda Y,Ikeda U,Ebata H,et al.Angiotensin-converting enzyme gene polymorphism in hypertensive individuals with parental history of stroke.Stroke,1996,27(9):1521-1523.
    [8]Slowik A,Turaj W,Dziedzic T,et al.DD genotype of ACE gene is a risk factor for intracerebral hemorrhage.Neurology,2004,63(2):359-361.
    [9]张进,吕善庆,孙晓江,等.血管紧张素Ⅰ转换酶基因与急性脑血管病的相关性研究.中国老年学杂志,1997,3(17):137-139.
    [10]许贻白,王贤军,诸金水,等.血管紧张素Ⅰ转换酶基因多态性与急性脑血管病的关系.中华神经科杂志,1998,3(31):152-155.
    [11]杨志杰,于敏,谢汝萍,等.血管紧张素转化酶基因多态性与脑出血的相关 研究.中国实用内科杂志,2001,10(21):608-609.
    [12]聂莹雪,李莉,陈阳,等.ACE基因多态性与脑出血的相关性研究.中风与神经疾病杂志,2000,1(17):41-43.
    [13]尚蔚,窦相峰,张红叶,等.血管紧张素转换酶基因多态性与脑出血的关系.中风与神经疾病杂志,2004,5(21):388-390.
    [14]Bonnardeaux A,Davies E,Jennemaitre X,et al.Angiotensin Ⅰ type 1 recepter gene polymorphism in the human essential hypertension.Hypertens,1994,24(1):63-69.
    [15]余惠珍,白玉茹,陈慧,等.AT-1R基因和ACE基因多态性与高血压病的相关性分析.高血压杂志,1999,7(4):319-323.
    [16]石静萍,张颖冬,许利刚,等.AT-1R基因多态性与原发性高血压合并脑血管病的相关性研究.南京医科大学学报,2004,5(24):487-490.
    [17]Kohler HP,Stickland MH,Ossei-Gerning N,et al.Association of a common polymorphism in the factor ⅩⅢ gene with myocardial infarction.Thromb Haemost,1998,79(1):14-18.
    [18]Catto AJ,Kohler HP,Bannan S,et al.Factor ⅩⅢ Va134Leu:a novel association with primary intracerebral hemorrhage.Stroke,1998,29(4):813-816.
    [19]Gemmati D,SerinoM L,Ongaro A,et al.A common mutation in the gene for coagulation factor ⅩⅢ-A(VAL34Leu):a risk factor for primary intracerebral hemorrhage is protective against atherothrombotic diseases.Am J Hematol,2001,67(3):183-188.
    [20]Reiner AP,Schwartz SM,Frank MB,et al.Polymorphisms of coagulation factor ⅩⅢ U subunit A and risk of nonfatal hemorrhagic stroke in young white women.Stroke,2001,32(11):2580-2586.
    [21]StafforiniD M,Satoh K,Atkinson DE,et al.Platelet-activating factor acetylhydrolase deficiency.A missense mutation near the active site of an anti-inflammatory phospholipase.J Clin Invest,1996,97(12):2784-2791.
    [22]Hiramoto M,Yoshida H,Imaizumi T,et al.A mutation in plasma platelet-activating factor acetylhydrolase(Va1279Phe) is a genetic risk factor for stroke.Stroke,1997,28(12):2417-2420.
    [23]Yoshida H,lmaizumi T,Fujimoto K,et al.A mutation in plasma platelet-activating factor acetylhydrolase(Va1279Phe) is a genetic risk factor for cerebral hemorrhage but not for hypertension.Thromb Haemost,1998,80(3):372-375.
    [24]孙淑云,李江,张晨,等.血小板活化因子乙酰水解酶基因突变(Va1279-Phe)与急性脑出血的相关性研究.神经疾病与精神卫生,2003,2(3):112-114.
    [25]Carter AM,Catto AJ,Bamford JM,et al.Gender-specific association o fthefi brinogenB归448p olymorphism,fi brino-genlevels,and acutec erebrovasculard isease.A rteriosclerT hrombV aseB iol,1997,17(3):589-594.
    [26]Gao X,Yang H,ZhiPing T,et al.Association studies of genetic polym orphism,environment factors and their interaction in ischemic stroke.Neurosci Lett,2006,398(3):172-177.
    [27]Pongracz E,Andrikovics H,Csomai M,et al.Contribution of the -455G/A polymorphism at beta-fibrinogen gene and of the Leiden mutation to hemorheological parameters in ischemic stroke patients.C linH emorheolM icrocirc,2006,35(1-2):75-82.
    [28]Alberts MJ,Graffagnino C,McClenny C,et al.ApoE genotype and survival from intracerebral haemorrhage.Lancet,1995,346:575.
    [29]Basun H,Corder EH,Guo Z,et al.Apolipoprotein E polymorphism and stroke in a population sample aged 75 years or more.Stroke,1996,27(8):1310-1315.
    [30]MCarron MO,Muir KW,Weir CJ,et al.The apolipoprotein E e4 allele and outcome in cerebrovascular disease.Stroke,1998,(9):1882-1887.
    [31]Greenberg SM,Rebeck GW,Vonsattel JPG,et al.Apolipoprotein E E4 and cerebral hemorrhage associated with amyloid angiopathy.Ann Neurol,1995,38(2):254-259.
    [32]Nicoll JA,Burnett C,Love S,et al.High frequency of apolipoprotein E epsilon2allele in hemorrhage due to cerebral amyloid angiopathy.Ann Neurol,1997,41(6):716-721.
    [33]McCarron MO,Nicoll JA,Stewart J,et al.The apolipoprotein E epsilon2allele and the pathological features in cerebral amyloid angiopathy-related hemorrhage,J Neuropathol Exp Neurol,1999,5 8(7):711-718.
    [34]Xia J,Yang QD,Zhou YH,et al,Apolipoprotein H gene polymorphisms and risk of primary cerebral hemorrhage in a Chinese population.Cerebrovasc Dis,2004;17(2-3):197-203.
    [35]Chapman J,Cambien F,Thillet J,et al.Sequence polymorphisms in the apolipoprotein(a) gene and their association with lipoprotein(a) levels and myocardial infarction:the ECTIM Study.Atherosclerosis,1999,144(2):323-333.
    [36]Jurgens G,Taddei-Peters WC,Koltringer P,et al.Lipoprotein(a) serum concentration and apolipoprotein(a) phenotype corrlate with severity and presence of ischemic cerebrovascular disease.Stroke,1995,26(10).1841-1848
    [37]Glader CA,Stegrnayr B,Boman J,et al.Chlamydia pneumoniae antibodies and high lipoprotein(a) levels do not predict ischemic cerebral infarctions:results from a nested case-control study in northern Sweden.Stroke,1999,30(10):2013-2018
    [38]Sun L,Li Z,Zhang H et al.Pentanucleotide TTTTA repeat polymorphism of apolipoprotein(a) gene and plasma lipoprotein(a) are associated with ischemic and hemorrhagic stroke in Chinese:a multicenter case-control study in China.Stroke.2003,34(7):1617-1622.
    [39]Clee SM,Zwinderman AH,Engert JC et al.Common genetic variation in ABCAl is associated with altered lipoprotein levels and a modified risk for coronary artery disease.Circulation,2001,103(9):1198-1205.
    [40]肖志杰,赵水平,聂赛,等.三磷酸腺昔结合盒转运子1基因多态性与脑出血的关系.中华内科杂志,2004,43(5):378-379.
    [41]Yukiko Nakata,Tomohiro Katsuya,Takami S,et al.Methylenetetrah ydrofolate Reductase Gene Polymorphism Relationt Blood Pressurea and Cerebrovascular Disease.AJH 1998,11(8P t1):1019-1023.
    [42]Fang X,Namba H,Akamine S,et al.Methylenetetrahydrofolate reductase gene polymorphisms in patients with cerebral hemorrage.Neurol Res,2005,27(1):73-76.
    [43]张燕,谢汝萍,陈大方,等.亚甲基四氢叶酸还原酶基因多态性与脑出血的相关性研究.中风与神经疾病杂志,2003,20(5):417.
    [44]肖艳群,蒋玲丽,陆青,等.亚甲基四氢叶酸还原酶基因多态性及血浆同型半胱氨酸水平与脑血管病的关系.检验医学,2006,21(3):201-204.
    [45]杨期明,杨期东,夏健,等.5,10一亚甲基四氢叶酸还原酶C677T突变及同型半胱氨酸与有家族聚集现象脑血管病的关系.中华神经科杂志,2003,36(2):113-116.
    [46]Alberts MJ,Davis JP,Gaffagnino C,et al.Endoglin gene polymorphism as a risk factor for sporadic intracerebral hemorrhage.Ann Neural,1997,41(5):683-686.
    [47]Takenaka K,SakaiH,Yamakawa H,et al.Polymorphism of the endoglin gene in patients with intracranials accular aneurysms.J Neurosurg,1999,90(5):935-938.
    [48]杨志杰,谢汝萍,于敏,等.Endoglin基因插人缺失多态性与脑出血的相关研究.中风与神经疾病杂志,2000,17(6):356-357.
    [49]Casari G,Barlassina C Cusi D,et al.Association of the a-adducin locus with essential hypertension.Hypertension,1995,25(3):320-326.
    [50]Cusi D,Barlassina C,Azzani T,et al.Polymorphisms of alpha adducin and salts ensitivity in patients with essential hypertentions.Lancet,1997,349(9062):1353-1357.
    [51]窦相峰,孙凯,黄晓红,等.a-Adducin基因和血管紧张素转换酶基因多态性与原发性高血压的关系.中国循环杂志,2004,19(4):286-289.
    [52]窦相峰,张红叶,黄晓红,等.a-adducin基因G460W多态性与脑出血的相关性.中华医学杂志,2004,84(3):186-188.
    [53]Duranton J,Adam C,Bieth JG,et al.Kinetic mechanism of the inhibition of cathepsin G by alphal-antichymotrypsin and alphal-proteinase inhibitor.Biochemistry,1998,11,37(32):11239-11245.
    [54]Vila N,Obach V,Revilla M,et al.Alpha(1)-antichymotrypsin gene polymorphism in patients with stroke.2000,31(9):2103-2105.
    [55]Obach V,Revilla M,Vila N,et al.alpha-antichymotrypsin polymorphism:a risk factor for hemorrhagic stroke in normotensive subjects.Stroke,2001,32(11):588-591.
    [56]傅瑜,谢汝萍,王荫华,等.al-抗胰凝乳蛋白酶基因多态性与脑出血的相关性.中华医学杂志,2002,82(13):915-917.
    [57]Pera J,Slowik A,Dziedzic T,et al.SERPINA3 polymorphism is not associatedw ithp rimaryi ntracerebralh emorrhagein a P olish population.Stroke,2006,37(3):906-907.
    [58]Levy E,Carman MD,Femandez-Madrid U,et al.Mutation of the Alzh eimer's disease amyloid gene in hereditary cerebral hemorrhage,Dutch type.Science,1990,248(4959):1124-1126.
    [59]Maat-Schieman M,Roos R,van Duinen S,et al.Hereditary cerebral Hemorrhage with amyloidosis-Dutch type.Neuropathology,2005,25(4):288-297.
    [60] Abrahamson M, Grubb A. Increased body temperature accelerate saggregation of the Leu 68-Gln mutant cystatin C , the amyloid-forming protein in hereditary cystatin C amyloid angiopathy. Proc Natl Acad Sci USA,1994, 91(4): 1416-1420.
    [61] Attems J. Sporadic cerebral amyloid angiopathy: pathology, clin ical implications, and possible pathomechanisms. Acta Neuropat hol,2005, 110(4): 345-359.
    [62] Graffagnino C, Herbstreith MH, Roses AD, et al. A molecular genetic study of intracerebral hemorrhage. Arch Neuro1,1994,51 (10): 981-984.
    [63] Joutel A ,Vahedi K ,Corpechot C, et al. Strong Clustering and stereotyped nature of notch3 mutations in CADASIL patients. Lancet, 1997, 350(9090):1511-1515.
    [64] Markus HS, Martin RJ, Simpson MA, et al. Diagnostic strategies in CADASIL. Neurology,2002,59(8): 1134-1138.
    [65] Joutel A, Corpechot C, Ducros A, et al. Notch3 mutations in CADASIL, a hereditary adult onset condition causing stroke and dementia. Nature, 1996,383(6602):707-710.
    [66] Dichgans M, Mayer M, Uttner 1, et al. The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol,1998 ,4 4(5):731-739.
    [67] Singhal S, Bevan S, Barrick T, et al. The influence of geneti and cardiovascular risk factors on the CADASIL phenotype. Brain,2004, 127(9 ):2031-2038.
    [68] Dichgans M, Holtmannspotter M, Herzog J, et al. Cerebral microbleeds in CADASIL: a gradient-echo magnetic resonance imaging and autopsy study. Stroke, 2002,33(1):67-71.
    [69] Lesnik Oberstein SA, van den Boom R, van Buchem MA, et al. Cerebral microbleeds in CADASIL. Neurology, 2001,57(6): 10 66 -1070.
    [70] Jay Chol Choi, Sa-Yoon Kang, Ji-Hoon Kang, et al. Intracerebral hemorrhagesin CADASIL. Neurology, 2006,67 (11):2042-2044 .
    [1] Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev. 1992, 44(1): 1-80.
    [2] Tan SJ, Jin LR, Chen WC. Effect of kallikrein on PDGF induced proliferation of cultured rat aortic vascular smooth muscle cell. Shanghai Med J. 1999, 22:112-114.
    [3] Cloutier F, Couture R. Pharmacological characterization of the cardiovascular responses elicited by kinin B(l) and B(2) receptor agonists in the spinal cord of streptozotocin-diabetic rats. Br J Pharmacol. 2000, 130(2): 375-385.
    [4] Rhaleb NE, Yang XP, Nanba M et al. Effect of Chronic Blockade of the Kallikrein-Kinin System on the Development of Hypertension in Rats. Hypertension. 2001, 37(1): 121-128.
    [5] Schmaier AH. The plasma kallikrein-kinin system counterbalances the renin-angiotensin system. J Clin Invest. 2002, 109(8): 1007-1009.
    [6] Pesquero JB, Bader M. Genetically altered animal models in the kallikrein-kinin system. Biol Chem. 2006, 387(2): 119-126.
    [7] Marceau F, Hess JF, Bachvarov DR. The B1 receptors for kinins. Pharmacol Rev. 1998, 50(3): 357-386.
    [8] Pesquero JB, Araujo RC, Heppenstall PA et al. Hypoalgesia and altered inflammatory responses in mice lacking kinin Bl receptors. Proc Natl Acad Sci U S A. 2000, 97(14): 8140-8145.
    [9] Linz W, Wiemer G, Gohlke P et al. Contribution of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. Pharmacol Rev. 1995, 47(1): 25-49.
    [10]Sharma JN, Sharma J. Cardiovascular properties of the kallikrein-kinin system. Curr Med Res Opin. 2002, 18(1): 10-17.
    [11] Margolius HS. Tissue kallikreins structure, regulation, and participation in mammalian physiology and disease. Clin Rev Allergy Immunol. 1998, 16(4): 337-349.
    [12]Zinner SH, Margolius HS, Rosner B et al. Stability of blood pressure rank and urinary kallikrein concentration in childhood: an eight-year follow-up.
    97 Circulation. 1978, 58(5): 908-915.
    [13]Yu H, Bowden DW, Spray BJ et al. Identification of human plasma kallikrein gene polymorphisms and evaluation of their role in end-stage renal disease. Hypertension. 1998, 31(4): 906-911.
    [14]Hua H, Zhou S, Liu Y et al. Relationship between the regulatory region polymorphism of human tissue kallikrein gene and essential hypertension. J Hum Hypertens. 2005, 19(9): 715-721.
    [15] Zhao W, Wang L, Lu X et al. A coding polymorphism of the kallikrein 1 gene is associated with essential hypertension: a tagging SNP-based association study in a Chinese Han population. J Hypertens. 2007, 25(9): 1821-1827.
    [16] Slim R, Torremocha F, Moreau T et al. Loss-of-function polymorphism of the human kallikrein gene with reduced urinary kallikrein activity. J Am Soc Nephrol. 2002, 13(4): 968-976.
    [17] Azizi M, Boutouyrie P, Bissery A et al. Arterial and renal consequences of partial genetic deficiency in tissue kallikrein activity in humans. J Clin Invest. 2005, 115(3): 780-787.
    [18]Marre M, Bouhanick B, Beirut G et al. Renal changes on hyperglycemia and angiotensin-converting enzyme in type 1 diabetes. Hypertension. 1999, 33(3): 775-780.
    [19]Takagaki Y, Kitamura N, Nakanishi S. Cloning and sequence analysis of cDNAs for human high molecular weight and low molecular weight prekininogens. Primary structures of two human prekininogens. J Biol Chem. 1985, 260(14): 8601-8609.
    [20] Kitamura N, Kitagawa H, Fukushima D et al. Structural organization of the human kininogen gene and a model for its evolution. J Biol Chem. 1985, 260(14): 8610-8617.
    [21] Biros E, Golledge J. Meta-analysis of whole-genome linkage scans for intracranial aneurysm. Neurosci Lett. 2008, 431(1): 31-35.
    [22] Stoll M, Cowley AW, Jr., Tonellato PJ et al. A genomic-systems biology map for cardiovascular function. Science. 2001, 294(5547): 1723-1726.
    [23]Kaschina E, Stoll M, Sommerfeld M, et al. Genetic kininogen deficiency contributes to aortic aneurysm formation but not to atherosclerosis. Physiol Genomics. 2004, 19:41-9.
    [24] Mukae S, Aoki S, Itoh S et al. Promoter polymorphism of the beta2 bradykinin receptor gene is associated with essential hypertension.Jpn Circ J.1999,63(10):759-762.
    [25]Gainer JV,Brown NJ,Bachvarova M,et al.Altered frequency of a promoter polymorphism of the kininβ2 receptor gene in hypertensive Afrecan-Americans.Am J Hypertens,2000,13:1268-1273.
    [26]Wang B,Dang A,Liu G.Genetic variation in the promoter region of the beta2bradykinin receptor gene is associated with essential hypertension in a Chinese Han population.Hypertens Res.2001,24(3):299-302.
    [27]Zychma MJ,Gumprecht J,Trautsolt W et al.Polymorphic genes for kinin receptors,nephropathy and blood pressure in type 2 diabetic patients.Am J Nephrol.2003,23(2):112-116.
    [28]Cui J,Melista E,Chazaro I et al.Sequence variation of bradykinin receptors B1and B2 and association with hypertension.J Hypertens.2005,23(1):55-62.
    [29]Dhamrait SS,Payne JR,Li P et al.Variation in bradykinin receptor genes increases the cardiovascular risk associated with hypertension.Eur Heart J.2003;24:1672-1680.
    [30]Staessen JA,Wang JG,Ginocchio G et al.The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk.J Hypertens.1997,15(12 Pt 2):1579-1592.
    [31]屈会起,卢杨,林珊,等.中国原发性高血压患者ACE/ID多态性荟萃分析.中华预防医学杂志.2001,35(6):408-411.
    [32]Paillard F,Chansel D,Brand E et al.Genotype-phenotype relationships for the renin-angiotensin-aldosterone system in a normal population.Hypertension.1999,34(3):423-429.
    [33]Williams AG,Rayson MP,Jubb M et al.The ACE gene and muscle performance.Nature.2000,403(6770):614.
    [34]Zhu X,Bouzekri N,Southam L et al.Linkage and association analysis of angiotensin I-converting enzyme(ACE)-gene polymorphisms with ACE concentration and blood pressure.Am J Hum Genet.2001,68(5):1139-1148.
    [35]Catto A,Carter AM,Barrett JH et al.Angiotensin-converting enzyme insertion/deletion polymorphism and cerebrovascular disease.Stroke.1996,27(3):435-440.
    [36]Ueda S,Weir CJ,Inglis GC et al.Lack of association between angiotensin converting enzyme gene insertion/deletion polymorphism and stroke.J Hypertens.1995,13(12 Pt 2):1597-1601.
    [37]Zee RY,Ridker PM,Stampfer MJ et al.Prospective evaluation of the angiotensin-converting enzyme insertion/deletion polymorphism and the risk of stroke.Circulation.1999,99(3):340-343.
    [38]Tiret L,Blanc H,Ruidavets JB et al.Gene polymorphisms of the renin-angiotensin system in relation to hypertension and parental history of myocardial infarction and stroke:the PEGASE study.Projet d'Etude des Genes de l'Hypertension Arterielle Severe a moderee Essentielle.J Hypertens.1998,16(1):37-44.
    [39]Maeda Y,Ikeda U,Ebata H et al.Angiotensin-converting enzyme gene polymorphism in hypertensive individuals with parental history of stroke.Stroke.1996,27(9):1521-1523.
    [40]Slowik A,Turaj W,Dziedzic T et al.DD genotype of ACE gene is a risk factor for intracerebral hemorrhage.Neurology.2004,63(2):359-361.
    [41]杨志杰,于敏,谢汝萍,等.血管紧张素转化酶基因多态性与脑出血的相关研究.中国实用内科杂志,2001,10(21):608-609.
    [42]聂莹雪,李莉,陈阳,等.ACE基因多态性与脑出血的相关性研究.中风与神经疾病杂志,2000,1(17):41-43.
    [43]尚蔚,窦相峰,张红叶,等.血管紧张素转换酶基因多态性与脑出血的关系.中风与神经疾病杂志,2004,5(21):388-390.
    [44]Marchini J,Cardon LR,Phillips MS et al.The effects of human population structure on large genetic association studies.Nat Genet.2004,36(5):512-517.
    [45]Laird NM,Lange C.Family-based designs in the age of large-scale gene-association studies.Nat Rev Genet.2006,7(5):385-394.
    [46]Barrett JH,Sheehan NA,Cox A et al.Family based studies and genetic epidemiology:theory and practice.Hum Hered.2007,64(2):146-148.
    [47]Kato N,Nabika T,Liang YQ et al.Isolation of a chromosome 1 region affecting blood pressure and vascular disease traits in the stroke-prone rat model.Hypertension.2003,42(6):1191-1197.
    [48]Wang J,Xiong W,Yang Z et al.Human tissue kallikrein induces hypotension in transgenic mice.Hypertension.1994,23(2):236-243.
    [49]Chao J,Chao L.Functional analysis of human tissue kallikrein in transgenic mouse models. Hypertension. 1996, 27(3 Pt 2): 491-494.
    [50]Silva JA, Jr., Araujo RC, Baltatu O et al. Reduced cardiac hypertrophy and altered blood pressure control in transgenic rats with the human tissue kallikrein gene. FASEB J. 2000,14(13): 1858-1860.
    [51] Pinto YM, Bader M, Pesquero JB et al. Increased kallikrein expression protects against cardiac ischemia. FASEB J. 2000, 14(13): 1861-1863.
    [52] Schanstra JP, Neau E, Drogoz P et al. In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest. 2002, 110(3): 371-379.
    [53]Tschope C, Walther T, Koniger J et al. Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene. FASEB J. 2004, 18(7): 828-835.
    [54]Bergaya S, Meneton P, Bloch-Faure M et al. Decreased flow-dependent dilation in carotid arteries of tissue kallikrein-knockout mice. Circ Res. 2001, 88(6): 593-599.
    [55]Hilgers RH, Bergaya S, Schiffers PM et al. Uterine artery structural and functional changes during pregnancy in tissue kallikrein-deficient mice. Arterioscler Thromb Vasc Biol. 2003, 23(10): 1826-1832.
    [56] Bergaya S, Matrougui K, Meneton P et al Role of tissue kallikrein in response to flow in mouse resistance arteries. J Hypertens. 2004, 22(4): 745-750.
    [57] Meneton P, Bloch-Faure M, Hagege AA et al. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice. Proc Natl Acad Sci U S A. 2001, 98(5): 2634-2639.
    [58]Majima M, Mizogami S, Kuribayashi Y et al. Hypertension induced by a nonpressor dose of angiotensin Ⅱ in kininogen-deficient rats. Hypertension. 1994;24:111-119
    [59]Krege JH, Kim HS, Moyer JS et al. Angiotensin-converting enzyme gene mutations, blood pressures, and cardiovascular homeostasis. Hypertension. 1997, 29(1 Pt 2): 150-157.
    [60] Huang W, Gallois Y, Bouby N et al. Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proc Natl Acad Sci U S A. 2001, 98(23): 13330-13334.
    [61]Tian B, Meng QC, Chen YF et al. Blood pressures and cardiovascular homeostasis in mice having reduced or absent angiotensin-converting enzyme gene function. Hypertension. 1997, 30(1 Pt 1): 128-133.
    [62] Madeddu P, Varoni MV, Palomba D et al. Cardiovascular phenotype of a mouse strain with disruption of bradykinin B2-receptor gene. Circulation. 1997, 96(10): 3570-3578.
    [63]Alfie ME, Yang XP, Hess F et al. Salt-sensitive hypertension in bradykinin B2 receptor knockout mice. Biochem Biophys Res Commun. 1996, 224(3): 625-630.
    [64]Emanueli C, Madeddu P. Role of the kallikrein-kinin system in the maturation of cardiovascular phenotype. Am J Hypertens. 1999, 12(10 Pt 1): 988-999.
    [65] Maestri R, Milia AF, Salis MB et al. Cardiac hypertrophy and microvascular deficit in kinin B2 receptor knockout mice. Hypertension. 2003, 41(5): 1151-1155.
    [66]Xia CF, Smith RS, Jr., Shen B et al. Postischemic brain injury is exacerbated in mice lacking the kinin B2 receptor. Hypertension. 2006, 47(4): 752-761.
    [67] Madeddu P, Emanueli C, Maestri R et al. Angiotensin II type 1 receptor blockade prevents cardiac remodeling in bradykinin B(2) receptor knockout mice. Hypertension. 2000, 35(1 Pt 2): 391-396.
    [68] Gonzalez-Juanatey JR.Beyond blood pressure reduction in the treatment of arterial hypertension. Clinical implications of the LIFE study. Rev Esp Cardiol. 2002, 55(9): 887-894.
    [69]Turnbull F, Neal B, Algert C, et al. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med. 2005,165: 1410-9.
    [70]Verdecchia P, Reboldi G, Angeli F, et al. Angiotensin-converting enzyme inhibitors and calcium channel blockers for coronary heart disease and stroke prevention. Hypertension. 2005,46:386-92.
    [71]Landmesser U, Drexler H. Effect of angiotensin II type 1 receptor antagonism on endothelial function: role of bradykinin and nitric oxide. J Hypertens Suppl. 2006, 24(1): S39-43.
    [72] Gainer JV, Morrow JD, Loveland A et al. Effect of bradykinin-receptor blockade on the response to angiotensin-converting-enzyme inhibitor in normotensive and hypertensive subjects. N Engl J Med. 1998, 339(18): 1285-1292.
    [73] Squire IB, O'Kane KP, Anderson N et al. Bradykinin B(2) receptor antagonism attenuates blood pressure response to acute angiotensin-converting enzyme inhibition in normal men. Hypertension. 2000, 36(1): 132-136.
    [74] Xiong W, Chao J, Chao L. Muscle delivery of human kallikrein gene reduces blood pressure in hypertensive rats. Hypertension. 1995, 25(4 Pt 2): 715-719.
    [75] Wang C, Chao L, Chao J. Direct gene delivery of human tissue kallikrein reduces blood pressure in spontaneously hypertensive rats. J Clin Invest. 1995, 95(4): 1710-1716.
    [76] Jin L, Zhang JJ, Chao L et al. Gene therapy in hypertension: adenovirus- mediated kallikrein gene delivery in hypertensive rats. Hum Gene Ther. 1997, 8(15): 1753-1761.
    [77] Chao J, Zhang JJ, Lin KF et al. Adenovirus-mediated kallikrein gene delivery reverses salt-induced renal injury in Dahl salt-sensitive rats. Kidney Int. 1998, 54(4): 1250-1260.
    [78]Xia CF, Yin H, Borlongan CV et al. Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis. Hypertension. 2004, 43(2): 452-459.
    [79]Xia CF, Yin H, Yao YY et al. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther. 2006, 17(2): 206-219.
    [80] Zhang JJ, Chao L, Chao J. Adenovirus-mediated kallikrein gene delivery reduces aortic thickening and stroke-induced death rate in Dahl salt-sensitive rats. Stroke. 1999, 30(9): 1925-1931; discussion 1931-1922.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700