用户名: 密码: 验证码:
用于泵浦激光放大器的稀土掺杂纳米粒子及有机杂化材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
任何技术的创新都由相应领域材料学的快速发展来推动,全光通讯技术的发展正在广泛而深刻地影响着人们生活的各个方面,促进着社会的进步。掺铒平面光波导放大器(EDWA)是集成光学、全光通信系统的重要组成部分,可以补偿光传输过程中的各类损耗。有机无机复合材料作为一种新型光波导放大器材料,以其高灵活性、多功能性、可集成性、经济性和易加工等特点在EDWA方面表现出强大的应用前景,用湿化学方法大量制备掺杂浓度高、粒径小、与有机物相容性好的无机纳米粒子和低光损的光波导聚合物材料的研究是决定无机有机杂化光波导材料能否真正实用化的关键性课题。本论文正是基于这一思路,从制备稀土掺杂的无机纳米粒子出发,分别运用微乳液法、通入潮湿空气法、浸渍法等方法成功制备稀土掺杂的二氧化硅纳米粒子;又在稀土盐存在的情况下水解钛酸丁酯,在二氧化硅纳米粒子表面包覆一层二氧化钛,成功制备了多种稀土掺杂的TiO2@SiO2核壳纳米粒子;本论文也对纳米粒子团聚的机理做了初步探讨,根据团聚机理,提出了利用活性炭吸附保护来防止二氧化硅纳米粒子高温处理时团聚的方法。此外,我们制备了表面用油酸修饰的铒镱共掺杂的氟化镧纳米粒子,将其与我们合成的新型含氟光刻胶进行复合杂化,利用旋涂技术,制备了有机无机杂化薄膜,对薄膜的热学、光学等性能进行了表征,结果表明这种杂化材料满足光波导放大器的制作要求,我们也在光波导放大器器件制备方面进行了尝试。
In the 21st century, human society has entered the information epoch with the features of high capacity, high broadband and high velocity, at which the integrated optics and optical communication develop at an unprecedented rapid. Erbium-doped planar waveguide amplifiers (EDWA) are an important part of integrated optics and optical communication system. EDWA can compensate for various types of optical loss in the process of transmission. Organic-inorganic composite materials, owing to their high flexibility, versatility, good thermal stability, integration, ease of processing and other features, have been prepared and investigated by numerous scientists. However, it is still considered to be a challenge for researchers to prepare rare-earth-doped silica nanoparticles via wet-chemistry. And few successful EDWAs have been demonstrated using erbium-doped Organic-inorganic composite materials. In this paper, we do some research on two parts. One part is to fabrication several different types of rare earth doped inorganic nanoparticles, another part is to synthesize waveguide polymer with the low optical loss. The theory and principles, preparation methods, and development of optical waveguide amplifiers materials have been reviewed in chapter 1.
     It is difficult to fabricate the lanthanide doped silica particles because the lanthanide ions will form insoluble lanthanide hydroxides in basic environment, at the same time, it is difficult to control the hydrolysis of the tetraethyl in acidic enviroment. In chapter 2, in order to resolve the problems, at first, we synthesized and characterized rare earth doped silica nano-particles by using the reverse emulsion formed by Span80, Tween60, cyclohexane and the lanthanide salt solution. Second, we fabricated monodispersive Eu(TTA)2(Phen)MA silica hybrid nanospheres by hydrolysis condensation reactions of tetraethyl orthosilicate in the presence of acid via sol-gel method modified by introducing water molecule into the TEOS-acetic acid system by moist airflow. At last, we fabricated the lanthanide ions-doped silica nanoparticles using two steps. We fabricated the porous silica particles and then dipped them in the solution of lanthanide salt. We characterized the structure and luminescence properties of the ions-doped particles using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photluminescence (PL) spectroscopy and so on.
     In chapter 3, for the first time, we developed a coating process to fabricate Eu3+-doped, Tb+-doped or Er3+-doped titania coatings deposited on silica nanoparticles. One modification of the process is that the diameter of the silica particles used to give the support for titania coating is nanosized. The other one is that the lathanide salts were added into the reactant mixture. The doping density is controlled by the concentration of the lanthanide ions in the reaction mixture. The typical Ln3+doping density is 0.052 at.%-0.535at.%. Indentical photoluminescence spectra were observed respectively from the Eu3+-doped, Tb3+-doped and Er3+-doped particles. The Er3+-Yb3+codoped core-shell titania@silica nanoparticles were prepared via this method. The diameter of the silica core is about 50 nm. The thickness of the titania shell is about 4 nm. A typical doping density of Er3+in the titania shell is 4.51 at.%, and the one of Yb3+is 12.20 at.%. The Er3+-Yb3+codoped core-shell titania@silica nanoparticles may find applications as optical materials because their excellent photoluminescence properties.
     In chapter 4, oleic acid-modified Er3+-Yb3+codoped LaF3 nanoparticles have been prepared and investigated. The scale of the diameter of the particles is 10-30nm. The results of TGA experiments tell us that the content of the solid can reach up to 85%. And then a fluorinated bis-phenol-A novolac resin for optical waveguide was synthesized based on 4,4-(hexafluoro-isopropylidene) diphenol, epoxy chloropropane and formaldehyde. A hybrid material was fabricated by mixing the nanoparticles and the polymer. The concentration of nanoparticles in hybrid materials was up to 30 wt%. The hybrid materials had good chemical resistance, thermal resistance and high glasstransition temperature, showing possibility for direct photolithography technique of waveguide amplifier structures.
     Any way, we fabricated several lanthanide ions doped inorganic nanoparticles via several methods and synthesized a new hybrid material with fluorinated photoresist and oleic acid-modified Er3+-Yb3+codoped LaF3 nanoparticles. The new hybrid materials we fabricated may find application on waveguide amplifiers.
引文
[1]张海成,光通信无源器件产业现状及前景[C],21世纪中国光电子技术及产业发展战略长春论坛,211.
    [2]李玲,黄永清,光纤通信基础[M],北京,国防工业出版社,2001,1.30.
    [3]杨祥林,光放大器及其应用[M],电子工业出版社,1-12,2000.
    [4]檀承志.掺铒有机聚合物光波导放大器研究[D],长春:吉林大学通讯工程学院,2006.
    [5]张丹,掺铒有机聚合物光波导放大器的理论研究与实验制备[D],长春:吉林大学电子科学与工程学院,2008.
    [6]曾小青,林凤英,袁绥华.掺稀土离子玻璃的光放大效应[J].功能材料,2002,33(4):366-370.
    [7]周炳琨等,激光原理[M].国防工业出版社,2000.
    [8]杨祥林.光放大器及其应用[M].北京:电子工业出版社,2000.13-31.
    [9]李玉权,崔敏.光波导理论与技术[M].北京:人民邮电出版社,2002,1-12,157-190,332-341.
    [10]申杰奋,刘要北.EDFA工作原理的分析及其在光通信中的应用[J].新乡教育学院学报,2007,20:82-83.
    [11]G. Nykolak, P. C. Becker, J. Shmulovich, etal, Concentration-Dependent 4I13/2Lifetimes in Er3+-Doped Fibers and Er3+-Doped planar waveguides [J]. IEEE Photon.Technol. Lett.1993,5(9):1014-1016.
    [12]Daniel Lowe, Richard R., Weibin Huang. Layout Optimization for Erbium-Doped Waveguide Amplifiers [J]. J. Lightwave Technol,2002,20(3): 454-462.
    [13]H. Ma, A. K. Y. Jen, and L. R. Dalton, Polymer-based optical waveguides: materials, processing and devices [J], Advanced Materials,14 (19),1339-1365, 2002.
    [14]Richard S. Quimby, William J. Miniscalco, Barbara Thompson. Upconversion and 980 nm excited-state absorption in erbium-doped glass [J]. Fiber Laser Sources and Amplifiers IV, SPIE,1992,1789:50-57.
    [15]Jiang Y, Daniel R, Wu R, et al. Effect of OH on Fluorescence Lifetime and LaserPerformance Of Er3+Glass [J]. Chinese Journal of Laser,1995, B4(4): 308-313.
    [16]Federighi M, Pasquale F D. The Effect of Pair-Induced Energy Transfer on thePerformance of Silica Waveguide Amplifiers with High Er3+/Yb3+ Concentrations [J]. IEEE Photon Technol Lett,1995,7(3):303-305.
    [17]W. H. Wong, E. Y. B. Pun, K. S. Chan. Er3+-Yb3+codoped polymeric optical waveguide amplifiers [J], Applied Physics Letters,2004, vol84(2):176-178
    [18]Meng Fanzhen, Song Feng, Zhang Chaobo, etal. Laser Diode Pumped 1.54 μm Er3+:Yb3+:Phosphate Glass Continuous Wave Compact Laser [J]. Chin. Phys. Lett.,2003,20(10):1739-1740.
    [19]K. Gurumurugan, Hong Chen, G. R. Harp. Visibel cathodoluminescence of Er3+-doped amorphous AlN thin films [J]. Appl.Lett.1999,74(20):3008-3010.
    [20]A. R. Zanatta, L. A. O. Nunes, Green photoluminescence from Er3+-containning amorphous Si3N4 thin films [J]. Appl.Phys. Lett.1998,72(24):3127-3129.
    [21]S. F. Song, W. D. Chen et al. Raman scattering and photoluminescence studies of Er3+-implanted and Er3+-Yb3+coimplanted GaN [J]. J. Appl. Phys.2004,96(6): 4930-4932.
    [22]雷明凯,袁力江,张仲麟.等离子体源增强磁控溅射沉积Al2O3薄膜研究[J].无机材料学报,2002,17(4),887-890.
    [23]P. G Kik and A. polman, cooperative upconversion as the gain-limiting factor in Er3+ doped miniature AI2O3 optical waveguide amplifiers [J]. J. Appl. Phys.2003, 93(9):5009-5012.
    [24]C. E. Chryssou. Photoluminescence characterization of Er3+/Yb3+coimplanted alumina thin films and sapphire crystals [J]. Ice Proc. Opto.1998,145(6): 325-330.
    [25]R.Serna et al. Photoluminescence performance of pulsed-laser deposited AI2O3 thin films with large erbium concentration [J]. J. Appl. Phys.2001,90(10): 5120-5125.
    [26]X. D. Pi, O. H. Y. Zalloum et al Formation and oxidation of Si nanoclusters in Er-doped Si-rich SiOx [J]. J.Appl.Phys.2005,97 (10):96-108.
    [27]P. G Kik, A. Polman. Exciton-erbium energy transfer in Si nanocrystal-doped SiO2 [J]. Materials Science and Engineering.2001,B81:3-8
    [28]Junmin Ji, Yandong Chen et al. Surface modification of Er+-doped silicon nanocrystals [J]. Chem.Mater.2001,13,4783-4786.
    [29]Gang Gu et al. Romm temperature photoluminescence from Er3+-doped silica thin films prepared by cosputtering [J], Thin solid fims,1998,315:263-265.
    [30]Cristin E. Moran, Gregory D. Hale, Naomi J. Halassynthesis and character-rization of lanthanide-doped silica microspheres [J]. Langmuir 2001,17, 8376-8379.
    [31]Michiel J. A. de Dood, Basjan Berkhout, Carlos M. van Kats, Albert Polman, Alfons van Blaaderen. Acid-based synthesis of monodisperse rare-earth-doped colloidal SiO2 spheres [J]. Chem.Mater.2002,14,2849-2853.
    [32]Gang Gu et al. Enhanced luminescence of silica thin films codoped with Er3+ and Yb3+[J]. Thin solid films.1999,340:230-232.
    [33]Qiang Lv, Fengyun Guo et al. Silica/titania-coated Y2O3:Yb3+nanoparticles with improvement in upconversion luminescence induced by different thickness shells [J]. J. Appl. Phys.103,123533(2008).
    [34]M. B. Korzenski, Ph. Lecoeur. Low propagation losses of an Er3+:Y2O3 planar waveguide grown by alternate-target pulsed laser deposition [J]. Appl. Lett.2001, 78(9):1210-1212.
    [35]Chuchi Ting, Sanyuan Chen, et al. Effects of yttrium codoping on photoluminescence of erbium-doped TiO2 films [J]. J. Appl. Phys.2001,90(9): 5564-5569.
    [36]Chu-Chi Ting, San-Yuan Chen, Hsin-Yi Lee. Physical characteristics and infrared fluoresecence properties of sol-gel derived Er3+-Yb3+codoped TiO2 [J]. Journal of Applied Physics 2003,94,2102-2109.
    [37]X. T. Zhang, Y.C. Liu, J.G. Ma et al, Room temperature blue luminescence from ZnO:Er3+thin fims [J]. Thin Solid Films,2002,413:257-261.
    [38]Fukudome T, Kaminaka A et al. Optical characterization of Er3+-implanted ZnO films formed by sol-gel method [J]. Nuclear instrument and hethods in physics research B,2003,206:287-290.
    [39]柳祝平,戴世勋,胡丽丽.铒镱共掺磷酸盐饵玻璃光谱性质研究[J],中国激光,2001,28(5),467-470.
    [40]Mi Ae Lim, Sunirmal Jana, Sang Il Seok et al. Near infrared luminescence behavior of organic-inorganic nanohybrid films con taining Er3+doped YbPO4 nanoparticles [J]. Thin solid films 516(2008) 4208-4212.
    [41]陈海燕,官周国,刘永智高浓度铒镱掺杂硅酸盐玻璃波导放大器的增益特性研究[J]。量子电子学报,2001,18(5):391-394.
    [42]L. Rebouta, M. F. da Silva, J. C. Soares, Nonaxial sites for Er in LiNbO3[J], Appl. Phys. Lett.1997,70(9):1070-1072.
    [43]A.Bensalah, M. Mortier et al. Synthesis and optical charaterizations of undoped and rare-earth-doped CaF2 nanoparticles [J]. Journal of solid state chemistry 179
    -100- (2006) 2636-2644.
    [44]Guofeng Wang, Wing Peng, Yadong Li. Upconversion luminescence of momodisperse CaF2:Yb3+/Er3+nanocrystals[J]. J. Am. CHEM. SOC.2009,131, 14200-14201.
    [45]Jianshe Wang, Weiran Miao et al. Water-soluble Ln-doped calcium fluride nanocrystals:controlled synthesis and luminescence properties [J]. Materals Letters.63 (2009) 1794-1796.
    [46]S.H. Bo, J. Hu, Z. Chen, Q. Wang, G.M. Xu, X.H. Liu, Z. Zhen. Core-shell LaF3: Er, Yb nanocrystal doped sol-gel materials as waveguide amplifiers [J]. Appl Phys B.2009, DOI 10.1007/s00340-009-3603-z.
    [47]Ajay Kale, Nigel Shepherd, William Glass, David DeVito. Infrared emission from zinc sulfide:Rare-earth doped thin films [J]. Journal of applied physics. 2003,94,51,3147-3152.
    [48]Sloof. L. h, de Dood, Polman A.et al. Erbium-implanted silica colloids with 80 %luminescence quantum efficiency [J]. Appl. phys. Lett.2000,76,3682-3684.
    [49]Ajgaonkar M, Zhang Y., Grebel H., Sosnowski M., Jacobson, D. C. Linear and nonlinear optical properties of erbium-implanted coherent array of submicron silica spheres [J].Appl. phys. Lett.2000,76,3876.
    [50]Sudo S., Ed. Optical fiber amplifiers:materials Devices and Applications [M]. Artech House Inc. Boston MA,1997.
    [51]Fujita K., Nouchi K. Hirao K. Effect of sodium ions on persistent spectral hole burning in Pr3+-doped silicate glasses [J]. Journal of Luminescence.2000,86. 297-304(8).
    [52]Aihua Peng, Erqing Xie, Changwen Jia, Ran Jiang, Hongfeng Lin. Photoluminescence properties of TiO2:Eu3+thin films desposited on different substrates [J]. Materials Letters.59 (2005) 3866-3869.
    [53]V. Sudaran, Sri Sivakumar, Frank C. J. M. van Veffetl, Mati Raudsepp. General and convenient method for Making Highly luminescent sol-gel derived silica and alumina films by using LaF3 nanoparticles doped with lanthanide ions [J]. Chem. Mater.2005,17,4736-4742.
    [54]Rui M. Almeida, Ana C. Marques. Rare earth-doped photonic crystals via sol-gel [J]. J Mater Sci:Mater Electron (2009) 20:S307-S311.
    [55]N. R. Nene, N. P. Barradas et al. Analysis of sol-gel silica-titania films doped with Ag and Er using artificial neural networks [J]. Nuclear Instruments and Methods in Physica Research B 249 (2006) 804-807.
    [56]M. Bouazaoui, M.Benatsou et al. Praparation and characterization of sol-gel derived Er3+:Al2O3-SiO2 planar waveguides [J]. Appl. Phys. Lett.1997,71(4): 428-430.
    [57]Fernando A. Sigoli, Younes Messaddeq, Sidney J.L.Ribeiro. Erbium and ytterbium co-doped SiO:TiO2 planar waveguide prepared by the sol-gel route using an alternative precursor [J]. J. Sol-Gel Sci Technil (2008) 45:179-185.
    [58]李毅刚.新型掺铒光学材料及光波导的制备与光学性质研究[D].上海:复旦大学信息学院,2004.
    [59]林丙臣.稀土离子掺杂材料得溶胶凝胶法制备及光谱性质研究[D].郑州:河南大学,2007.
    [60]沈玉金,潘裕斌,钟宝璇,有机/聚合物光电子学器件的应用与研究进展[J],功能材料,2000,31(1),P1-4.
    [61]禹忠,汪敏强,姚熹,光通信波段聚合物光波导材料的研究进展[J], 化学通报,2001,第一卷,P5-10.
    [62]A. Polman.et al. Erbium implanted thin film photonic materials [J], J. Appl. Phys.1997,82(1):1-39.
    [63]J. R. Kulisch, H. Franke, R. Irmscher. C. Buchanl. Opto-optical switching in ion-implanted poly (methylmethacrylate)-waveguides [J]. J.Appl. Phys. (1992) 71,3123-3126.
    [64]W. Wang, D. Chen, H.R. Fetterman,60 GHz Polymer Electx-0-optic Phase Modulators [J]. Appl. Phys. Lett.65,929-935(1994).
    [65]Y. Shi, W. H steir, L. Yu, M. Chen, L. R. Dalton, Large stable photoinduced refractive index change innonlinear optical polyester polymer with disperse red side groups [J]. Appl. Phys.Lett. (1991) 58,1131-1133.
    [66]W. H. Wong, E. Y. B. Pun, K. S. Chan.Er3+-Yb3+codoped polymeric optical waveguide amplifiers [J]. Applied Physics Letters,2004, vol84(2):176-178
    [67]W. H. Wong, K. S. Chan, E. Y. B. Pun. Et al. Ultraviolet direct printing of rare-earth-doped polymer waveguide amplifiers [J]. APPLIED PHYSICS LETTERS 87,011103 (1-3) (2005).
    [68]L. H. Slooff, A. Polman, M. P. Oude Wolbers, F.C.J.M. van Veggel, D.Reinhoudt and J. W. Hofstraat, Optical properties of erbium-doped polydentate organic cage complexes [J], J. Appl. Phys,1998,83,497.
    [69]Gaetano Mancino, Andrew J. Ferguson, Andrew Beeby, Nicholas J. Long, Tim S. Jones, Dramatic Increases in the Lifetime of the Er3+Ion in a Molecular Complex Using a Perfluorinated Imidodiphosphinate Sensitizing Ligand [J], J. AM. CHEM. SOC,2005,127,524-525.
    [70]Anh Quoc Le Quang, Rolland Hierle et al.Demonstration of net gain at 1550 nm in an erbium-doped polymer single mode rib waveguide [J]. Applied Physics Letters,2006,89,41124.
    [71]Zhang Dan, Zhang Darning et al. Optical properties of Er (DBM)3phen-doped polmer and fabrication of ridge waveguide[J]. Optics Communications 2007. 278. (90-93).
    [72]赵东峰.用于有机波导放大器的稀土铒近红外发光材料的合成与表征[D]. 长春:吉林大学化学学院,2006.05.
    [73]王瑛瑜.用于光波导放大器的含稀土铒/镱聚合物合成与表征[D].长春:吉林大学化学学院,2008.05.
    [74]L. H. Slooff, M. J. A. de Dood, A. van Blaaderen, and A. Polman, Effects of heat treatment and concentration on the luminescence properties of erbium-doped silica sol-gel films [J]. J. Non-Cryst. Solids 296,158 (2001)
    [75]L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J.M. van Veggel, D. N. Reinhoudt, Energy dependent anisotropic deformation of colloidal particles under MeV Au irradiation [J]. Appl. Phys. Lett.78,2122-2001
    [76]L. H. Slooff, A. van Blaaderen, A. Polman, G. A. Hebbink, S. I. Klink, F. C. J. M. Van Veggel, and D. N. Reinhoudt, J. W. Hofstraat. Rare-earth doped polymers for planar optical amplifiers [J]. JOURNAL OF APPLIED PHYSICS. 91(7),2002,3955-3980.
    [77]Muhammad Ali Zulfikar, A. Wahab Mohammad, Abdul Amir Kadhum, Nidal Hilal. Synthesis and characterization of poly (methylmethacrylate)/SiO2 hybrid membrane [J]. Materials Science and Engineering A,2007,452-453:422-426.
    [78]S. Diankov, D. Barth, A. vega-Gonzalez, I. Pentchev, P. Subra-paternault. Impregnation isotherms of hydroxybenzoic acid on PMMA in supercritical carbon dioxid [J]. J. of Supercritical Fluids,2007,41:164-172.
    [79]J. wang, M. tang, F. zhang et al. Modification of optical waveguide material PMMA with nano-silicon by Sol-Gel [J], Approach Key Engineering Materials 336-338,2007,549.
    [80]王静.聚合物光波导薄膜的制备及改性研究[D].厦门:厦门大学研究生院,2007年6月。
    [81]R.Dekker, D. J. W. Klunder et al. Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides [J], Applied Physics Letters, 2004,85,6104-6106.
    [82]Yang Wei, Fengqi Lu Xinrong Zhang, Depu Chen. Polyol-mediated synthesis of water-soluble LaF3:Yb, Er upconversion fluorescent nanocrystals[J], Materals Letters,2007,61,6,1337-1340.
    [83]Jianshe Wang, Jin Hu, Daihua Tang, Xinhou Liu, Zhen Zhen, Oleic acid(OA)-modified LaF3:Er,Yb nanocrystals and their polymer hybrid materials for potential optical amplifier amplifications [J]. Journal of Materials Chemistry. 2007,17,1597-1601.
    [84]G. A. Kumar, C. W. Chen,j. Ballato, R. E. Riman. Optical characterization of infrared emitting rare-earth-doped fluoride nanocrystals and their transparent nanocomposites [J]. Chem. Mater.2007,19,1523-1528.
    [85]Dan Zhang, Cong Chen et al, Optical gain at 1553nm in LaF3:Er, Yb nanoparticle doped organic-inorganic hybrid materials waveguide [J], Applied Physics Letters,2007,91,161109.
    [86]Xu Fei, Na Fu, Yao Wang, Zhanchen Cui et al. Synthesis and characterization of crosslingkable poly(MMA-co-GMA) and used in arrayed waveguide grating [J]. Chem. J. Chinese Universities,2006,27,571-574.
    [87]张立德,纳米材料和纳米结构[M]科学出版社2000年。
    [88]Choi Y. B., Cho S. H., Moon D. C, Er-Al-codoped silicate planar light waveguide-type amplifier fabricated by radio-frequency sputtering [J], Opt. Lett., 25(4),263,2000.
    [89]X. Z. Zhang, K. Liu, S. K. Mu, et al, Er3+-Yb3+co-doped glass waveguide amplifiers using ion exchange and field-assisted annealing [J], Optics Communications,268,300,2006.
    [90]X. J. Wang, M. K. Lei, T. Yang, B. S. Cao, Coherent effect of Er3+-Yb3+ co-doped on enhanced photoluminescence properties of AI2O3 powders by the Sol-Gel method [J], Optical Materials,2004,26:253-259.
    [91]Li Shanfeng, Zhang Qingyu, Absorption and photoluminescence properties of Er3+-Yb3+co-doped soda silicate glasses [J]. ACTA PHYSICS SINICS,2005, 54(11):5462-5467.
    [92]谢平波,段昌圭,纳米晶Y2SiO5:Eu3+的浓度碎灭研究[J],发光学报,1998,19(1)19-23.
    [93]Werner Stober, Arthur Fink, Ernst Bohn. Controlled growth of monodisperse silica spheres in the micron size range [J]. Journal of Colloid and Interface Science.1968,26,62-69.
    [94]S. L. Chen, Preparation of monosize silica spheres and their crystalline stack [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects 142(1998) 59-63.
    [95]Toshiyuki Yokoi, Yasuhiro Sakamoto, Osamu Terasaki etal. Periodic Arrangement of Silica nanoparticles assisted by amino acids [J]. J. AM. CHEM. SOC.2006,128,13664-13665.
    [96]Kurtis D, Hartlen, Aristidis P. T. Athanasopoulos, Vladimimir Kitaev. Facile preparation of highly monodisperse small silica spheres (15 to>200nm) suitable for colloidal templating and formation of ordered arrays [J]. Langmuir 2008,24, 1714-1720.
    [97]Paleari A, Brovelli S, Meinardi F, et al. Optical activity of Sn-variants of oxygen deficient centers influorine-modified silica [J]. Journal of Non-crystalline Solids. 355:18-21:1024-1027,2009.
    [98]Zhang, LJ; Zhai, YH; Chang, XJ, et al. Determination of trace metals in natural samples by ICP-OES after preconcentration on modified silica gel and on modified silica nanoparticles [J]. Microchimica ACTA 2009,165,3-4,319-327.
    [99]Smith J. J, Zharov I. Preparation and Proton Conductivity of Sulfonated Polymer-Modified Sintered and Self-Assembled Silica Colloidal Crystals [J]. CHEMISTRY OF MATERIALS.2009,21,10,2013-2019.
    [100]Qian Li, Lian Gao, Yan Dongsheng, Effects of grain size on wavelength of Y2O3:Eu emission spectra [J]. J. Nanostructured. Materials.1997,8(7), 825-831.
    [101]A. Patra, E. Sominska, Ramesh, Yu Koltypin et al. Sonochemical preparation and characterization of Eu2O3 and Tb2O3 doped in and coated on silica and alumina nanoparticles [J]. J. Phys. Chem. B 1999,103,3361-3365.
    [102]Jan W. Stouwadm et al. Near-infrared emission of redispersible Er, Nd, and Ho doped LaF3 nanoparticles [J], Nano Letters,2002,2,733-737.
    [103]Guofeng Wang, Wing Peng, Yadong Li. Upconversion luminescence of momodisperse CaF2:Yb/Er nanocrystals [J]. J. Am. CHEM. SOC.2009,131, 14200-14201.
    [104]李迎.形貌可控的二元钒氧化物一维纳米结构的水热合成[D].长春:吉林大学化学学院.2003.
    [105]Seokwoo Jeon, Paul V. Braun. Hydrothermal synthesis of er-doped luminescent TiO2 nanoparticles [J]. Chem. Mater.2003,15,1256-1263.
    [106]李成海,周立亚,龚福忠.W/O微乳液在纳米粒子制备中的应用[J].广西化工.2000,9,16-19.
    [107]龚福忠,唐艳霞,李成海,周立亚.非离子型微乳液的形成及其相行为研究[J].广西大学学报.2002,27,2,128-132.
    [108]Masahiro Fujiwara et al. Preparation and Formation mechanism of silica microcapsules (hollow) by water/oil/water interfacial reaction [J]. Chem. Mater.2004,16,5420-5426.
    [109]Miguel Jafeicci Jr et al. Hollow silica particles from microemulsion [J]. J. Non-Crystalline Solids,1999,247,98-102.
    [110]Kim S. Finnie, John R. Bartlett et al. Formation of silica nanoparticles in microemulsions [J]. Langmuir 2007,23,3017-3024.
    [111]M. M. Husein, E. Rodil, J. H. Vera, Preparation of AgBr Nanoparticles in Microemulsions Via Reaction of AgNO3 with CTAB Counterion. J. Nanopart. Res.2007,9,787.
    [112]B. DeBenedetti, D. Vallauri, F. A. Deorsola, M. M. Garcia, Synthesis of TiO2 nanospheres through microemulsion reactive precipitation [J]. J. Electroceram. 2006,17,37-40.
    [113]Chen L. F, Shang Y. Z, Xu J. et al. Synthesis of ZnS nanospheres in microemulsion containing cationic gemini surfactant [J]. Journal of dispersion science and technology.2006,27,6,839-842.
    [114]Hanaoka T, Tago T, Kishida M. et al. Size control of metastable ZnS particles in W/O microemulsion [J]. Bullutin of the chemical Society of JAPAN.2001, 74,7,1349-1354.
    [115]Liu J; Ma J. F, Liu Y. et al. Synthesis of ZnS nanoparticles via hydrothermal process assisted by microemulsion technique [J]. Journal of Alloys and Compounds.2009,486,1-2, L40-L43.
    [116]Lu CH, Wu WH, Kale RB. Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders [J]. Journal of Hazardous Materials.2008,154, 1-3,649-654.
    [117]Lu CH, Wen MC. Synthesis of nanosized TiO2 powders via a hydrothermal microemulsion process [J]. Journal of Alloys and Compounds.2008,448,1-2, 153-158.
    [118]Pu YY, Fang JZ, Peng F. et al. Structure and photocatalytic activity of nanosized TiO2/SiO2 particles prepared by microemulsion [J]. CHINESE JOURNAL OF INORGANIC CHEMISTRY 2007,23,6,1045-1050.
    [119]Daniel H. M.Buchold, Claus Feldmannn. Microemulsion approach to non-agglomerated and crystalline nanomaterials [J]. Advanced Functional Materials.2008,18,1002-1011.
    [120]吴培熙,沈健.特种性能树脂基复合材料[M].化学工业出版社.2004.
    [121]郑林立,单分散纳米二氧化硅及掺铒纳米二氧化硅的制备[D].长春:吉林大学化学学院,2005.
    [122]F. J. Arriagada, K.Osseo-Saare, Synthesis of nanosize silica in a nonionic water-in-oil microemulsion effects of the water/surfactant molar ratio and ammonia concentration[J]. Jouranl of colloid and Interface Science.1999, 211:210.
    [123]陈小泉,刘焕彬, 古国榜.单分散酸性纳米二氧化硅的合成新方法[J].化学研究与应用2004,16,23-26.
    [124]Bergna, H. E., Ed.The Colloid Chemistry of Silica [M]; American Chemical Society; Wshington, DC.1994.
    [125]Kawaguchi, T.; Ono, K. Spherical silica gels precipitated from acid catalyzed TEOS solutions [J]. J.Non-cryst.Solids 1990,121,383-388.
    [126]Karmakar, B.; De, G; Ganguli, D. Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS [J]. J.Non-cryst.Solids.2000,272,119.
    [127]Goutam De et al. Hydrolysis condensation reactions of TEOS in the presence of acetic acid leading to the generation of glass-like silica microsphersa in solution at room temperature[J]. J.Mater. Chem.2000,10,2289-2293.
    [128]孟雪松,含稀土具有发光功能的聚合物胶体晶体的制备与表征[D],长春:吉林大学化学学院,2007.
    [129]隋学叶,刘世权,程新, 正硅酸乙酯的水解缩聚反应及多孔二氧化硅粉体的制备[J].中国粉体技术,2006,3,35-39.
    [130]黄剑锋.溶胶-凝胶原理与技术[M].化学工业出版社.2005.
    [131]Jiang Yingnan, Li Hui, Meng Xuesong, Lin Quan et al. Preparation and properties of polymeric colloidal crystals containing rare earth complexes [J]. Journal of Rare Earths,2008,26,6,932-934.
    [132]Xin Zhang, Feng Zhang, Kwong-Yu Chan. The synthesis of large mesopores alumina by microemulsion templating, their characterization and properties as catalyst support [J]. Materials Letter.582004,2872-2877.
    [133]张继光,催化剂制备过程技术[M].中国石化出版社.2004.
    [134]Zhimin Chen, Tian Gang, Xin Yan, Xiao Li, Bai Yang et al. Ordered Silica Microspheres Unsymmetrically Coated with Ag Nanoparticles and Ag Nanoparticle-Doped Polymer Voids Fabricated by Microcontact Printing and Chemical Reduction [J]. Advanced Materials 2006,18,924-929.
    [135]Qianjun He, Jianlin Shi et al. Siz-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition [J]. Microporous and Mesoporous Materials 117(2009) 609-616.
    [136]张立德.纳米材料和纳米结构[M].科学出版社2000.
    [137]李懋强.湿化学法合成陶瓷粉料的原理和方法[J].硅酸盐学报,1994,22,85-90.
    [138]宋锡金,龚伟,王杰.纳米粒子的干燥方法与技术进展[J].化工进展.2006,25,20-24.
    [139]瞿金蓉,胡明安,陈敬中,韩炜.纳米粒子的熔点与粒径的关系[J].地球科学-中国地质大学学报.2005,30,195-198.
    [140]Z. Yang, Z. K. Wu, J. S. Ma, A.D. Xia, Y. Q. Li. One-and two-photon-induced fluorescence from novel compounds formed by self-assembly of pyrrol-2-yl-methyleneamines with zinc (Ⅱ) [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,257-258:515-519.
    [141]Wei QL. Kang SZ et al. The effect of the "metal-support" interaction on the metallic nanosystems state [J]. Colloids and Surfaces A:Physicochem, Eng. Aspects.2004,247,125-127.
    [142]彭天石,杜苹武,胡斌.共沸蒸馏法制备超细氧化铝粉体及其标征[J].无机材料学报,1994,13,21-25.
    [143]顾燕芳,胡黎明.冷冻干燥法制备高活性氧化铝超细粒子[J].硅酸盐通报.1994,13,21-25.
    [144]Iskandar F, Gradon L. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol [J]. Journal of colloid and Interface Science.2003,265,296-303.
    [145]张敬畅,高炜,曹维良.超临界流体干燥法制备纳米氧化锌的研究[J].材料科学与工艺.2002,10,251-255.
    [146]曹爱红,微波干燥制备氧化铝纳米粉体的研究[J].天津工业大学学报.2002,2,25-27.
    [147]Weiping Qin, Dan Zhao, Jisen Zhang et al. Sythesis and photophysical properties of core-shell Eu(DBM)3phen/TiO2 nanohybrids[J]. Journal of nanoscience and nanotechnology.2008,8,1464-1467.
    [148]Dan Zhao, Weiping Qin, Jisen Zhang, Changfeng Wu, Guanshi Qin et al. Modified spontaneous emission of europium complex nanoclusters embedded in colloidal silica spheres[J]. Chemical Physics Letters,403 (2005) 129-134.
    [149]Dan Zhao, Weiping Qin, Jisen Zhang et al. Improved thermal stability of europium complex nanoclusters embedded in silica colloidal spheres [J]. Chemistry Letters,34,2005,336-367.
    [150]Enrico Bovero, Frank C. J. M. van Veggel. Conformational characterization of Eu-doped LaF3 core-shell nanoparticles through luminescence anisotropy studies [J]. J. Phys. Chem. C 2007,111,4529-4534.
    [151]Yongcheng Li, C. W. Park. Particle size distribution in the synthesis of nanoparticles using microemulsions [J]. Langmuir 1999,15,952-956.
    [152]A. Hanprasopwattana; S. Srinivasan; A. G. Sault; A. K. Datye. Titania coatings on monodisperse silica spheres [J]. Langmuir 1996,12,3173-3176.
    [153]Xing-Cai Guo; Peng Dong. Multistep coating of thick titania layers on monodoperse silica nanospheres [J]. Langmuir 1999,15,5535-5538.
    [154]Xiao-an Fu, Syed Qutubuddin. Synthesis of titania-coated silica nanospheres using nonionic water-in oil. Colloids and surfaces [J] A:Physicochemical and Engineering aspects 178 (2001) 151-156.
    [155]H. Lorenz, M. Despont, P. Vettiger, et al, Fabrication of photoplastic high-aspect ratio microparts and micromolds using SU-8 UV resist [J]. Microsyst. Technol.1998,4,143-146.
    [156]L. Dellmann, S. Roth, C. Beuret, et al, Two steps micromoulding and photopolymer high-aspect ratio structuring for applications in piezoelectric motor components [J]. Microsyst. Technol.1998,4,147.
    [157]H. Lorenz, M. Laudon, P. Renaud, Mechanical characterization of a new high-aspect-ratio near UV-photoresist [J]. Microelec. Engin.1998,41/42, 371-374.
    [158]C. Malek, in Proc. SPIE Vol 3512, SPIE, Santa Clara CA,1998,277.
    [159]H. E. Ayliffe, A. B. Frazier, R. D. Rabbitt, Electric Impedance Spectroscopy Using Microchannels with Integrated Metal Electrodes [J]. IEEE Journal of Microelectro-mechanical Systems,1999,8(1),50-56.
    [160]P. Renaud, L. Van, H. Intel, M. Heuschkel, et al, TAS'98, Banff, Alberta, 1998,17
    [161]T. Kawabata, K. Maenaka, In Vivo Characterization of Implantable Unpowered Parylene MEMS Intraocular Pressure Sensors [C], Technical Digest, MicroTAS Conference, Tokyo, Japan, Nov.5-9,2006, pp.834-836.
    [162]L. Guerin, M. Bossel, M. Demierre, et al, Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic.1997[C]. Transducers International Conference on Solid-state Sensors and Actuators, Chicago,1997,1419-1422.
    [163]C. Dumschat, H. Muller, H. Rautschek, et al, Encapsulation of chemically sensitive field-effect transistors with photocurable epoxy resins [J]. Sensors and Actuators B:Chemical,1990,2,271-279.
    [164]V. Agarwal, P. Chahal, R. Tummala, Allen et al, Improvements and recent advances in nanocompositescapacitors using a colloidal technique.1998 [C]. Electronic Components and Technology Conference, Denver,1998,165-170.
    [165]D. C. Duffy, J. C. Mcdonald, O. J. A. Schueller, et al, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)[J]. Anal. Chem.1998,70, 4974-4978.
    [166]W. W. Flack, W. P. Fan, S. White, The Optimization and Characterization of Ultra-thick Photoresist Films[C], Advances in Resist Technology and Processing XV Proceedings, SPIE 3333,1998, pg.1288-1303.
    [167]R.Dekker, D. J. W. Klunder et al. Stimulated emission and optical gain in LaF3: Nd nanoparticle-doped polymer-based waveguides [J], Applied Physics Letters, 2004,85,6104-6106.
    [168]费旭.聚合物光波导材料的合成、表征及应用[D].长春:吉林大学化学学院,2008.
    [169]Jianshe Wang, Jin Hu, et al. Oleic acid(OA)-modified LaF3:Er,Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications [J], J. Mater. Chem,2007,17,1597-1601.
    [170]Xu Fei, Juan Hu, Haiming Zhang, Pengyu Sha, Jicheng Piao, Zhanchen Cui*, Daming Zhang. Synthesis of Crosslinkable Fluorinated Polyesters for Optical Waveguide Devices [J]. Journal of Polymer Science, Part A:Polymer Chemistry,2007.45,5923-5931.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700