用户名: 密码: 验证码:
稀布天线阵列的优化布阵技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在许多工程应用中,要求天线阵列有窄的扫描波束,并不要求有相应的增益,这类应用正好可以采用天线单元在阵列孔径上稀疏布置的方法来实现,它能构造出一个降低了增益的强方向性阵列,以较少的天线单元达到分辨率等技术指标,从而降低天线系统的成本。由于阵列中天线单元的稀疏布置,使得扫描波束变窄,空间分辨率提高,天线单元间的互耦减弱,这些优点使得稀布天线阵列成为非周期阵列中颇具实用性的一类阵列天线。目前,稀布天线阵列在抗环境干扰的卫星接收天线,高频地面相控阵雷达天线和射电天文中的干涉阵列等领域中正得到越来越广泛的应用。
     天线的最大相对旁瓣电平是评价天线性能的一个重要参数,对稀布天线阵列而言,如何设计一组阵元间距和阵元激励,使稀布天线阵列的最大相对旁瓣电平在整个可见区最小是稀布天线阵列综合问题中研究了半个多世纪的一类重要课题。近年来,天线单元稀疏布置的天线阵列(稀布天线阵列)被分为两大类:稀疏阵列和稀布阵列。稀疏阵列来源于均匀阵列,它是将一定数目的天线单元从均匀间隔阵列中稀疏而形成的,其阵元间距是原均匀阵列的阵元间距的整数倍;稀布阵列的天线单元在天线孔径上随机分布,其阵元间距是相互不可整除的。相对而言,稀布阵列优化布阵无需象稀疏阵列那样约束天线单元在等间隔的规则栅格上,所以优化布阵的自由度更大,有利于更大限度地降低天线阵列的最大相对旁瓣电平,进一步提高稀布天线阵列的旁瓣性能。
     本文在给定阵列的几何形状的前提下,针对如何通过适当地选取稀布天线阵列的阵元间距来最大限度地降低阵列的最大相对旁瓣电平这一基本综合问题展开研究。由于稀布天线阵列的最大相对旁瓣电平是阵元位置的非线性函数,没有现存的解析方法来确定最大相对旁瓣电平,也就是说,即使已知所有阵元的位置,也没有可凭借的解析方法来求得最大相对旁瓣电平出现的位置,所以本文的研究对象是一个非线性最优化问题。文中针对稀疏天线阵列综合提出了分区穷举法,并分析了它的性能及适用的场合;针对稀布天线阵列综合可能涉及的不同约束,提出了一种基于现代计算智能方法——遗传算法的改进算法,并应用于稀布直线阵列的多约束优化布阵;最后将这种综合方法从一维线性稀布阵列的优化布阵推广到了二维稀布平面阵列的优化布阵。
     本文的贡献和创新之处包括:
     1.建立了稀疏阵列和稀布阵列优化布阵的最优化数学模型,讨论了最优阵元配置的求解问题。
     2.中小型稀疏阵列的穷举综合法中,枚举阵列结构的计算量是值得研究的一个问题,文中分析比较了两种枚举直线阵列结构的算法:递归算法和二进制序列穷举法。
     3.提出了稀疏直线阵列优化布阵的分区穷举方法,修正了在阵列孔径的均匀分区上分配阵元数目的理论公式。
     4.讨论了非对称的阵列结构对稀疏阵列旁瓣电平优化的影响;即结构上的对称性是可利用的优化自由度,由方向性天线单元综合的非对称稀疏天线阵列扫描时峰值旁瓣性能的恶化比对称结构的稀疏阵列更小。
     5.改进了实数遗传算法的交叉和变异策略,结合高效的FFT算法计算稀疏阵列的方向图函数,使优化稀疏阵列激励幅度的算法的稳健性和收敛性得到改善。
     6.提出一种修正的实数遗传算法,解决了稀布直线天线阵列的多约束(约束孔径、阵元数和最小阵元间距)优化布阵,该算法利用阵元间距约束,减小遗传算法的搜索空间,有效地减小了计算量,提高了算法的收敛性能。
     7.在最小阵元间距由欧氏距离简化为切比雪夫间距的情况下,将修正实数遗传算法综合多约束稀布线阵的方法拓展到了矩形边界稀布平面阵列的多约束优化布阵。
For many radar and communications applications of scanning array antennas, extreme narrow main beamwidth is desired, whereas high gain is not so extremely required, the sparse antenna arrays, whose element spacing is kept relatively larger thanλ/2 over an antenna aperture, can cover these applications. The sparse antenna arrays have advantages in high-resolution thinned configurations, and fewer elements for comparable beamwidth. The cost of the sparse antenna arrays is much lower to meet the design goal of high-resolution than that of periodic arrays. Due to the array thinning, beamwidth narrowing and element-interaction reduction, the sparse antenna arrays with the strong directivity have a great deal applications in aperiodic arrays. In recent years, the sparse antenna arrays are widly applied in satellite communications, high frequency groundwork phased array radar and interferometer of radio astronomy.
     The peak side lobe level (PSLL) is a key parameter of an antenna arrays, one of the interesting sparse array synthesis problems is to find an optimum set of element spacings and excitations that would minimize the highest side lobe level (viz.PSLL) in the entire visible region. This is a hard synthesis problem of sparse arrays which has been studied for almost sixty years. These years, the nonuniform antenna arrays have been classified into two categories: sparse arrays with randomly spaced elements and thinned arrays, which are derived by selectively zeroing some elements of an initial equally spaced array. Sparse arrays with incommensurable element spacings have more degree of freedom to lower the peak side lobe level for the simple reason that elements of sparse array do not need to be restricted by the regular linear lattice.
     In this dissertation, the basic synthesis problem of sparse antenna arrays was studied, that is, how to find the element positions to minimize the PSLL of a sparse antenna array when the array configuration is fixed apriori. The difficult of this problem may be attributed the fact that the side lobe level depends on the element spacings in a highly nonlinear manner, and that, in general, there is no known analytical method to determine the highest side lobe level, or the angular direction where the highest side lobe may occur, even with all element positons given. So the optimization of the element positions of the sparse antenna arrays is a nonlinear optimization. Divisional exhaustive method is applied to optimize the thinning of linear thinned arrays; its performance trials reveal the applicability when it is applied to element spacing synthesis. And various constrains may occurs in the synthesis of sparse arrays, a novel intellectualized method, viz. a modified real genetic algorithms (MGA), is developed to attack the synthesis problem of linear sparse arrays with multiple design constrains. At last, the novel algorithm of MGA was extended to the optimization of the 2-demension sparse antenna arrays.
     The main contributions of this dissertation include two aspects. One is the study on exhaustive method for the element position design of thinned arrays; the other is the application of genetic algorithms for the optimization of sparse arrays.
     Several valuable and important results which bring forth new ideas are achieved and listed as the following:
     1. The mathematical model for the optimization of thinned arrays and sparse arrays was built, and the optimal solutions of sparse antenna arrays were discussed.
     2. In the process of exhaustive synthesis of minitype thinned arrays, enumerating the configuration of linear thinned arrays is main task of design. Two enumerate algorithms of exhaustive study on configuration of linear thinned arrays are proposed, they are recursion algorithm and binary sequence enumerate algorithm. Some comparison studies on their performance are made in order to reveal the feasibility relations with the thinned ratio and aperture of the array antennas.
     3. A new method of exhaustive method with divisional pre-processing is proposed, in which the formula of element distribution is modified, and then it is compared with other design methods of thinned arrays.
     4. The asymmetric configuration is an available degree of freedom to control the characters of thinned arrays. Simulation results show that the optimized asymmetric linear arrays using genetic algorithm which lack the design constraint of bilateral symmetry can not only obtain lower sidelobes, but also weaken the deterioration of scanning beam if the thinned arrays are made up of directional elements.
     5. The crossover and mutation strategy of genetic algorithm (GA) with real chromosome are improved, and they can be utilized to improve the side lobe performance of a thinned array by designing the element currents.
     6. A modified real genetic algorithm (MGA) for the synthesis of sparse linear arrays is developed. It has been utilized to optimize the element positions to reduce the PSLL of the array. And here the multiple optimization constraints include the number of element, the aperture and the minimum element spacing. The MGA utilized the coding resetting of gene variables to avoid infeasible solution during the optimization process. Also, the proposed approach has reduced the size of the searching area of the GA by means of indirect description of individual.
     7. The MGA is extended for the element position optimization of rectangular sparse plane arrays with multiple optimization constraints. If the space between the elements was simplified from the actual distance (in Euclidean space) to Chebychev distance, the nonlinear constraint of the element spacing can be simplified, and then the MGA can search a smaller solution space and improve the computing efficiency.
引文
[1]Y.T.Lo and S.W.Lee. Antenna handbook.Van Nostrand ReinholdCo., New York, 1988
    [2]Eli Brookner. Practical phased array antenna system. Artech House Boston, London, 1991
    [3]李建新.阵列多台阶稀疏技术[J].电子学报,1999,Vol.27,No.3:79~80
    [4]S.A.Schelkunoff, A mathematical theory of linear arrays. Bell Syst.Tech.J.,1943, Vol.22: 80~107
    [5]Kumar B P and Branner G R. Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry. IEEE Trans. Trans. on Antenna and Propagation., 2005,Vol.53, No.2:621~634.
    [6]Kumar B P and Branner G R. Design of unequally spaced arrays for performance improvement. IEEE Trans. on Antenna and Propagation., 1999, Vol.47,No.3:511~523.
    [7]H.Unz. Linear arrays with arbitrarily distributed elements. IRE Rrans. On Antennas and Poropafation, 1960, Vol.8,No.3:222~223
    [8]Lo Y T, Lee S W. A study of space-tapered arrays. IEEE Trans. on Antenna and Propagation, 1966, Vol.14, No.1: 22~30
    [9]胡星航,林德云.矩形平面阵列天线旁瓣电平优化的遗传算法.电子学报,1999,Vol.27,No.12:119~120
    [10]M.I. Skolnik, G. Nemhauser, J. W. Sherman. Dynamic programming applied to unequally spaced arrays. IEEE Trans.on Antenna and Propagation., 1964, Vol. 12, No. 1:35~43
    [11]D.D. King, R.F. Pachard.Unequally-spaced, broad-band antenna arrays. IRE Trans. on antenna and propagation. 1960, Vol.8, No.7:380~385
    [12]G.W.Swenson, Y. T. Lo. Radio telescope at the University of Illinois. IRE Trans. on antenna and propagation. 1961, Vol.9, No. 1:9~16
    [13]M. G. Andreason. Linear arrays tith bariable interelement spacings. IRE Trans. on antenna and propagation. 1962, Vol. 10, No.3:137~143
    [14]A. Ishimaru. Theory of unequally-spaced arrays. IRE Trans. on antenna and propagation. 1962, Vol. 10, No. 11:671~702
    [15]A. Ishhimaru, Y. S. Chen. Thinning and broadbanding antenna arrays by unequal spacings. IEEE Trans. on antenna and propagation. 1965, Vol. 13, No.3:34~42
    [16]Y.L. Chow. On grating plateaux of nonuniformly spaced arrays. IEEE Trans. on antenna and propagation. 1965, Vol. 13, No.3:208~215
    [17]S.J. Rabinowitz, R. F. Kolar. Statistical design of space-tapered arrays, presenged at the 1962 12th annual symposium on USAF antenna research and development program, University of Illinois, Urbana
    [18]Y.T. Lo. A mathematical theory of antenna arrays with randomly spaced elements. IRE Trans. on antenna and propagation. 1964, Vol. 12, No.5:257~268
    [19]Y.T. Lo. A probabilistic approach to the problem of large antenna arrays. Radio Sci. 68D. 1965, No.9:1011~1019
    [20]Y.T. Lo, S. W. Lee. Sidelobe lebel of nonuniformly spaced antenna arrays. IEEE Trans. on antenna and propagation. 1965, Vol. 13, No.9:817~818
    [21]Y.T. Lo, R. J. Scmcoe. An experiment on antenna arrays with randomly spaced elements. IEEE Trans. on antenna and propagation. 1967, Vol. 15, No. 3:231~235
    [22]J.Blass, S.J.Rabinowetz. Mutual corpling in two-dimensional arrays. IRE WESCON Convention record. 1957, Vol. 1, Part. 1:134~150
    [23]B.D. Steinberg. The peak sidelobe of the phased arrays having raddomly located elemtnts. IEEE Trans. on antenna and propagation. 1972, Vol.20, Issue.2:129~136
    [24]B. D. Steinberg. Principles of aperture and arrays ststem design. Wileym New York, 1976
    [25]A.L. Maffet. Array factors with nonuniform spacing parameter. IRE Trans. on antenna and propagation. 1962, Vol. 10, No.3:131~136
    [26]R. F. Harrington. Sidelobe reduction by nonuniform element spaceing. IRE Trans. on antenna and propagation. 1961, Vol.9, No.3:187~192
    [27]Y.V. Baklanov, B. L. Pokrovshi, G. I. Sridotovich. A theory of linear antennas with unequal spacing. Radio Engrg. and Electronic Phys., 1962, No.6:905~913
    [28]M.I. Skolnik, J. W. Sherman, F. C. Ogg, Jn Statistically designed densith-tapered arrays. IEEE Trans. on antenna and propagation. 1964, Vol. 12, No.7:408~417
    [29]T.M. Macher, D. K. Cheng. Random removal of radiators from large linear arrays. IEEE Trans. on antenna and propagation. 1963, Vol. 11, No.3:106~111
    [30]M. Garduer. Mathematical games. Sci. Amercian. 1964, Vol. 210:120~128
    [31]Arora R K, Krishnamacharyulu N C V. Synthesis of unequally spaced arrays using dynamic programming. IEEE Trans. on Antenna and Propagation, 1968, Vol. 16, No.7:593~595
    [32]F.C. Ogg. Steerable array radar. IRE Trans. on Military Electronics. 1961, Vol.5, No.4:80~94
    [33]R. E. Willey. Space tapering of linear and planar arrays. IRE Trans. on antenna and propagation. 1962, Vol. 10, No.7:369~377
    [34]Mailloux R J and Cohen E. Statically thinned arrays with quantized element weights. IEEE Trans. on Antenna and Propagation., 1991, Vol.39, No.4:436~447
    [35]Murino V, Trucco A, and Regazzoni C S. Synthesis of unequally spaced arrays by simulated annealing. IEEE Trans.on Antennas Signal Processing, 1996, Vol.44, No. 1:119~123
    [36]张玉洪,保铮.最佳非均匀间隔稀布阵列的研究.电子学报,1989,Vol.17,No.7:81~87
    [37]张玉洪,保铮.任意分布阵列天线波束宽度的精确估计.西安电子科技大学学报,1986,Vol.15,No.2
    [38]张玉洪,保铮.加权直线天线阵的最佳稀布阵.电子学报,1989,Vol.18,No.5:34~39
    [39]张玉洪.非均匀间隔稀布阵列的旁瓣电平限制.西安电子科技大学学报,1992,Vol.19,No.4:45~49
    [40]张润琦.动态规划.北京:北京理工大学出版社,1989
    [41]Y.T.Lo.阵列理论.天线学报,1986,No.1 and No.2:1~37
    [42]F. Bratkobi. Synthesis of broad-band arrays with arbitrary frequency-independent elements. IEEE Trans. on antenna and propagation. 1973, Vol.21, No.3:211~213
    [43]J.D. Kraus. Radio astronomy. New York. Megraw-Hill, 1966
    [44]M.Ryle. Radio telescope of large resolving power. Science,1975, Vol. 188:1071~1083
    [45]N. C. Mathur. A pseudodynamic programming technique for the design of correlator super-synthesis arrays Radio Sci., 1969, Vol.4: 235-244
    
    [46] Y. L. Chew. On designing a supersynthesis antenna array. IEEE Trans, on antenna and propagation. 1972, Vol. 20, No. 1:30-35
    
    [47] A. T. Moffer. Minimun redundancy linear arrays. IEEE Trans, on antenna and propagation. 1968, Vol. 16:172-175
    
    [48] M. Ishiguro. Minimum redundancy linear arrays for a large number of antennas. Radio Sci., 1980, Vol.16:1163-1170
    
    [49] H. K. Schuman, B. J. Strait. On the design of unequally spaced arrays with nearly equal sidelobes. IEEE Trans, on antenna and propagation. 1968, Vol. 16,No.4:493-494
    
    [50] H. Schjaer-Jacobsen, K. Madsen. Synthesis of nonuniformly spaced arrays using a general nonlinear minimax optimization method. IEEE Trans, on antenna and propagation. 1976, Vol. 24,No.4:501-506
    
    [51] H. Elmikati, A. A. Elsohly. Extension of projection method to nonuniformly linear antenna arrays. IEEE Trans, on antenna and propagation. 1984, Vol. 32, No.5:507-512
    
    [52] Pillai, S.U., Bar-Ness, Y., Haber, F. A new approach to array geometry for improved spatial spectrum estimation. Proceedings of the IEEE. 1985,Vol.73, Issue 10, :1522 - 1524
    
    [53] Steinberg, B. Comparison between the peak sidelobe of the random array and algorithmically designed aperiodic arrays. IEEE Trans, on antenna and propagation. 1973, Vol. 21, No.3:366-370
    
    [54] P. Harski, T. Saramaki, S. Mitra and U. Neuvo. On properties and design of nonuniformly spaced linear arrays. IEEE Trans. Acoust., Speech. Signal Processing, 1988, Vol. ASSP-36:372-380
    
    [55] C. A. Olen, R. T. Compton, JR. A numerical pattern synthesis algorithm for arrays. IEEE Trans, on antenna and propagation. 1990, Vol. 38, No. 10
    
    [56] A. D. Bresler. A new algorithm for the current distributions for Dolph-Chebyshev arrays. IEEE Trans, on antenna and propagation. 1980, Vol. 28:951-952
    
    [57] E. C. Dufort. Pattern synthesis based on adaptive array theory. IEEE Trans, on antenna and propagation. 1989, Vol. 37:1011-1018
    
    [58] Redlich, R. Iterative least-squares synthesis of nonuniformly spaced linear arrays. IEEE Trans, on antenna and propagation. 1973, Vol. 21, No. 1:106-108
    
    [59] Bratkovic, F. Computer determination of spaces of a broad-band nonuniform antenna array. IEEE Trans, on antenna and propagation. 1973, Vol. 21, No.3:40-408
    
    [60] Hodjat, F.; Hovanessian, S. Nonuniformly spaced linear and planar array antennas for sidelobe reduction. IEEE Trans, on antenna and propagation. 1978,Vol. 26, Issue 2, :198- 204
    
    [61] H. Elmikati, A. A. Elsohly. Extension of projection method to nonnniformly linear antenna arrays. IEEE Trans. on antenna and propagation. 1984, Vol. 32:507-512
    
    [62] J. F. Deford, O. P. Gandhi. Minimum peak sidelobe patterns for linear and planar arrays. IEEE Trans, on antenna and propagation. 1988, Vol. 36:191-201
    
    [63] Petri Jarske, Tapio Saramaki, Sanjit K. Mitra. On properties and design of nonuniformly spaced linear Arrays. IEEE Trans, on Antenna and Propagation., 1988, Vol.36, No.3: 372- 380
    
    [64] Caorsi, S.; Lommi, A.; Massa, A.; Pastorino, M. Peak sidelobe level reduction with a hybrid approach based on GAs and difference sets. IEEE Trans, on antenna and propagation.2004,Vol. 52,No.4 :1116-1121
    [65]Skolnik M.I, Nemhauser G, Sherman. J W. Dynamic Programming applied to unequally spaced arrays[J]. IEEE Trans. on Antenna and Propagation, 1964, Vol. 12, No. 1:35~43
    [66]姚昆,杨万麟.最佳稀布直线阵列的分区动态规划法.电子学报,1994,Vol.22,No.2:87~90
    [67]姚昆.稀疏直线天线阵列的优化布阵技术研究.博士学位论文,电子科技大学,1996
    [68]姚昆,杨万麟.最佳稀布直线阵列分区动态规划法的应用.电子科技大学学报,1995,Vol.24.No.7
    [69]G.H. Holland. Genetic algorithms Sci. Amer., 1992, No.7:66~72
    [70]K. Tomiyasu. Low-sidelobe-level symmetrical linear array combining equal and unequal spacings to approximate truncated Gaussian distribution. IEEE Trans. on antenna and propagation. 1991, No.2:265~266
    [71]Haupt R L. Thinned arrays using genetic algorithms. IEEE Trans. on Antenna and Propagation., 1994, Vol.42, No.7:993~999
    [72]D.E. Goldberg. Genetic algorithms. Sci. Amer., Addison-Wesley, 1989
    [73]王玲玲,方大纲.运用遗传算法综合稀疏阵列.电子学报,2003,Vol.31,No.12A:2135~2138
    [74]付云起,袁乃昌,毛钧杰.基于遗传算法和模拟退火的不等间距稀布阵的设计.电子与信 息学报,2001,Vol.23,No.7:700~704
    [75]O'Neill D J. Element placement in thinned arrays using genetic algorithms. OCEANS '94 'Oceans engineering for today's technology and tomorrow's preservation' proceedings, 1994, Vol.2, No.9:301~306
    [76]Haupt R L. Unit circle representation of aperiodic arrays. IEEE Trans. on Antenna and Propagation, 1995, Vol.43, No. 10:1152~1155
    [77]李东风,龚中麟.遗传算法应用于超低副瓣线阵天线方向图综合.电子学报,2003,Vol.31,No.1:82~84
    [78]Pearson, D.; Pillai, S.U.; Lee, Y. An algorithm for near-optimal placement of sensor elements. IEEE Trans. on antenna and propagation. 1990,Vol. 36, No.6:1280~1284
    [79]Yan K K, Lu Y L. Sidelobe reduction in array-pattern synthesis using genetic algorithm. IEEE Trans. on Antenna and Propagation, 1997, Vol.45, No.7:1117~1122.
    [80]Trucco Andrea and Murino Vitttorio. Stochastic optimization of linear sparse arrays. IEEE Journal of Oceanic Engineering, 1999, Vol.24, No.3:291~299
    [81]陈客松,何子述,韩春林.稀疏线阵阵列结构的枚举算法.电子科技大学学报.2006,Vol.35:No.2:189~192
    [82]陈客松,何子述,韩春林.运用GA和FFT确定稀疏直线阵列的激励幅度.系统工程与电子技术.2006,Vol.28,No.1:15~19
    [83]陈客松,何子述,韩春林.一种有阵元间距约束的稀布阵天线综合方法.电波科学学报.待发表
    [84]陈客松,何子述,韩春林.最佳稀疏直线阵列的分区穷举法.电子与信息学报.待发表
    [85]陈客松,何子述,韩春林.利用GA实现非对称稀疏线阵旁瓣电平的优化.电子与信息学报.待发表
    [86]陈客松,何子述,韩春林.非均匀线天线阵优化布阵研究.《电子学报》.待发表
    [87]Kesong Chen, Zishu He, Chunlin Han. A Modified Real GA for the Sparse Linear Array Synthesis with Multiple Constraints. IEEE Transactions on Antennas and Propagation, 2006, Vol.54, No.7:2169~2173
    [88]Chen ke-song, HE Zi-shu, HAN Chun-lin. Modified GA Optimization of Linear Sparse Array. Journal of Electronic Science and Technology of China, 2006,Vol.4, No.2:118~122
    [89]Chen ke-song, HE Zi-shu, HAN Chun-lin. Optimization of Sparse Plane Arrays Using an Improved Genetic Algorithm. Communications, Circuits and Systems, ICCCAS 2006, International Conference, 2006, Vol.4:2781~2785
    [90]Chen ke-song, HE Zi-shu, HAN Chun-lin. Design of Linear Sparse Antenna Arrays for Performance Improvement. Forth IEEE Workshop on Sensor Array and Multi-channel Processing Proceedings(SAM2006)
    [91]Murino, V. Simulated annealing approach for the design of unequally spaced arrays. Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on Vol. 5, 9-12 May 1995:3627~3630
    [92]Ren xian-feng, liu yong. A synthesis method of nonuniformly spaced arrays using the Foruier transnsform. Journal of Chongqing University of Posts and Telecommunications. 2003, Vol. 15, No. 2
    [93]Berger, S.D. Nonuniform sampling reconstruction applied to sparse array beamforming. Radar Conference, 2002. Proceedings of the IEEE. 22-25 April 2002:98~103
    [94]Salvatore Caorsi, Andrea Lommi, Andrea Massa, and Matteo Pastorino. Peak sidelobe level reduction with a hybrid approach based on GAs and difference sets. IEEE Trans. on Antenna and Propagation.,2004, Vol.52, No.4:1116~1121
    [95]A.Trucco, E.Omodei and P.Repetto. Synthesis of sparse plannar arrays.Electronics Letters. 1997, Vol.33, No.10:1834-1835
    [96]Sverre Holm, Bjφrnar Elgetun, and Geir Dahl.Properties of the beampattern of weight-and layout-optimized sparse arrays. IEEE Trans. on Ultrasonics, Ferroelectrics, and frequency control. 1997, Vol.44, No.5:983~991
    [97]Jun Lan, Robert K. Jeffers and Stephen G. Boucher. Optimum unequally spaced arrays and their amplitude shading. IEEE Ultrasonics Symposium. 1995:965~969
    [98]Andrea Trucco. Synthesis of Aperiodic Planar Arrays by a Stochastic Approach. OCEANS '97. MTS/IEEE Conference Proceedings. 1997, Vol.2,No.6-9:820~825
    [99]马云辉.阵列天线的遗传算法综合[J].电波科学学报,2001,Vol.16,No.2:172-176
    [100]刘昊,郑明,樊德森.遗传算法在阵列天线赋形波束综合中的应用.电波科学学报,2002,Vol.17,No.5:539-542
    [101]祝志鹏,蒋凤仙,陈学峰.一种改进的遗传算法及其在线天线阵方向图综合中的应用.复旦学报.2001,VoL.40,No.1:55~60
    [102]李东风,龚中麟.六边形平面天线阵优化稀疏布阵研究.电子学报,2002,Vol.30,No.3:376~380
    [103]陈大昊,张剑云,邓鹏飞.两级递阶遗传算法优化稀布直线阵列.计算技术与自动化,2000,Vol.24,No.4:58~60
    [104]束咸荣,晏焕强,郭燕昌.大型稀布相控阵天线设计及其旁瓣电平研究.微波学报,1996,Vol.12,No.3:169~174
    [105]D.K.Cheng. Optimization techniques for antenna arrays. Proceedings of the IEEE, 1971, Vol.59, No. 12:1664~1674
    [106]B. P. Kumar, G. R. Branner. Synthesis of unequally spaced linear arrays by Legendre series expansion. Antennas and Propagation Society International Symposium, 1997 Digest. IEEE Vol. 4, No.7:2236~2239
    [107]B. P. Kumar, G. R. Branner. Improved pencil beam patterns of linear arrays by unequal spacing. Antennas and Propagation Society International Symposium, 1998. IEEE. Vol. 2, No.6:760~763
    [108]Haupt, R.L. Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors. Antennas and Propagation Society International Symposium, IEEE 2000, No.7:1034~1037
    [109]You Chung Chung, Haupt, R.L. Optimum amplitude and phase control for an adaptive linear array using a genetic algorithm. Antennas and Propagation Society International Symposium, IEEE,1999, Vol. 2, No.7:1424~1427
    [110]Miao Wang, Qi Zhu, Liangjiang Zhou, Mengna Hu. The synthesis and optimization of arbitrarily distributed array with circular sparse array. Antennas and Propagation Society International Symposium, IEEE Vol. 1, 22-27 June 2003:812~815
    [111]Jun Lan, Jeffers, R.K., Boucher, S.G. Optimum unequally spaced arrays and their amplitude shading. Ultrasonics Symposium, 1995. Proceedings., IEEE, 1995, Vol.2, 7-10 Nov. 1995: 965~969
    [112]Cheng-Cheh Yu. Sidelobe reduction of asymmetric linear array by spacing perturbation. Electronics Letters. 1997,Vol. 33, Issue 9,:730~732
    [113]范瑜,金荣洪,耿军平,刘波.基于差分进化算法和遗传算法的混合优化算法及其在阵列天线方向图综合中的应用.电子学报,2004,Vol.32,No.12:1997~2000
    [114]Matthew G. Bray. Douglas H. Werner, Daniel W. Boeringer, and David W. Machuga. Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning. IEEE Trans. on antenna and propagation. 2002, Vol. 50, No. 12:1732~1742
    [115]Trucco, A., Repetto, F. A stochastic approach to optimizing the aperture and the number of elements of an aperiodic array. OCEANS '96. MTS/IEEE. 'Prospects for the 21st Century'. Conference Proceedings. 1996, Vol. 3, No.9:1510~1515
    [116]Trucco, A., Omodei, E., Repetto, P. Synthesis of sparse planar arrays. Electronics Letters. 1997, Vol.33, Issue 22:1834~1835
    [117]Ruf, C.S. Numerical annealing of low-redundancy linear arrays. IEEE Trans. on antenna and propagation. 1993, Vol. 41, Issue 1:85~90
    [118]Olen, C.A., Compton, R.T., Jr. A numerical pattern synthesis algorithm for arrays. IEEE Trans. on antenna and propagation. 1990, Vol. 38, Issue 10:1666~1676
    [119]Holm, S., Elgetun, B. Properties of the beampattern of weight-and layout-optimized sparse arrays. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1997,Vol.44, Issue 5:983~991
    [120]Randy L. Haupt. Genetic algorithm design of antenna arrays. IEEE, 1996 Aerospace Applications Conference Proceedings., 1996 Vol. 1, No.2:103~109
    [121]张讲社,徐宗本,梁怡.整体退火遗传算法及其收敛充要条件.中国科学(E辑),1997,No.27:154~164
    [122]胡静,李金龙,曹先彬.模拟退火算法与遗传算法结合及多目标优化求解研究.计算机应用与软件,2000,No.11:19~23
    [123]王雪梅,王义和.模拟退火算法与遗传算法的结合.计算机学报,1997,Vol.20,No.4:381~384
    [124]韩明华,袁乃昌.基于整体退火遗传算法的不等间距天线阵的综合.系统工程与电子技术,1999,Vol.21,No.2:70~74
    [125]韩明华,袁乃昌.整体退火遗传算法在不等间距线天线阵的综合中的应用.电子与信息学报,1999,Vol.21,No.2:226~231
    [126]陈忠宽,傅文斌,刘捷,周健.非均匀线阵遗传优化方案的比较研究,武汉理工大学学报,2003,Vol.25,No,9:73~76
    [127]Haupt, R.L. Phase-only adaptive nulling with a genetic algorithm. IEEE Trans. on antenna and propagation.2004,Vol. 45, Issue 6: 1009~1015
    [128]王小平,曹立明.遗传算法—理论、应用与软件实现.西安:西安交通大学出版社,2002
    [129]P. López, J. A. Rodriguez, F. Ares and E. Moreno. Subarray weighting for the difference patterns of monopulse antennas: Joint optimization of subarray configurations and weghts. IEEE Trans. on antenna and propagation. 2001, Vol. 49, No. 11:1606~1608
    [130]陈小平,于盛林.实数遗传算法交叉策略的改进.电子学报,2003,Vol.31,No.1:71~74
    [131]刘先省,张连堂,周林.给定方向图的圆形阵列综合方法.电子学报,2005,Vol.33,No.2:245~248
    [132]刘先省,张连堂,吴嗣亮,毛二可.基于有向阵元的圆形阵列方向图综合.电子学报,2004,Vol.32,No.4:701~704
    [133]邱力军,周智敏,梁甸农.稀布相控阵雷达子阵划分方法研究.系统工程与电子技术,1997,No.7:31~37
    [134]陈伯孝,张守宏.大型随机稀布阵列雷达的脉冲综合方法及其性能.系统工程与电子技术,1998,No.7:46~54
    [135]张直中.论宽带相控阵雷达的战术优越性.电子学报,1993,86~92
    [136]Merrill I. Skolnik. Radar Handbook(2ed). Boston: Mc-graw Hill, 1990
    [137]龚耀寰.自适应滤波:自适应滤波和智能天线.北京:电子工业出版社,2003
    [138]丁鹭飞,耿富录.雷达原理(第三版).西安市:西安电子科技大学出版社,2002
    [139]Mailloux R. J. Phased Array Antenna Handbook. New York/London: Artech House, 1994
    [140]林昌禄,聂在平.天线工程手册.北京:电子工业出版社,2002
    [141]N.阿米特,V.加林德,C.P.吴著,陆雷译.相控阵天线理论与分析.北京:国防工业出版社,1978
    [142]汪茂光,吕善伟,刘瑞祥.阵列天线分析与综合.成都:电子科大出版社,1989
    [143]Junker, G.P., Kuo, S.S., Chen, C.H. Genetic algorithm optimization of antenna arrays with variable interelement spacings. Antennas and Propagation Society International Symposium, 1998. IEEE Vol. 1, 21-26 June:50~53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700