用户名: 密码: 验证码:
高活力山梨醇脱氢酶氧化葡萄糖酸杆菌选育及生物催化合成米格列醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
米格列醇是1-脱氧野尻霉素的N-羟乙基衍生物,是α-葡萄糖苷酶抑制剂。临床上已作为治疗2型糖尿病的首选药物。目前,其主要通过以1-脱氧野尻霉素为底物纯化学合成和以N-羟乙基葡萄糖胺为底物化学生物组合法合成,前者反应步骤较多、生产成本高,其底物1-脱氧野尻霉素无论从植物中提取或化学合成或发酵生产,工艺均较复杂;后者采用产山梨醇脱氢酶的氧化葡萄糖酸杆菌(Gluconobacter oxydans)全细胞作为生物催化剂,催化N-羟乙基葡萄糖胺反应用化学生物组合法合成米格列醇的工艺具有反应步骤少、生产成本低的优势,但通过发酵获得的全细胞,其细胞膜山梨醇脱氢酶总活力和储藏稳定性均较低,严重制约了此工艺的进一步开发和应用。本论文的目的是获得具有高活力山梨醇脱氢酶的G. oxydans菌株,以其全细胞作为生物催化剂,对化学生物组合法合成米格列醇的工艺进一步改进,进一步提高米格列醇的产量。
     通过对G. oxydans A1的培养和其细胞膜山梨醇脱氢酶活力的研究表明,碳源浓度较高时,抑制细胞生长。山梨醇脱氢酶催化生物转化反应时,反应液中溶氧量越大,反应需求的细胞浓度越大,反应速率越大;当反应液中的溶氧量一定,细胞浓度达到临界值时,反应速率最大;山梨醇脱氢酶的最适作用温度为28℃,最适pH值为5.5。
     以G. oxydans A1为出发菌株,通过紫外线诱变结合梯度平板半理性筛选获得一株高山梨醇脱氢酶活力突变株G. oxydans Gouv2007,其单位生物量的山梨醇脱氢酶活力与原始菌株持平,而生物量比原始菌株提高了11.2%,培养时间缩短了6小时。研究二者的发酵动力学,结果表明均符合底物抑制动力学模型,其最大比生长速率分别为0.2165h-1和0.2507h-1,Ki分别为1.5069g/L和3.9663g/L,突变株部分地解除了底物抑制现象。
     单因素优化实验表明,碳、氮源分别为山梨醇、酵母浸粉,无机盐为硫酸镁和磷酸氢二钾,摇床转速为200r/min,装液量为20%,培养温度为28℃,培养基初始pH自然时,突变株的生物量和山梨醇脱氢酶的活力最高。采用中心组合设计和响应面分析,获得了细胞生长的最优培养条件:山梨醇18.0g/L,酵母浸粉10.0g/L,磷酸氢二钾3.0g/L其最终生物量达到1.333g/L,比未优化前提高了34.6%;在2L发酵罐中放大培养,生物量达到了5.580g/L,单位生物量的山梨醇脱氢酶活力为1.1U/mg干细胞。
     对突变菌株细胞膜山梨醇脱氢酶性质作初步研究,最佳酶反应条件为:pH5.5,28℃。单批次操作稳定性较高,在转化反应的整个过程中基本没有失活;当底物耗尽时,连续进行两次补加底物,酶活力降低较小;多批次操作稳定性较差,首次重复使用时,酶活力有较小的降低,二次重复使用时,酶活力丧失40%。
     在山梨醇培养基中梯度增大甘油浓度诱导提高山梨醇脱氢酶活力,甘油浓度为20.0g/L时,该酶的单位生物量活力达到1.9U/mg干细胞,比未诱导的提高了63%。总活力达到2.2U/mL发酵液,比未诱导的提高了30.5%。其储藏稳定性也相应提高,菌体静息细胞储存一个月时,酶活力保留75%,未经诱导的只保留30%。酶动力学显示,其Ks由诱导前的51mmol/L减小到38mmol/L,对底物的亲和力增加了1.34倍。由此,建立了甘油诱导高活力山梨醇脱氢酶的生产工艺。
     以葡萄糖和乙醇胺为原料,合成N-羟乙基葡萄糖胺,葡萄糖转化率为89%;在通气搅拌下,用高活力的山梨醇脱氢酶催化N-羟乙基葡萄糖胺反应生成6-脱氧-6-氨基(N-羟乙基)-α-L-呋喃山梨糖;再加氢还原为米格列醇,分别利用TLC和离子交换层析分离检测到从N-羟乙基葡萄糖胺到生成米格列醇两步反应的总底物转化率为77.3%和73.6%,产物得率为62.7%。对合成的米格列醇经提纯后得到白色固体粉末,测得熔程为142-147℃,经红外光谱和核磁共振氢谱分析,该产物与米格列醇标准品谱图吻合良好。
Miglitol, a kind of N-hydroxyethyl ramification of 1-Deoxynojirimycin can strongly inhibit a-glucosidases. It has been first chosen as therapeutic drugs for treatment of type 2 diabetes mellitus. Up to day, there are chemical and combined biotechnological-chemical two methods to synthesize miglitol.The former is more complicated than the latter, and synthetic cost higher. In the latter method, for membrane-bound sorbitol dehydrogenase of Gluconobacter oxydans catalyticly oxidizing N-(2-hydroxyethyl)-glucamine to 6-(2-droxyethyl)amino-6-deoxy-a-L-sorbofiuanos is the key step. Sorbitol dehydrogenase total activity and storage stability of the cells produced by feimentation is small. In this study a high sorbitol dehydrogenase activity strain was obtainied. To raise the productivity of miglitol the combined biotechnological-chemical technology was improved with the high sorbitol dehydrogenase activity whole cells being catalyst.
     By studying cultivation of G. oxydans A1 and characterization of the sorbitol dehydrogenase activity, sorbitol being carbon source restrained the microorganism from growing. When the catalytical reaction was carried out by the sorbitol dehydrogenase, the more oxygen in the reactive system, the more cells required, the react rate was faster. At the same quantity of oxygen, when the concentration of the resting cells was the critical value, the react rate was the highest. The optimum temperature was 28℃and the optimum pH was 5.5.
     By UV mutation to G. oxydans A1, a high sorbitol dehydrogenase activity strain named as G. oxydans Gouv2007 which biomass was raised 11.2% was screened by grads breeding with sorbitol dehydrogenase activity per boimass being the same as G. oxydans A1 and cultivating time being shortened 6 hours. The kinetics were established for G. oxydans A1 and G. oxydans Gouv2007, and the kinetic models of the two strains were substrate restrain,μmax being 0.2165h-1 and 0.2507h-1, Ki being 1.5069g/L and 3.9663g/L, respectively. G. oxydans Gouv2007 abolished restrain in part.
     By optimizing the conditions of G. oxydans Gouv2007 by single experiment, the optimum carbon source sorbitol, nitrogen source yeast extract powder, minerals MgSO4 and K2HPO4, rotating speed 200r/min, liquid volume 20%, cultivating temperature 28℃and initial pH nature were obtained. Using central composite design and response surface analysis, the optimum concentration of sorbitol, yeast extract powder and K2HPO4 was 18.0g/L, 10.0g/L and 3.0g/L respectively with the biomass (1.333g/L) being raised 34.6% and enzyme activity per boimass being the same as G. oxydans A1.G. oxydans Gouv2007 was cultivated in 2L bioreactor with the biomass being 5.580g/L, sorbitol dehydrogenase activity per boimass was 1.1 U/mg.
     The enzymatic characteristics about the sorbitol dehydrogenase of G. oxydans Gouv2007 was studied. When pH of the reactive system was maintained 5.5 and the temperature was 28℃sorbitol dehydrogenase activity per biomass was the highest. At the course of reaction, the sorbitol dehydrogenase almost did not lose its activity. When sorbitol was almost consumed and feed-beatch was carried out twice, the sorbitol dehydrogenase lost its activity little each time. Being reused once, it lose activity a little, but being reused twice, it lost 40% activity.
     Glycerol was added gradiently in sorbitol medium cultivating G. oxydans Gouv2007 to increase sorbitol dehydrogenase activity. The concentration of glycerol being 20.0g/L, sorbitol dehydrogenase activity per biomass was 1.9U/mg being raised 63%. The storage stability was raised, too. After 30 days storage, the enzyme activity still remained 75%, not-inducted 30%. Ks was modificated from 51mmol/L to 38 mmol/L, signalling of a 1.34-fold increase in affinity toward sorbitol. So the technology with which to produce high sorbitol dehydrogenase activity by glycerol inducting was established.
     Glucose and ethanolamines were catalytically hydrogenated to N-(2-hydroxyethyl)-glucamine with a transformation rate of 89%. N-(2-hydroxyethyl)-glucamine was then dehydrogenated to 6-(2-droxyethyl)amino-6-deoxy-a-L-sorbofiuanos by the high activity sorbitol dehydrogenase of G. oxydans Gouv2007 through aeration. At last 6-(2-droxyethyl)-amino-6-deoxy-a-L-sorbofiuanose was hydrogenated catalytically to miglitol. From the transformation of N-(2-hydroxyethyl)-glucamine to miglitol, the total transformation rate was 77.3% and 73.6% respectively by separating and identifying with TLC and ion exchange chromatography and the product rate was 62.7%. After purifying the sample of miglitol, it was white powder and its melting point was 142~147℃. At last, it was confirmed with IR and 1HNMR.
引文
[1]Cesur M., Corapcioglu D., Gursoy A., et al. A comparison of glycemic effects of glimepiride, repaglinide and insulin glargine in type 2 diabetes mellitus during Ramadan fasting[J]. Diabetes research and Clinical Practice,2007,75:141-147
    [2]向栋生,脱鸣富.阿拉尔地区糖尿病人群的分布及病因特征[J].临床合理用药,2008,1(2):73-74
    [3]徐焱成.干细胞移植与糖尿病治疗[J].临床内科杂志,2009,26(6):365-368
    [4]The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus[R]. Diabetes Care,1999,22(suppl 1):5-19
    [5]The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes [R]. DiabetesCare, 2002,25(suppl 1):55-59
    [6]何素婷,许激扬,陈代杰.具有α-葡糖苷酶抑制作用的抗糖尿病药物[J].工业微生物,2003,,33(1):43-49
    [7]Nathan D. M., Cleary P. A., Backlund J. Y., et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes[J]. N. Engl. J. Med.,2005,353: 2643-2653
    [8]Koski R. R. Practical review of oral antihyperglycemic agents for type 2 diabetes mellitus [J]. Diabetes Educ.,2006,32(6):869-876
    [9]Yeh G. Y., Eisenberg D. M., Kaptchuk T. J., et al. Systematic review of herbs and dietary supplements for glycemic control in diabetes[J]. Diabet Care,2003,26 (4): 1277-1294
    [10]吴东儒.糖类的生物化学[M].北京:高等教育出版社,1987
    [11]Fukaya N., Mochizuki K., Tanaka Y., et al. The a-glucosidase inhibitor miglitol delays the development of diabetes and dysfunctional insulin secretion in pancreatic β-cells in OLETF rats[J]. European Journal of Pharmacology,2009,624:51-57
    [12]薛亚平,郑裕国.α-糖苷酶抑制剂的研究[A].中国生物化工学会.2002年第十届全国 学术年会论文集[C].2002:391-394
    [13]Wu Su, Zhiyuan Chang, Keliang Gao. Enantioselective oxidation of racemic 1,2-propanediol to D-(-)-lactic acid by Gluconobacter oxydans[J]. Tetrahedron: Asymmetry,2004,15:1275-1277
    [14]张海凤,董亚琳,胡萨萨等.五种中药对两种不同来源α-葡萄糖苷酶活性的抑制作用比较[J].中药材,2008,31(7):1024-1027
    [15]许有瑞,倪京满,孟庆刚等.甘草中α-葡糖苷酶抑制剂的初步研究中药材[J],2005,28(10):890-891
    [16]陈代杰.微生物药物学[M].北京:化学工业出版社,2008
    [17]杜伟奇,施秀芳,邱明艳等.治疗糖尿病药物的研究进展[J].中国医院药学杂志,2005,25(1):67-69
    [18]顾觉奋,陈紫娟.α-葡萄糖苷酶抑制剂的研究及应用[J].药学进展,2009,33(2):62-67
    [19]Kinast G.,.Schedel M. Process for the production of 6-amino-6- deoxy-L-sorbose[P]. United States Patent:4246345,1981
    [20]Kulhanek M. Microbial dehydrogenations of monosaccha rides[J]. Adv. Appl. Microbiol.,1989,34:141-181
    [21]Grabner R. W., Landis B. H., Wang P. T., et al. Process for Microbially oxidizing N-substituted glucamines[P]. European Patent:0477160,1991
    [22]Schedel M. Regioselective oxidation of aminosorbitol with Gluconobacter suboxydans, a key reaction in the industrial synthesis of 1-deoxynojirimycin [J]. Kelly DR(ed) Biotechnology, Biotransformations II,2000,8:296-308
    [23]李治川,许激扬,陈代杰.氧化葡萄糖酸菌转化制备米格列醇关键中间体[J].工业微生物,2002,32(1):45-49
    [24]Holt J. G., Krieg N. R., Sneath P. H., et al. Bergey's manual of determinative bacteriology[M]. Baltimore:Williams and Wilkins,1994
    [25]Ruiz A., Poblet M., Mas A., et al. Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rRNA and 16S-23S rDNA intergenic spacer [J]. Evol. Microbiol., 2000,50:1981-1987
    [26]Olijve, W., Kok, J. J. Analysis of growth of Gluconobacter oxydans in glucose containing media[J]. Arch. Microbiol.,1979,121:283-290
    [27]Olijve W. Glucose metabolism in Gluconobacter oxydans[D]. Netherlands:University of Groningen,1978
    [28]Matsushita K., Nagatani Y., Shinagawa E., et al. Effect of extracellular pH on the respiratory chain and energetics of Gluconobacter suboxydans[J]. Agric.Biol. Chem., 1989,53:2895-2902
    [29]Claus G. W. Effect of intracytoplasmic membrance development on oxidation of sorbitol and other polyols by Gluconobacter Oxydans[J]. Bacteriol,1982,150:934-943
    [30]Asakura A., Hoshino T. Isolation and characterization of a new quinoprotein dehydrogenase, L-sorbose/L-sorbosone dehydrogenase [J]. Biosci. Biotechnol. biochem.,1999,63:46-53
    [31]Matsushita K., Shinagawa E., Adachi O. Purification and characterization of cytochrome o-type oxidase from Gluconobacter suboxydans[J]. Biochim. Biophys Acta, 1987,894:304-312
    [32]Adachi O., Fujii Y., Ghaly M. F. Membrane-bound quinoprotein D-arabitol dehy-drogenase of Gluconobacter suboxydans IFO 3257:a versatile enzyme for the oxidative fermentation of various ketoses[J]. Biosci Biotechnol Biochem.,2001,65:2755-2762
    [33]Moonmangmee D. Fujii Y., Toyama H. Purification and characterization of membrane-bound quinoprotein cyclic alcohol dehydrogenase from Gluconobacter frateurii CHM 9[J]. Biosci. Biotechnol. Biochem.,2001,65:2763-2772
    [34]Moonmangmee D., Adachi O., Shinagawa E. L-Erythrulose production by oxidative fermentation is catalyzed by PQQ-containing membrane-bound dehydrogenase [J]. Biosci Biotechnol Biochem.,2002,66:307-318
    [35]Choi E. S., Lee E. H., Rhee S. K. Purification of a membrane-bound sorbitol dehydrogenase from Gluconobacter suboxydans FEMS[J]. Microbiol Lett.,1995,125: 45-50
    [36]Shibata T., Ichikawa C., Matsuura M., et al. Cloning of a gene for D-sorbitol dehydrogenase from Gluconobacter oxydans G624 and expression of the gene in Pseudomonas putida IFO3738[J]. Biosci. Bioeng.,2000,89:463-468
    [37]Gatgens C., Degner U., Meyer S. B. Biotransformation of glycerol to Dihy- droxyacetone by recombinant Gluconobacter oxydans DSM 2343[J]. Appl. Microbiol. Biotechnol.,2007,76:553-559
    [38]Matsushita K., Toyama H., Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria[J]. Adv. Microb. Physiol.,1994,36:247-301
    [39]Pronk J. T., Levering P. R., Olijve W. Role of NADP-dependent and quinoprotein glucose dehydrogenases in gluconic acid production by Gluconobacter oxydans[J]. Enzyme Microb. Technol.,1989,11:160-164
    [40]Gupta A., Singh V. K., Qazi G. N. Gluconobacter oxydans:its biotechnological applications [J]. Mol. Microbiol. Biotechnol.,2001,3:445-456
    [41]Williams P. J., Rainbow C. Enzymes of the tricarboxylic acid cycle in acetic acid bacteria[J]. Gen. Microbiol.,1964,35:237-247
    [42]Asai T. Acetic acid bacteria classification and biochemical activities[M]. Tokyo: University of Tokyo Press,1968
    [43]Greenfield S., Claus G. W. Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans[J]. Bacteriol.,1972,112:1295-1301
    [44]Kersters K., De Ley J. The occurrence of the Entner-Doudoroff pathway in bacteria[J]. Antonie Van Leeuwenhoek,1968,34:393-408
    [45]林文楚,尹光琳.氧化葡萄糖酸杆菌SCB329染色体的测定[J].微生物学报,2001,41(1):49-53
    [46]Prust C., Hoffmeister M., Liesegang H. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans[J]. Nature biotechnology,2005,23(2):195-200
    [47]刘耀平,徐明恺,金玉兰.氧化葡萄糖酸杆菌酶学和分子生物学研究[J].微生物学杂志,2003,23(3):39-43
    [48]张惠文,周樱桥,姚志红,等.一种提取氧化葡萄糖酸杆菌山梨糖脱氢酶的简单方法[J].应用与环境生物学报,2002,8(1):87-89
    [49]Celik D., Bayraktar E. Biotransformation of 2-phenylethanol to phenylacetaldehyde in a two-phase fed-batch system[J]. Biochemical Engineering Journal,2004,17:5-13
    [50]Muynck C. D., Pereira C., Soetaert W. Dehydrogenation of ribitol with Gluconobacter oxydans:Production and stability of L-ribulose[J]. Biotechnology,2006,125(3): 408-415
    [51]Villa R., Romano A., Gandolfi R. Chemoselective oxidation of primary alcohols to aldehydes with Gluconobacter oxydans[J]. Tetrahedron Letters,2002,43:6059-6061
    [52]Rollini M., Manzoni M. Bioconversion of D-galactitol to tagatose and dehydrogenase activity induction in Gluconobacter oxydans[J]. Process Biochemistry,2005,40: 437-444
    [53]Naessens M., Vercauteren R., Vandamme E. J. Three-factor response surface optimization of the production of intracellular dextran dextrinase by Gluconobacter oxydans[J]. Process Biochemistry,2004,39:1299-1304
    [54]Lusta K. A., Reshetilov A. N. Physiological and biochemical features of Gluconobacter oxydans and prospects of their use in biotechnology and biosensor systems[J]. Appl. Biochem. Microbiol.,1998,34:307-320
    [55]Berraud C. Production of highly concentrated vinegar in fed-batch culture[J]. Biotechnol. Lett.,2000,22:451-454
    [56]Sokollek S. J., Hammes W. P. Description of a starter culture preparation for vinegar production[J]. Syst. Appl. Microbiol.,1997,20:481-491
    [57]Sievers M., Teuber M. The microbiology and taxonomy of Acetobacter europaeus in commercial vinegar production [J]. Appl. Bacteriol.,1995,79:84-95
    [58]Macauley S., Mcneil B., Harvey L. M. The genus Gluconobacter and its applications in biotechnology [J]. Crit. Rev. Biotechnol.,2001,21:1-25
    [59]Hancock R. D., Viola R. Biotechnological approaches for L-ascorbic acid production[J]. Trends Biotechnol.,2002,20:299-305
    [60]Boudrant J. Microbial processes for ascorbic acid biosynthesis[J]. Enzyme Microb. Technol.,1990,12:322-329
    [61]Giridhar R., Srivastava A. K. Model based constant feed fed-batch L-sorbose production process for improvement in L-sorbose productivity[J]. Chem. Biochem. Eng.2000,14: 133-140
    [62]Yamada S., Wada M., Chibata I. Effect of high oxygen partial pressure on the conversion of sorbitol to sorbose by Acetobacter suboxydans[J]. Ferment Technol., 1978,56:29-34
    [63]Srivastava A. K., Lasrado P. R. Fed-batch sorbitol to sorbose fermentation by a suboxydans[J]. Chem. Tech. Biotechnol.,1998,73:457-461
    [64]De Wulf P., Soetaert W., Vandamme E. J. Optimized synthesis of L-sorbose by C-5-dehydrogenation of D-sorbitol with Gluconobacter oxydans[J]. Biotechnol. Bioeng.,2000,69:339-343
    [65]Shinjoh M., Tomiyama N., Asakura A., et al. Cloning and nucleotide sequencing of the membrane-bound L-sorbosone dehydrogenase of Acetobacter liquefaciens IFO 12258 and its expression in Gluconobacter oxydans[J]. Appl Environ Microbiol.,1995,61: 413-420
    [66]Sugisawa T., Ojima S., Matzinger P. K., et al. Isolation and characterization of a new vitamin C producing enzyme (L-gulono-8-lactone dehydrogenase) of bacterial origin[J]. Biosci. Biotechnol. Biochem.,1995,59:190-196
    [67]路胜利,郭会灿,李宝库.Vc二步发酵产酸菌氧化葡萄糖酸杆菌的选育[J].生物技术,2005,15(4):23-25
    [68]吕树娟,王军,姚建铭等.离子注入氧化葡萄糖酸杆菌的诱变效应[J].激光生物学报,2003,12(5):382-384
    [69]陈建华,冯瑞山,郗丽萍.2-酮基-L-古龙酸产生菌原生质体的属间融合[J].中国医药工业杂志,2002,33(1):9-11
    [70]Weenk G., Olijve W., Harder W. Ketogluconate formation by Gluconobacter species[J]. Appl. Microbiol. Biotechnol.,1984,20:400-405
    [71]Klasen R., Bringer-Meyer S., Sahm H. Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans[J]. Bacteriol.,1995,177:2637-2643
    [72]Shinagawa E., Matsushita K., Toyama H., et al. Production of 5-keto-D-gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinone (PQQ)-dependent membrane-bound D-gluconate dehydrogenase[J]. Mol. Catal.B,1999,6:341-350
    [73]Meiberg J. B. M., Spa H. A. Microbial production of gluconic acids and gluconates[J]. Microbiol.,1983,49:89-90
    [74]Klasen R., Bringer-Meyer S., Sahm H. Incapability of Gluconobacter oxydans to produce tartaric acid[J]. Biotechnol. Bioeng.,1992,40:183-186
    [75]Claret C., Salmon J. M., Romieu C., et al. Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol[J]. Appl. Environ. Microbiol. 1994,41:359-365
    [76]Svitel J., Sturdik E. Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans[J]. Ferment Technol.,1994,78:351-355
    [77]Claret C., Bories A., Soucaille P. Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans[J]. Curr. Microbiol.,1992,25:149-155
    [78]Ohrem H. L. Inhibitory effects of dihydroxyacetone on Gluconobacter cultures[J]. Biotechnol Lett.,1995,17:981-984
    [79]Holst O., Lundback H., Mattiasson B. Hydrogen peroxide as an oxygen source for immobilized Gluconobacter oxydans converting glycerol to dihydroxyacetone [J]. Appl. Microbiol. Biotechnol.,1985,22:383-388
    [80]Tkac J., Navratil M., Sturdik E., et al. Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor[J]. Enzyme Microb. Technol.,2001,28:383-388
    [81]Matsushita K., Fujii Y., Ano Y.5-Keto-D-Gluconate Production Is Catalyzed by a Quinoprotein Glycerol Dehydrogenase, Major Polyol Dehydrogenase, in Gluconobacter Species [J]. Applied and Environmental Microbiology,2003,69(4): 1959-1966
    [82]Landis B. H., Mclaughlin J. K. Bioconversion of N-Butylglucamine to 6-Deoxy-6-butylamino Sorbose by Gluconobacter oxydans[J]. Organic Process Research and Development,2002,6:547-552
    [83]Doherty E., Halling D. J., Mcneil B. The importance of bead size measurement in mass-transfer modeling with immobilized cell[J]. Appl. Microbiol. Biotechnol., 1995,43:440
    [84]Qazi G. N., Darshad R., Verma V., et al. Diketo-Gluconate fermentation by Gluconobacter oxydans[J]. Enzyme Microb. Technol.,1991,13:504
    [85]程茉莉,谢雪敏.用二苯胺法测定2-酮基-L-古龙酸发酵液中山梨糖含量[J].上海医药工液研究院,1981,6:19-22
    [86]陈建华,盛勤,冯瑞山.氧化葡萄糖酸杆菌原生质体的形成和再生研究[J].中国药科大学学报,1996,27(12):758-760
    [87]Olijve W., Kok J. J. Analysis of Growth Gluconobater oxydans in Glucose Containing Media[J]. Arch. Microbiol.,1979,121:283-290
    [88]Ohrem, H. L., Voss, H. Inhibitory effects of dihydroxyaceton on Gluconobacter cultures[J]. Biotech. lett.,1995,17(9):981-984
    [89]杜连祥.工业微生物学实验技术[M].天津:天津科学技术出版社,1992:180
    [90]Lijuan Ma, Wenyu Lu, Zhendong Xi. Enhancement of dihydroxyacetone production by a mutant of Gluconobacter oxydans[J]. Biochemical Engineering Journal,2010,49: 61-67
    [91]杜荣骞.生物统计学[M].第二版.北京:高等教育出版社,2003:84-91
    [92]王沫然.MATLAB与科学计算[M].第二版.北京:电子工业出版社,2005:313-330
    [93]山根恒夫.生物反应工程[M].邢新会.北京:化学工业出版社,2006:136-140
    [94]Chang Y. N., Huang J. C., Lee C. C., et al. Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus rubber[J]. Enzyme Microb. Technol.,2002,30:889-894
    [95]Lai L. S. T., Pan C. C., Tzeng B. K. The influence of medium Design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures[J]. Process Biochem.,2003,38:1317-1326
    [96]Giridhar, R. N., Srivastava, A. K. Productivity improvement in L-sorbitol biosynthesis by fedbatch cultivation of Gluconobacter oxydans[J]. Journal of bioscience and bioengineering,2002,94(1):34-38
    [97]Mishra R., Jain S. R., Kumar A. Microbial production of dihydroxyacetone [J]. Biotechnology Advances,2008,26:293-303
    [98]Belly, R. I., Claus, G. W. Effect of amino acids on the growth of Acetobacter suboxydans[J].Arch Microbiol.,1972,83:237-245
    [99]Albin A., Bader J. Improving fermentation and biomass formation of Gluconobacter oxydans[J] Journal of Biotechnology,2007,131:133-187
    [100]徐桂转,刘会丽,张百良.响应面法优化酶催化酯交换反应研究[J].化学工程,2007,35(3): 63-67
    [101]方 俊,卢向阳,蒋红梅.响应面分析法优化制备猪血小肽发酵条件的研究[J].食品科学,2006,27(8):141-144
    [102]王镜岩,朱圣庚,徐长法.生物化学下册[M].北京:高等教育出版社,2002,561-570
    [103]魏述众.生物化学[M].北京:中国轻工业出版社,1996:378-387
    [104]Claret C., Salmon J. M., Romieu C., et al. Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol[J].Appl. Microbiol. Biotechnol., 1994,41:359-365
    [105]王军,葛 虹.烷基葡糖酰胺的合成与性能[J].日用化学工业,2002,32(3):54-57
    [106]郑纯智,张继炎,王日杰,等.催化转移加氢及其在有机合成中的应用[J].工业催化,2004,12(3):29-35
    [107]Ibrahim F. A., Ali F. A., Ahmed S. M., et al. Kinetic determination of acarbose and miglitol in bulk and pharmaceutical formulations using alkaline potassium permanganate[J]. International Joural of Biomedical Science,2007,3(1):20-30
    [108]中西香尔,王绪明.红外光谱分析100例[M].北京:科学出版社,1984
    [109]顾学军,方黎,郑海洋等.延时提取正交发射MALDI技术研究[J].化学物理学报,2005,18(3):308-312
    [110]熊少祥,陈文章,蒲丹等.激光解吸电离质谱新型液相基质研究[J].高等学校化学学报,2002,23(10)7:1868-1872
    [111]苏克曼,潘铁英,张玉兰.波谱解析法[M].上海:华东理工大学出版社,2002:80-254

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700