用户名: 密码: 验证码:
硫化氢对盐和铝胁迫下小麦种子萌发及氧化损伤的缓解效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫化氢在动物体内作为一种具有生物活性的信号分子和氧化还原分子,业已被证明与气体信号物质NO和CO具有类似的生理功能。H2S在植物体中的生理功能以及相关信号机制的探究还刚刚起步,关于H2S是否能够作为一种信号调节物质,缓解植物体因盐胁迫和铝胁迫所引起的氧化损伤,目前尚未见文献报道。本文中以NaHS作为H2S供体,研究不同浓度的NaHS预处理小麦种子,探查其对盐胁迫和铝胁迫下的小麦种子萌发状况的影响,并对其可能的生理生化调节机制进行了初步的探讨和研究。
     盐(NaCl)胁迫严重抑制种子萌发,并且伴随着浓度的上升,胁迫作用逐步加重,严重影响小麦种子的胚根、胚芽的生长发育。通过实验研究发现,当NaCl浓度为0.16 mol/L时,小麦种子的发芽率约为对照组的一半,本文采用此浓度作为盐胁迫对小麦种子萌发的半抑制浓度。铝(Aluminum)离子在很低的浓度下,即对小麦种子的萌发产生明显的抑制效果,特别是对于胚根的生长的抑制效果尤其明显。伴随着Al3+浓度的上升,小麦种子的萌发率、根长和芽长逐渐降低,在Al3+浓度为30 mmol/L时,种子的萌发率相对于对照组降低50%,当Al3+大于30 mmol/L时,胚根的生长完全停止。
     以NaHS作为H2S供体研究发现,H2S供体NaHS能够显著缓解NaCl和AlCl3的胁迫作用,促进胁迫条件下小麦种子的萌发,并且具有一定的浓度依赖效应:在1.2 mmol/L的浓度下,NaHS缓解NaCl胁迫效果最为明显,其根长、芽长、发根数等都有很大提高,高于此浓度则显示出抑制作用;另一方面,浓度为0.6 mmol/L的NaHS缓解AlCl3胁迫的效果最为显著。NaHS的预处理可以显著提高小麦种子中淀粉酶和酯酶等水解酶的活性和还原糖的水平,促进胁迫条件下小麦种子中储藏物质的水解和动员。进一步研究H2S的抗氧化机理发现,H2S能诱导CAT、POD、APX和SOD等抗氧化酶活力的表达,抑制脂氧合酶(LOX)的活性,降低H2O2、O2-等活性氧(ROS)和膜质过氧化产物MDA的含量,从而缓解NaCl和AlCl3胁迫所诱导的氧化损伤。此外,H2S供体NaHS处理能够明显提高种子中内源H2S的水平。上述结果表明,H2S作为抗氧化信号分子介导了盐胁迫和铝胁迫下小麦种子萌发的内部机制。
Hydrogen sulfide, as a signal and redox molecular with bioactivity, was proved to have the similar physiological function with nitric oxide and carbon monoxide in animals. It is just the beginning about the physical function and the related signal mechanism in plant. However, few studies have shown that H2S acts as a alleviant in plants under oxidative damage induced by salinity stress or aluminum stress. In this paper, we investigate that NaHS, as H2S donor, pretreated wheat seeds with different concentration affects seed germination and potential physiology and biochemistry mechanism under salinity stress or aluminum stress.
     Salnity (sadium chloride, NaCl) stress has badly inhibition on seed germination, radicle and coleoptile and becomes more seriously with the enhancement of concentration. We found that at the NaCl concentration of 0.16 mol/L germination percentage decreases about half of the control, which was regarded as semi-inhibitory concentration for subsequent experiments. Aluminum (Al) can significantly inhibit seed germination especially on radicle growth. With the enhancement of Al3+ concentration, germination percentage, length of radicle and coleoptile decreased gradually. At 30 mmol/L, germination percentage dropped by 50% compared with that of the control, when radicle growth nearly completely stopped.
     NaHS, H2S donor alleviated the inhibitory effect of NaCl and aluminum stress and promoted seed germination in a dose-dependent manner. The pretreatment with NaHS at 1.2 mmol/L could pronounced alleviate NaCl stress and increase the growth of radicle, coleptile and radicle numbers, when it was 0.6 mmol/L on aluminum stress. Besides, pretreated with NaHS could notably promote activities of hydrolase and content of reducing suger and amino acid. Further researches showed that H2S could induce the expression of antioxidase such as CAT, POD, APX and SOD, and sustain lower levels of LOX, ROS (H2O2, O2) and malondialdehyde which will result in oxidative stress. Furthermore, the pretreatment with NaHS, extraneous H2S donor enhanced levels of endogenous H2S. These data indicated that H2S was involved the mechanism of germination seeds as a anti-oxidant signal molecule under salinity stress and aluminum stress.
引文
[1]陈明,沈文飚,徐朗莱.一氧化氮对盐胁迫下小麦幼苗根生长和氧化损伤的影响.植物生理与分子生物学学报,2004,30:569-576.
    [2]陈炳东,黄高宝.盐胁迫对油葵根系活力和幼苗生长的影响.中国油料作物学报,2008,30:327-333.
    [3]冯睛,徐朗莱.小麦叶片衰老过程中3种保护酶的最适pH和温度变化.植物生理学通讯.1999,35:8-10.
    [4]韩朝红,孙谷畴,林植芳.NaCI对吸胀后水稻的种子发芽和幼苗生长的影响.植物生理学通讯.1998,34:339-342
    [5]焦娟,王秀峰,杨凤娟.外源一氧化氮对硝酸盐胁迫下黄瓜幼苗生长及抗氧化酶活性的影响.应用生态学报.2009,20:3009-3014.
    [6]李长润,刘友良.盐胁迫下小麦幼苗离子吸收运输的选择性与叶片耐盐量.南京农业大学学报.1993,16:16-20.
    [7]李永智,单风翔.土壤盐渍化危害及治理途径浅析.西部探矿工程.2006,8:85-88.
    [8]凌腾芳,林锦山,刘辉,张博,李静,等.一种微量、快速测定植物种子b-淀粉酶活性的方法.植物学通报.2006,23:281-285.
    [9]凌腾芳,宣伟,樊颖瑞,孙永刚,徐晟,等.外源葡萄糖、果糖和NO供体(SNP)对盐胁迫下水稻种子萌发的影响.植物生理与分子生物学学报.2005,31:205-212.
    [10]刘春红,冯志彪.以α-乙酸萘酯为底物植物酯酶活力测定条件的优化.食品工业科技.2008,29:145-151.
    [11]刘建新,胡浩斌,王鑫.外源NO对盐胁迫下黑麦草幼苗根生长抑制和氧化损伤的缓解效应.植物研究.2008,28:7-13.
    [12]刘宛,刘友良.大麦幼苗的Na+、Cl-胁迫和叶片耐Cl-量.南京农业大学学报.1993,16:15-19.
    [13]刘友良,丁念诚,沈丽娟.大麦的抗盐性与抗盐机理.中国大麦文集.中国农业科学技术出版社.1986.
    [14]阮海华,沈文飚,叶茂炳,徐朗莱.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应.科学通报.2001,46:1993-1997.
    [15]孙小芳,郑青松.NaCl胁迫对棉花种子萌发和幼苗生长的伤害.植物资源与环境学报.2000,9:22-25.
    [16]宋松泉,程红焱,姜孝成.种子生物学.科学出版社.333-339.
    [17]孙群,胡景江.植物生理学研究技术.西北农林科技大学出版社.2006,176-177.
    [18]王宝山.植物生理学.科学出版社.2007,290-292.
    [19]王宝山,邹琦.NaCl胁迫对高粱根、叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响.植物生理学报.2000,26:181-188.
    [20]汪仁,沈文飚,江玲.水稻种子成熟和萌发过程中脂氧合酶同工酶活性及其表达水平.南京农业大学学报.2008,31:1-5.
    [21]王学奎.植物生理生化实验原理和技术.高等教育出版社.2006:167-169.
    [22]王燕飞.硫化氢的最新研究进展.中国医刊.2005,40:9-12.
    [23]阎顺国,沈宇颖.生态因子对碱毛种子萌发期耐盐性影响的数量分析.植物生态学报.1996,20:414-422.
    [24]杨静,陈金林.盐胁迫对美国白蜡和滨梅根系超微结构的影响.西南林学院学报.2009,29:23-27.
    [25]姚静,施卫明.盐胁迫对番茄根形态和幼苗生长的影响.土壤.2008,40:279-282.
    [26]尹玲莉.植物抗性信号分子-水杨酸研究进展.Chinese Agricultural Science Bulletin.2007,23:338-34.
    [27]张华,孙永刚,张帆,聂理,徐朗莱等.外源一氧化氮供体对渗透胁迫下小麦种子萌发和水解酶活性的影响.植物生理与分子生物学学报.2005,31:241-246.
    [28]赵可夫,王以柔.作物抗性生理.北京,农业出版社.1990.
    [29]赵霞,郑谊.低温贮藏对黄藤笋3种酶活性的影响.食品与发酵工业.2009,35:198-200.
    [30]周辉,高洪.内源性气体信号分子H2S研究进展.动物医学进展.2009,30:94-97.
    [31]周可金,官春云.化学催熟剂对油菜角果叶绿素含量及抗氧化酶系统的影响.应用生态学报.2009,20:3015-3019.
    [32]Ahmad A, Sayed-Shahram M. Response of durum wheat cultivars to immature embryo culture, callus induction and in vitro salt stress. Plant Cell, Tissue and Organ Culture.1999,58:67-72.
    [33]Apel K, Hirt H. Reactive oxygen species, metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Boil.2004,55:373-399.
    [34]Ashraf M, Iris F. Salicylic Acid Alleviates the Cadmium Toxicity in Barley Seedlings. Plant Physiol.132:272-281.
    [35]Bartosz G. Oxidative stress in plants. Acta Physiol. Plant 1997,19:47-64.
    [36]Badger K S, Ungar I A. Life history and population dynamics of Hordeum jubatum along a soil salinity gradi ent. Can J Bot.1991,69:384-393.
    [37]Beauchamp RO, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit. Rev. Toxicol..1984,13:25-48.
    [38]Beligni MV, Lamattina L. Nitric oxide in plants, the history is just beginning. Plant Cell Enviro.2001,24:267-278.
    [39]Bemer RA. Electrode studies of hydrogen sulphide in marine sediments. Geochim cosmochim.Acta.1963,27:563-575.
    [40]Bethke PC, Jones RL. Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J.2001,25:19-29.
    [41]Bewley JD, Black M. Seed, Physiology of development and germination. New York. Plenum Press.1997.
    [42]Bewley J D. Seed germination and Dormancy. Plant Cell.1997,9: 1055-1066.
    [43]Bloem E, Riemenschneider A, Volker J, Papenbrock J, Schmidt A, Salac I, Haneklaus S, Schnug E. Sulphur supply and infection with Pyrenopeziza brassica influence L-cysteine desulfhydrase activity in Brassica napus L. J. Ex. Bot.2004,55:2305-2312.
    [44]Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress, a review. Annal Bot.2003,91:179-194.
    [45]Bohra JS,Doffling K. Postassium nutrition of rice(Oryza sativa L.)varieties under NaCl salinity.Plant Soil.1993,152:299-303.
    [46]Bowler C, Fluhr R. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci.2000,5:241-246.
    [47]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dyes binding. Anal. Biochem.1976,72:248-254.
    [48]Cao ZY, Xuan W, Liu ZY, Li XN, Zhao N, Xu P, Wang Z, Guan RZ, Shen WB. Carbon monoxide promotes lateral root formation in rapeseed. J. Integr. Plant Biol.2007,49:1070-1079.
    [49]Chapman V J. Salt Marshes and Salt Deserts of the World. New Jersey, Stecher-Mecmillan, Pennsauken.494.
    [50]Clijsters H, Cuypers A, Vangronsveld J. Physiological responses to heavy metals in plants; defence against oxidative stress. Zeitschrift fur. Naturforsch.1999,54c:730-734.
    [51]Deising H, Nicholson RL, Haug M, Howard RJ, Mendgen K. Adhesion pad formation and the Involvement of cutinase and esterases in the attachment of uredospores to the host cuticle. Plant Cell.1992,4:1101-1111.
    [52]De Kok LJ, Castro A, Durenkamp M, Stuiver CEE, Westerman S, Yang L. Sulphur in plant physiology. In, Proceedings No.500. The International Fertiliser Society, New York.2002:1-26.
    [53]Delledonne M. NO news is good news for plants. Curr. Opini. Plant Biol. 2005,8:390-396.
    [54]Eto K, Ogasawara M, Umemura K. Hydrogen sulfide is produced in response to neuronal excitation. J. Neurosci.2002,22:3386-3391.
    [55]Fang S Z, SONG L Y, Fu Xiang X. Effects of NaCl stress on seed germination, leaf gas exchange and seedling growth of Pteroceltis tatarinowii. Journal of Forestry Research.2006,17:185-188.
    [56]Finkelstein RR, Gibson SI. ABA and sugar interactions regulating development, cross-talk or voices in a crowd? Curr Opin Plant Biol.2001, 5:26-32.
    [57]Foy CD. Physiological effects of hydrogen, Al and manganese toxicities in acid soil. In, Adams F. ed. Soil acidity and liming. American Society of Agronomy, Madison, pp.1984,57-97.
    [58]Grant R. Cramer, Emanuel Epstein, Andre Lauchli. Effects of sodium, potassium and calcium on salt-stressed barley. I. Growth analysis. Physiologia Plantarum.1990,80:83-88
    [59]Garcia-Limones C, Hervas A, Navas-Cortes JA, Jimenez-Diaz RM, Tena M. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiol. Mol. Plant Pathol.2002,61:325-337.
    [60]Gul B, Weber D J. Effect of salinity, light and temperature on germination in Allenrolfea occidentalis. Can J Bot.1999,77:240-246
    [61]Hallgren JE, Fredriksson SA. Emission of hydrogen sulfide from sulfate dioxide-fumigated pine trees. Plant Physiol.1982,70:456-459.
    [62]Han Y, Xuan W, Yu T, Fang WB, Lou TL, Gao Y, Chen XY, Xiao X, Shen WB. Exogenous hematin alleviates mercury-induced oxidative damage in the roots of medicago sativa. J. Integr. Plant Biol.2007,49:1703-1713.
    [63]Heath RL, Packer K. Leaf senescense, correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot.,1968,32:93-101.
    [64]Heinz R, Philip F. Developmental Changes in the Potential for H2S Emission in Cucurbit Plants. Plant Physiol.1983,1:269-275.
    [65]Horst WJ, Asher CJ, Cakmak I, Szulkiewicz P, Wissemeier AH. Short-term responses of soybean roots to aluminium. J. Plant Physiol.1992, 140:174-178.
    [66]Hosoki R, Matsuki N, Kimura H. The possibel role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun.1997,237:527-531.
    [67]Huang BK, Xu S, Xuan W, Li M, Cao ZY, Liu KL, Ling TF, Shen WB. Carbon monoxide alleviates salt-induced oxidative damage in wheat seedling leaves. J. Integr. Plant Biol.2006,48:249-254.
    [68]Huang Z Y, Zhang X S, Zheng G H. Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. J Arid Envirom.2003,55:453-464.
    [69]Hu KD, Hu LY, Zhang H. Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Reg.2007,53:173-183
    [70]Hurkman WJ, Tanaka CK. Efects of salt stress on germin gene expression in barley roots.Plant Physiol.1996,110:971-977.
    [71]Jiro Sekiya, Ahlert Schmtdt, Lloyd G, Wilson, Philip Filner. Emission of Hydrogen Sulfide by Leaf Tissue in Response to L-Cysteine. Plant Physiol. 1982,70:430-436.
    [72]Jones DL, Kochian LV. Aluminium inhibition of the inositol 1,4,5-triphosphate signal transduction pathway in wheat roots, a role in aluminium toxicity? Plant Cell.1995,7:1931-1922.
    [73]Katembe W J, Ungar I A, John P M. Effect of salinity on germination and seedling growth of two Atriplex species. Ann Bot.1998,82:167-175.
    [74]Katsuhara M.Kawasaki T. Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant Cell Physiol.1996, 37:169-173.
    [75]Katsuhara M. Apoptosis-like cell death in barley roots under salt stress.Plant Cell Physiol.1997,38:1091-1093.
    [76]Khan AA. The physiology and biochemistry of seed dormancy and germination. North-Holland Publishing Company.1977
    [77]Khan M A, Gul B, Weber D J. Seed germination characteristics of Halogeton glomeratus. Can J Bot.2001a,79:1189-1194.
    [78]Khan M A, Gul B, Weber D J. Germination responses of Salicornia rubra to temperature and Salinity. J Arid Envirom.2000,45:207-214.
    [79]Khan M A, Ungar I A. Effect of thermoperiod on recovery of seed germination of halophytes from saline conditions. Am J Bot.1997,84, 279-283.
    [80]Kimura H. Hydrogen Sulfide as a neuromodulator. Mol Neu robiol.2002, 26:13-19.
    [81]Ktitorova IN, Skobeleva OV, Sharova EI, Ermakov EI. Hydrogen peroxide appears to mediate a decrease in hydraulic conductivity in wheat roots under salt stress.Russ J Plant Physiol.2002,49:412-424.
    [82]Knight H, Knight MR. Abiotic stress signaling pathways, specificity and cross-talk. Trends Plant Sci.2001,6:262-267.
    [83]Kopyra M, Edward A, Gwozdz. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol and Biochemi.2003,41: 1011-1017.
    [84]Kuo MC, Kao CH. Aluminum effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. Biol. Plant.2003,46: 149-152.
    [85]Levitt J. Response of plants to environmental stress (2nd ed). New York, Academic Press.1980,365-434.
    [86]Lin CC, Kao CH. NaCl stress in rice seedlings, effects of L-proline,glycinebetaine,L-and D-asparagine on seedling growth. Biolo. Planta.1995,37:305-308.
    [87]Li L, Bhatia M, Moore PK. Hydrogen sulphide-a novel mediator of inflammation? Curr. Opin. Pharmacol.2006,6:125-129.
    [88]MacDonald T, Martin RB. Aluminum ion in biological systems. Trends. Biochem. Sci.1988,13:15-19.
    [89]Macleod AM, Palmer G H. Gibberellin from barley embryos. Nature.1968, 216:1342-1343.
    [90]Al-Shammiri M. Hydrogen sulfide emission from the Ardiyah sewage treatment plant in kuwait.Desalination.2004,170:1-13.
    [91]Marschner H. Mineral Nutrition of Higher Plants (Second Edition). Cambrige.1995.
    [92]Merrill L, Gassman A. Reversible Conversion of Phototransformable ProtochlorophyII (ide)650 to Photoinactive Protochlorophyll(ide)633 by Hydrogen Sulfide in Etiolated Bean Leaves. Plant Physiol.1973,51: 139-145.
    [93]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci.2002,7:405-410.
    [94]Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci.2006,11:15-19.
    [95]Patterson BD,Payne BA,Chen YZ. Estimation of hydrogen peroxide in plant extracts using tramium(4). Anal Biochem.1984,139:487-492.
    [96]Radley M. The effect of the endosperm on the formation of gibberellin by barley embryos. Planta.1969,3:218-223.
    [97]Rausch T, Wachter A. Sulfur metabolism, a versatile platform for launching defence operations. Trends Plant Sci.2005,10:503-509.
    [98]Rennenberg H. Role of O-acetylserine in hydrogen sulfide emission from pumpkin leaves in response to sulfate. Plant Physiol.1983,73:560-565.
    [99]Rennenberg H. The fate excess of sulfur in higher plants. Annu. Rev. Plant Physiol.1984,35:121-153.
    [100]Rennenberg H, Huber B, Schroder P, Stahl K, Haunold W, Georgii HW, Slovik S, Pfanz H. Emission of volatile sulfur compounds from spruce trees. Plant Physiol.1990,92,560-564.
    [101]Riemenschneider A, Nikiforova V, Hoefgen R, De Kok LJ, Papenbrock J. Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiol. Biochem.2005a,43:473-483.
    [102]Riemenschneider A, Wegele R, Schmidt A, Papenbrock J. Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J.2005b,272:1291-1304.
    [103]Ruan HH,Shen WB. Nitric Oxide Involved in the Abscisic Acid Induced Proline Accumulation in Wheat Seedling Leaves Under Salt Stress.Acta Botanica Sinica.2004,46:1307-1315.
    [104]Sekiya J, Schmidt A, Wilson LG, Filner P. Emission of hydrogen sulfide by leaf tissue in response to L-cysteine. Plant Physiol.1982a,70: 430-436.
    [105]Sekiya J, Wilson LG, Filner P. Resistance to injury by sulfur dioxide, Correlation with its reduction to, and emission of, hydrogen sulfide in cucurbitaceae. Plant Physiol.1982b,70:437-441.
    [106]Shewry PR. Plant storage protein. Bio. Rev.1995,70:375-426.
    [107]Stuiver CEE, De Kok LJ, Kuiper PJC. Freezing tolerance and biochemical changes in wheat shoots as affected by H2S fumigation. Plant Physiol. Biochem.1992,30:47-55.
    [108]Surrey K. Spectrophotometric method for determination of lipoxidase activity. Plant Physiol.1964,39:65-70.
    [109]Tahara K, Yamanoshita T, Norisada M, Hasegawa I, Kashima H, Sasaki S, Kojima K. Aluminum distribution and reactive oxygen species accumulation in root tips of two Melaleuca trees differing in aluminum resistance. Plant Soil.2008,307:167-178.
    [110]Van Breusegem F, Vranova E, Dat JF, Inze D. The role of active oxygen species in plant signal transduction. Plant Sci.2001,161:405-414.
    [111]Viarengo A. Biochemical effects of trace metals. Mar. Pollut. Bull. 1985,16:153-158.
    [112]Wang R. Two's company, there's a crowd, can H2S be the third endogenous gaseous transmitter? FASEB J.2002,16:1792-1798.
    [113]Wang YS, Wang J, Yang ZM, Wang QY, Lii B, Li SQ, Lu YP, Wang SH, Sun Xin. Salicylic acid modulates aluminum-induced oxidative stress in roots of Cassia tora. Acta Bot. Sin.2004,46:819-828.
    [114]Wang YS, Yang ZM. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol. 2005,46:1915-1923.
    [115]Warenycia MW, Steele JA,Karpinski E, Reiffenstein RJ. Hydrogen sulfide in combination with taurine or cysteic acid reversibly abolishes sodium currents in neuroblastoma cells. Neurotoxicology.1989,10: 191-199.
    [116]Wilson LG, Bressan RA, Filner P (1978) Light-dependent emission of hydrogen sulfide from plants. Plant Physiol.1978,61:184-189.
    [117]Winner WE, Smith CL, Koch GW, Mooney HA, Bewley JD, Krouse HR. Rates of emission of H2S from plants and patterns of stable sulfur isotope fractionation. Nature.1981,289:672-673.
    [118]Xu J, Xuan W, Huang BK, Zhou YH, Ling TF, Xu S, Shen WB. Carbon monoxide-induced adventitious rooting of hypocotyl cuttings from mung bean seedling. Cheinese Science Bulletin.2006,51:668-674.
    [119]Xu S, Sa ZS, Cao ZY, Xuan W, Huang BK, Ling TF, Hu QY, Shen WB. Carbon monoxide alleviates wheat seed germination inhibition and counteracts lipid peroxidation mediated by salinity. J. Integr. Plant Biol. 2006,48:1168-1176.
    [120]Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q,. Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. H2S as a physiologic vasorelaxant, hypertension in mice with deletion of cystathionine γ-lyase. Science.2008, 322:587-590.
    [121]Yamamoto Y, Kobayashi Y, Hideaki M. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol.2001,125:199-208.
    [122]Liang Y C. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil.1999, 209:217-224.
    [123]Ze J G, Xu J C. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Molecular Biology.2004,55:607-618.
    [124]Zhang H, Shen WB, Zhang W, Xu LL. A rapid response of P-amylase to nitric oxide but not gibberellin in wheat seeds during the early stage of germination. Planta.2005,220:708-716.
    [125]Zhang H, Shen WB, Xu LL. Effects of nitirc oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress[J]. Acta Botanica Sinica.2003,45:901-905.
    [126]Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP. Hydrogen sulfide promotes wheat seed germination and alleviates the oxidative damage against copper stress. J. Integr. Plant Biol.2008a,50:1518-1529.
    [127]Zhang H, Li YH, Hu LY, Wang SH, Zhang FQ, Hu KD. Effects of exogenous nitric oxide donor on antioxidant metabolism in wheat leaves under aluminum stress. Russ. J. Plant Physiol.2008b,55:469-474.
    [128]Zhang H, Tang J, Liu XP, Wang Y, Yu W, Peng WY, Fang F, Ma DF, Wei ZJ, Hu LY. Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. J. Integr. Plant Biol.2009a,51: 1084-1092.
    [129]Zhang H, Ye YK, Wang SH, Luo JP, Tang J, Ma DF. Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul.2009b,58: 243-250
    [130]Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as an novel endogenous gasous KATP channel opener. EMBO J.2001,20, 6008-6016.
    [131]Zheng SJ, Yang JL. Target sites of aluminum phytotoxicity. Biol. Plant. 2005,49:321-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700