用户名: 密码: 验证码:
非协作通信中连续相位调制信号盲解调关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非协作通信是一种非授权接入通信模式。接收端在不影响协作通信双方正常通信的前提下利用现代信号处理技术完成对接收信号的解调工作。在非协作通信中,接收方无法已知发送方调制信号的任何参数,要能在非授权接入的情况下正确解调出有用信息,必须采用盲解调技术。
     连续相位调制(CPM)是一种相位连续、包络恒定的调制方式,具有很高的频谱利用率和功率利用率,在现代移动通信和卫星通信中获得了广泛的应用,是近几年非协作通信中颇受重视的一种调制方式。因为CPM是一种非线性调制方式,所以一些线性调制信号的处理方法不能应用于CPM信号。CPM信号是一个庞大的家族,随着调制指数、频率成形脉冲等调制参数的不同,生成的信号具有不同的性质,这也给非协作通信中CPM信号的盲解调提出了挑战。因此对非协作通信中CPM信号盲解调关键技术的研究具有重要的理论意义和实用价值。
     本文以单载波传输体制下的CPM信号为对象,以非协作数字通信为背景,以实现CPM信号的盲解调为目标,对CPM信号的参数盲估计算法和信号盲解调算法进行了深入的分析和研究。主要的工作是对CPM信号的自相关特性和循环平稳性与调制参数之间的内在联系进行了理论分析,分别提出了一种调制阶数盲识别算法和频率成形脉冲盲估计算法,然后在实现调制参数盲估计的基础上提出了一种基于复合网格的CPM信号非相干解调算法,并对各个算法的性能进行了理论分析和计算机仿真。最后,提出了一种CPM信号的盲解调器结构,并将该盲解调器应用于实际通信侦察系统中,实现了对实际的卫星通信CPM信号的盲解调。
     本文的主要研究内容和贡献有:
     1、对现有的调制识别方法进行了分析与总结,讨论了这些算法在运用于CPM信号的调制阶数盲识别时存在的局限性。深入分析了多进制CPM信号循环谱密度函数与信号调制参数之间的内在联系,在此基础上提出了一种基于信号循环平稳性的CPM信号调制阶数盲识别算法,实现了任意调制指数和频率成形脉冲的CPM信号调制阶数的盲识别。理论分析与计算机仿真结果表明,该算法具有较高的正确识别率,并且受高斯噪声影响较小,实现简单,具有实用意义。
     2、深入分析了CPM信号调制参数与自相关函数之间的内在联系,在此基础上提出了一种频率成形脉冲的盲估计算法。该算法利用之前提出的调制阶数盲识别算法识别出的调制阶数信息,能够在任意调制指数下有效估计出频率成形脉冲,为CPM信号的盲解调奠定了基础。理论分析与计算机仿真结果表明,该算法实现简单,估计精度较高。
     3、提出了一种CPM信号复合网格图的数学模型。将CPM信号的基本网格图和相位旋转网格图交叉合并组成复合网格图,降低接收信号初始相位对解调的影响;在复合网格图的各个单元网格之间引入状态耦合转移,实现对接收CPM信号中多普勒频移的有效跟踪。在此基础上提出了一种基于复合网格的CPM信号非相干解调算法。理论分析与仿真表明,当采用四个以上单元网格时,该非相干解调算法性能非常接近最佳接收机的解调性能,且具有较好的抗初相和频偏跟踪性能,对于非协作通信中CPM信号盲解调具有重要实用意义。
     4、在实现调制参数的盲估计和对复合网格解调算法研究的基础上,综合考虑实际系统中各个调制参数的盲估计顺序,设计了一种非协作通信中CPM信号盲解调器结构。该解调器采用前馈结构,易于硬件实现,并且具有良好的解调性能。
     5、论文通过实际的卫星通信信号对提出的CPM信号盲解调器进行了验证。结果表明,本文提出的盲解调器可以正确实现实际卫星通信信号的调制参数盲估计和解调,并且解调后反向重建的信号与接收信号一致。
Non-cooperative communication is an unauthorized accessing communication mode.The receiver demodulates the received signal by the modern signal processing technology which does not affect the user in common cooperative communication.In non-cooperative communication,the modulation parameters of sending signal is unknown for receiver.The blind signal processing technology must be used,if the receiver wants to demodulate the signal under unauthorized accessing mode.
     Continuous phase modulation(CPM) is an excellent digital modulation scheme with continuity phase and constant modulus.It is used widely in mobile and satellite communications thanks to its attractive spectral and power efficiency.In recent years, much attention is paid to it in non-cooperative communication system.Much signal processing methods which are used in liner modulation can't be used in CPM because it is a non-liner modulation scheme.CPM signals are a huge family.The signals which are generated by different modulation index and frequency shaping pulse have different property that pose a challenge to the signal demodulation in non-cooperative communication system.So the study of key technologies of blind demodulation of CPM signals in non-cooperative communication has important theoretical significance and practical value.
     In this dissertation,the blind estimation algorithms of modulation parameters and demodulation algorithms of CPM signals are deeply studied,to demodulate the CPM signals in single carrier no-cooperative communication systems.The main work of this dissertation is that,a blind identification algorithm of modulation order which is based on the study of the cyclostationarity of CPM signals and a blind estimation algorithm of frequency shaping pulse which is based on the study of the relationship of modulation parameters and auto-correlation are proposed.Then a non-coherent demodulation algorithm based on composite trellis processing is proposed after the modulation parameters are estimated blindly.The performance of all algorithms is provided by theoretical analysis and computer simulation.At last,a structure of blind demodulator is proposed and used in practical satellite communication system.
     The main research content and contribution of this dissertation are listed as follows.
     1、Existing modulation classification algorithms are analyzed and summarized and the limitations of the applying these algorithms in the blind identification of modulation order of CPM signals are discussed.Then a novel blind identification algorithm of Modulation Order based on cyclostationarity is developed under the in-depth study on the internal relationship of the Modulation Order and the cyclic-spectrum density of M-order CPM-signal.The proposed algorithm can be suitable for CPM-signal with any arbitrary modulation index and frequency shaping pulse.The theoretical analysis and computer simulation show that the algorithm has the ability to provide a good identification of Modulation Order.In addition,it is less affected by Gaussian noise and easy implementation.
     2、A blind estimation algorithm of frequency-shaping pulse is developed under the in-depth study on the internal relationship of the modulation parameters and the auto-correlation function of CPM-signal.Using the modulation order which is estimated before,the algorithm which provides the theoretical foundation and the feasibility of the blind demodulation of CPM-signal has the ability to provide a good estimation of frequency shaping pulse of CPM-signal with any arbitrary modulation index.The theoretical analysis and computer simulation show that the algorithm facilitates hardware implementation and has high estimation accuracy.
     3、Mathematical model of composite trellis diagram of CPM signals is proposed.The influence of the initial phase is reduced by combining root trellis diagram and multiple component trellis diagrams which are each a phase-displaced version of a root trellis diagram.The tracking of Doppler frequency shifting is achieved by importing state coupling transitions between component trellis diagrams of composite trellis diagram.On this basis,a non-coherent demodulation algorithm based on composite trellis processing is proposed.The theoretical analysis and computer simulation show:the performance of the algorithm approximates coherent demodulation perfectly when the number of component trellis diagram is greater than four;the algorithm can trace the original phase and Doppler frequency shifting effectively and is more appropriate to the situation of blind detection when carrier recovery is difficult.
     4、A structure of blind demodulator is proposed on the basis of the research of blind estimation of modulation parameters and demodulation algorithm which is based on composite trellis technology,which also consider the estimation order of modulation parameters in practical communication system.The demodulator using feed-forward structure and is easy hardware implementation.Also it has good demodulation performance.
     5、The demodulator is verified by the satellite communication signal which is intercepted practically.The result shows that the blind demodulator which is proposed in this dissertation can demodulate the practical signal correctly,and the reversed reconstruction signal after demodulation is the same as the receiving signal.
引文
[1]Proakis J G.Digital Communications[M].4th ed.New York:McGraw-Hill.2001.
    [2]鲍卫兵.通信原理[M].浙江大学出版社.2006.
    [3]张发启.盲信号处理及应用[M].西安电子科技大学出版社.2006.
    [4]马建仓,牛奕龙,陆海洋.盲信号处理[M].国防工业出版社.2006.
    [5]Liu R.Blind signal processing:an introduction[C].ISCS.Atlanta,GA,USA.1996.2:81-83.
    [6]张贤达.盲信号处理几个关键问题的研究[J].深圳大学学报理工版.2004.21(3):196-200.
    [7]Aulin T,Sundberg C.Continuous Phase Modulation - Part Ⅰ:Full Response Signaling[J].IEEE Transactions on Communications.1981,29(3):196-209.
    [8]Aulin T,Sundberg C.Continuous Phase Modulation - Part Ⅱ:Partial Response Signaling[J].IEEE Transactions on Communications.1981,29(3):210-225.
    [9]Simon M K.A generalization of MSK-type signaling based upon input data symbol pulse shaping[J].IEEE transactions on Communications.1976,24(8):845-856.
    [10]Murota K,Kinoshita K,Hirade K.Spectrum efficiency of GMSK land mobile radio[C].International Conference on Communications.June.1981,2:23.8.1-23.8.5.
    [11]Hirade K,Murota K,Hata M.GMSK transmission performance in land mobile radio[C].Global Communications Conference.B3.4.1-B3.4.6.
    [12]Daikoku K,Mutota K,Momma K.High-speed digital transmission experiments in 920MHz urban and suburban mobile radio channels[J].IEEE transactions on Vehicular Technology.1982,31(2):70-75.
    [13]Doelz M L,Heald E T.Minimum-shift data communication system[P].U.S.patent no.2977417.Mar.28 1961.
    [14]Galko P,Pasupathy S.Generalized MSK[C].Proceedings of the IEEE International Electrical & Electronics Conference & Exposition.Toronto,Ontario,Canada,Oct.5-71981.
    [15]Korn I.Generalized MSK[J].IEEE transactions on Information Theory.1980,26(2):234-238.
    [16]Amoroso F.Pulse and Spectrum Manipulation in the Minimum Frequency Shift Keying(MSK) Format[J].IEEE Transactions On communications.1976,24(3):381- 384.
    [17]Tahernezhadi M,Cruz J R.Frequency selective fading and adjacent channel interference performance of MSK and SFSK[J].IEEE Transactions on Communications.1990,38(1):102-108.
    [18]Vigil A J,Belkerdid M A,Malocha D C.Cosine series function design of offset quadrature binary modulation systems[C].MILCOM'91,Nov.4-7 1991,554-558.
    [19]Singh H,Tjhung T T.Error-rate measurements for s.f.s.k.with band limitation[J].Electronics Letters.Jan.1980,16(2):64-66.
    [20]Cruz J,Simpson R S.Error rate performance for s.f.s.k.with cochannel and intersymbol interference[J].Electronics Letters.1980,16(13):515-516.
    [21]Hodges MRL.The GSM radio interface[J].British Telecom Technological Journal.1990,8(2).
    [22]Pelchat M G,Davis R C,Luntz M B.Coherent demodulation of continuous phase binary FSK signals[C].Proceedings of the International Telemetry Conference.Washington,D,C,1971.
    [23]Rimoldi B.Design of coded CPFSK modulation systems for bandwidth and energy efficiency[J].IEEE Transactions on Communications.1989,37(9):897-905.
    [24]Osborne W,Luntz M.Coherent and Noncoherent Detection CPFSK[J].IEEE transactions on Communications.1974,22(8):1023-1036.
    [25]Anderson J B,Aulin T,Sundberg C E.Digital Phase Modulation[M].New Jersey Plenum Press,1986.
    [26]Laurent P A.Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses (AMP)[J].IEEE Transactions on Communications.1986,34(2):150-160.
    [27]Jung P,Baier P W.On the representation of CPM signals by linear superposition of impulses in the bandpass domain.Selected Areas in Communications,IEEE Journal on.1992.10(8):1236-1242.
    [28]Mengali U,Morelli M.Decomposition of M-ary CPM signals into PAM waveforms[J].IEEE Transactions on Information Theory.1995,41(5):1265-1275.
    [29]Rimoldi B E.A Decomposition Approach to CPM[J].IEEE Transactions on Information Theory.1988,34(2):260-270.
    [30]Huang X J,Li Y X.The PAM decomposition of CPM signals with integer modulation index[J].IEEE Transactions on Communications.2003,51(4):543-546.
    [31]Perrins E S.Reduced complexity detection methods for continuous phase modulation[D].Brigham Yonng University.2005.
    [32]Huber J,Liu W.An alternative approach to reduced-complexity CPM-receivers[J].IEEE Journal on Selected Areas in Communications.1989,7(9):1437-1449.
    [33]Thillo W V,Nsenga J,Horlin F,et al.The Generalized Linear Decomposition of Multilevel CPM Signals[C].ICASSP,Honolulu,Hawai'i,U.S.A.,April.15-20 2007,Vol.3:645-648.
    [34]Napolitano A,Spooner C.Cyclic spectral analysis of continuous-phase modulated signals[J].IEEE Transactions on Signal Processing.2001,49(1):30-44.
    [35]Zhang Zi-bing,Li Li-ping,Xiao Xian-ci.The Characteristic Analysis of Second Order Cyclostationarity of Continuous Phase Modulation Signal[J].Journal of Electronics & Information Technology,2005,27(11):1726-1731.
    [36]Ciblat P,Loubaton P,Serpedin E.et al.Asymptotic analysis of blind cyclic correlation based symbol rate estimation[J].IEEE Transactions on Inforamtion Theory.2002,7(7):1922-1934.
    [37]Gardner W A.Statistical Spectral Analysis:A Nonprobabilistic Theory[M].Englewood Cliffs,NJ:Prentice-Hall,1988.
    [38]Fonollosa J R,Fonollosa JAR.Estimation of the modulation index of CPM signals using higher order statistics [C].ICASSP,Minneapolis,Feb.1993,4:268-271.
    [39]Nikias C L,Fonollosa J R.Analysis of CPM signals using higher order statistics [C].MILCOM.1993,2:663-667.
    [40]Bianchi P,Loubaton P,Sirven F.Nondata aided estimation of the modulation index of continuous phase modulations[J].IEEE Transactions on Signal Processing.2004,52(10):2847-2861.
    [41]Bianchi P,Loubaton P,Francois.On the blind estimation of the parameters of continuous phase modulated signals[J].IEEE Transactions on Signal Processing.2005,23(5):944-962.
    [42]Luise M,Reggiannini R.An efficient frequency recovery scheme for gsm receivers[J].GLOBECOM.1992,36-40.
    [43]Andrea A D',Mengali U.Noise performance of two frequency-error detectors derived from maximum likelihood estimation methods[J].IEEE Transactions on Communications.1994,4(2/3/4):793-802.
    [44]Andrea A D',Mengali U,Reggiannini R.A digital approach to clock recovery in generalized minimum shift keying[J].IEEE Transactions on Vehicular Technology.1990,39(3):227-234.
    [45]Lambrette U,Meyr H.Tow timing recovery algorithms for MSK[J].in Processing IEEE International Communications Conference.1994,pp:981-992.
    [46]Mehlan R,Chen Y,Meyr H.A fully digital feedforward MSK demodulator with joint frequency offset and symbol timing estimation for burst mode mobile radio[J].IEEE Transactions Veh,Technology.1993,42(4):434-443.
    [47]Andrea A.D',Megali U,Morelli M.Symbol timing estimation with CPM modulation[J]. IEEE Transactions on Communications.1996,44(10):1362-1372.
    [48]Morelli M,Mengali U,Vitetta G M.Joint phase and timing recovery with CPM signals[J].IEEE Transactions on Communications.1997,45(7):867-876.
    [49]Andrea A D',Ginesi A,Mengali U.Digital carrier frequency estimation for multilevel CPM signals[J].IEEE International Conference on Communications.1995,pp:1041-1045.
    [50]Classen F,Meyr H.Two frequency estimation schemes operating independently of timing information[C].GLOBECOM.1993,pp:1996-2000.
    [51]Lodge J H,Moher M.Maximum likelihood sequence estimation of CPM signals transmitted over Rayleigh at-fading Channels[J].IEEE Transactions on Communications.1990,38:787-794.
    [52]Patenaude F,Lodge J H,Galko P.A.Symbol timing tracking for continuous phase modulation over fastflat-fading channels[J].IEEE Transactions on Vehicular Technology.1991,40:615-626.
    [53]Shen W L,Zhao M J,Qiu P L,et al.Data Aided Symbol Timing Estimation in Space-Time Coded CPM Systems over Rayleigh Fading Channels.Vehicular Technology Conference.IEEE 66th,Baltimore.Oct.2007,pp.556-560.
    [54]Ginesi A,Mengali U,Morelli M.Symbol and superbaud timing recovery in multi-h continuous-phase modulation[J].IEEE Transactions on Communications.1999,47:664-666.
    [55]Zhao Q,Stüber G L.Robust time and phase synchronization for continuous phase modulation.IEEE Transactions on Communications.2006,54(10):1857-1869.
    [56]Kaleh G K,Vallet R.Joint parameter estimation and symbol detection for linear or nonlinear unknown channels [J].IEEE Transactions on Communications.1994,42(7):2406-2413.
    [57]Nguyen H,Levy B C.Blind and semi-blind equalization of CPM signals with the EMV Algorithm[J].IEEE Transactions on Signal Processing.2003,51(10):2650-2664.
    [58]Neugebauer S P,Ding Z.Blind SIMO channel estimation for CPM using the Laurent approximation[C].IEEE ISCAS'04,May.2004,5:676-679.
    [59]Bianchi P,Loubaton P.On the blind equalization of continuous phase modulated signals using the constant modulus criterion[J].IEEE Transactions on Signal Processing.2007,55(3):1047-1061.
    [60]Cirpan H,Tsatsanis M K.Blind receiver for nonlinearly modulated signals in multipath[C]Signal Processing Advanced in Wireless Communication,1997 First IEEE Signal Processing Workshop on.Apr.1997,149-152.
    [61]Falconer D,Ariyavisitakul S L,Benyamin-Seeyar,et al.Frequency domain equalization for single-carrier broadband wireless systems.Communications Magazine,IEEE.2002,40(4):58-66.
    [62]Pancaldi F.Equalization algorithms in the frequency domain for continuous phase modulations.GLOBECOM.2005,pp.1614-1619.
    [63]Van Thillo W,Nsenga J,Lauwereins R,et al.Low-Complexity Frequency Domain Equalization Receiver for Continuous Phase Modulation.GLOBECOM.2007,pp.3374-3378.
    [64]Van Thillo W,Nsenga J,Lauwereins R,et al.A New Symbol Block Construction for CPM with Frequency Domain Equalization.IEEE ICC '08.May 2008,pp.4321-4325.
    [65]Ozgul B,Koca M,Delic H.Turbo Equalization of Binary Continuous Phase Modulation Convergence Analysis[C].IEEE ICC'06.June 2006,12:5438-5443.
    [66]Kaleh G K.Simple coherent receivers for partial response continuous phase modulation.IEEE Journal on selected areas in communications.1989,7(9):1427-1436.
    [67]Svensson A.Reduced state sequence detection of partial response continuous phase modulation[J].IEE Proceedings I Communications,Speech and Vision.1991,138(4):256-268.
    [68]孙锦华,李建东,金力军.连续相位调制的非相干减少状态差分序列检测算法[J].电子与信息学报.2005,8:1338-1341.
    [69]Makrakis D,Feher K.Multiple Differential Detection of Continuous Phase Modulation Signals[J].IEEE Transactions on Vehicular Technology.1993,42(2):186-196.
    [70]乔植,周春晖,肖立民.基于多符号差分相关的CPM非相干解调算法[J].清华大学学报(自然科学版).2007,47(4):507-510.
    [71]贾哲,张欣轶.微波通信中连续相位调制的非相干检测算法[J].电波科学学报.2007,6:522-526.
    [72]方继承,贾哲,于全.指数函数分解法的CPM非相干序列估计[J].电子科技大学学报.2008,37(3):358-360.
    [73]Simmons S J.Simplified coherent detection of CPM[J].IEEE Transactions on Communications.1995,43(234):726-728.
    [74]Weiyi T,Weiyi T,Shwedyk E.A quasi-optimum receiver for continuous phase modulation[J].IEEE Transactions on Communications.2000,48(7):1087-1090.
    [75]Lin Z,Aulin T.Joint Source-Channel Coding Using Trellis Coded CPM:Soft Decoding[C].Proc.of IEEE Data Compression Conference(DCC),Salt Lake city,UT,USA,Mar.2005.
    [76]Bokolamulla D,Aulin T.Serially Concatenated Space-Time Coded Continuous Phase Modulated Signals[J].IEEE Transactions on Wireless Communications.2007,6(10):3487-3492.
    [77]Xiao M,Aulin T M.On analysis and design of low density generator matrix codes for continuous phase modulation[J].IEEE Transactions on Wireless Communications.2007,6:3440.
    [78]Liedtke F F.Computer simulation of an automatic classification procedure for digitally modulated communication signals with unknown parameters[J].IEEE Transactions on Signal processing,1984,40(6):311-32.
    [79]Wen W,Mendel J M.Maximum-likelihood classification for digital amplitude-phase modulations[J].IEEE Transactions on Communications.2000,48(2):189-193.
    [80]Abdi A,Dobre O A,Choudhry R,et al.Modulation classification in fading channels using antenna arrays[C].IEEE Proc.in MILCOM,2004,1:211-217.
    [81]Tadaion A A,Derakhtian M,Gazor S,et al.Likelihood ratio tests for PSK modulation classification in unknown noise environment[C].CCECE,2005:151-154.
    [82]Beidas B F,Weber C L.Higher-order correlation-based approach to modulation classification of digitally frequency-modulated signals[J].IEEE Selected Areas Communications.1995,13(1):89-101.
    [83]Beidas B F,Weber C L.Asynchronous classification of MFSK signals using the higher order correlation domain[J].IEEE Trans.on Communications,1998,46(4):480-493.
    [84]Long C,Chugg K,Polydoros A.Further results in likelihood classification of QAM Signals [C].in Proc.of MILCOM,1994:57-61.
    [85]Panagiotou P,Anastasopoulos A,Polydoros A.Likelihood ratio tests for modulation classification[C].MILCOM,LA,CA,USA,2000,2:670-674.
    [86]Hong L,et al.Quasi-hybrid likelihood modulation classification with nonlinear carrier frequency offsets estimation using antenna arrays[C].MILCOM,Atlantic City,NJ,USA,2005,1:570-575.
    [87]Azzou E E,A.K.N.1996.Automatic modulation recognition of communication signals[M].Kluwer Academic Publishers Norwell.
    [88]Mustafa H,Doroslovacki M.Effects of symbol rate on the classification of digital modulation signals[C].IEEE Proc.in ICASSP,2005,5:437-440
    [89]Assaleh K,Farrell K,Mammone R J.A new method of modulation classification for digitally modulated signals[C].IEEE Proc.in MILCOM,1992,1:712-716.
    [90]Lu Mingquan,Xiao Xianci.AR modeling based features extraction of multiple signals for modulation recognition[C].IEEE Proc.in Signal Processing,1998,2:1385-1388.
    [91]Reichert J.Automatic classification of communication signals using higher order statistics [C].IEEE Proc.in ICASSP,1992,221-224.
    [92]范海波,杨志俊,曹志刚.卫星通信常用调制方式的自动识别[J].通信学报.2004. 25:140-149.
    [93]Gracie K,Lodge J.Carrier estimation for SSB modulated speech [C].IEEE Proc.in ICWC,2003,278-286.
    [94]Liu S,Zhang L,Wang Z.Classification of OQPSK-type signals by detecting offset-timing between I/Q samples [C].IEEE Proc.of ICSP,2006,16-20.
    [95]Swami A,Sadler B M.Hierarchical digital modulation classification using cumulants [J].IEEE Transactions on Communications.2000,48(3):416-429.
    [96]Chen W,Yang S Q.Recursive classification of MQAM signals based on higher order cumulants [J].Journal of Electronics,2002,19(3):270-275.
    [97]Le M C,Boiteau D M.Modulation classification by means of different orders statistical moments [C].Milcom,Monterey,CA,USA,1997,3:1387-1391.
    [98]Dai W,Wang Y,Wang J.Joint power estimation and modulation classification using second-and higher statistics [C].WCNC,2002,1:155-1581.
    [99]Gardner W A,Spooner C M.The cumulant theory of cyclostationary time-series.I.Foundation [J].IEEE Transactions on Signal Processing,1994,42(12):3387-3408.
    [100]Dandawate A V,Giannakis G B.Asymptotic theory of mixed time averages and kth-order cyclic-moment and cumulant statistics [J].IEEE Transactions on Information Theory,1995,41(1):216-232.
    [101]Marchand P,Le M C,Lacoume J.Classification of linear modulations by a combination of different orders cyclic cumulants [C].IEEE Proc.in Signal Processing Workshop,1997,1:47-51.
    [102]Marchand P,Lacoume J,Le M C.Multiple hypothesis modulation classification based on cyclic cumulants of different orders [C].IEEE Proc.in ICASSP,1998,4:2157-2160
    [103]Giannakis G B,Tsatsanis M K.Time-domain tests for Gaussianity and time-reversibility [J].IEEE Transactions on Signal Processing,1994,42(12):3460-3472.
    [104]Akmouche W.Detection of multicarrier modulations using 4th-order cumulants [C].IEEE Proc.in MILCOM,1999,1:4352-4361.
    [105]Wood S L,Treichler J R.Computational and performance analysis of Radon transform based constellation identification [C].ICASSP,Adelaide,SA,Australia,1994,241-243.
    [106]Zhu Q,Kam M,Yeager R.Non-parametric identification of QAM constellations in noise [C].ICASSP,1993,4:184-1874.
    [107]Chen W.Classify the signal by cumulant invariant [J].Journal of Xidian University,2002,29(2):229-232.
    [108]Wood S L,Ready M J,Treichler J R.Constellation identification using the Radon transform [C].ICASSP,New York,NY,USA,1998,3:1878-1881.
    [109]Dobre O A,Bar-Ness Y,Su W.Higher-order cyclic cumulants for high order modulation classification[J].Proc.IEEE MILCOM.2003:112-117.
    [110]Davidson K L,et al.Feature-based modulation classification using circular statistics [C].Milcom,2004,2:765-771
    [111]Pedzisz M.Mansour A.Automatic modulation recognition of MPSK signals using constellation rotation and its 4th order cumulate [J].IEEE Transactions on Signal Processing.2005,15:295-304.
    [112]Dobre O A,Abdi A,Bar-Ness Y.The classification of joint analog and digital modulations [J].IEEE MILCOM.2003:112-117.
    [113]Hero A O,Mahram H.Digital modulation classification using power moment matrices [C].ICASSP,1998,6:3285-3286.
    [114]Mahram H,Hero A O.Robust QAM modulation classification via moment matrices [C].PIMRC,2000,1:133-1371.
    [115]Assaleh K,Farrell K,Mammone R J.A new method of modulation classification for digitally modulated signals [C],Milcom,1992,712-716.
    [116]Lu M,Xiao X,et al.AR modeling based features extraction of multiple signals for modulation recognition [C].ICSP,1998,2:1385-1388.
    [117]Dobre O A,et al.Blind modulation classification:a concept whose time has come.IEEE Symposium AWWC,2005,223-228.
    [118]Xian L,Punnoose R,Liu H P.Simplified Receiver Design for STBC Binary Continuous Phase Modulation [J].IEEE Transactions on Wireless Communications,2008,7(2):452-457.
    [119]Gardner W A,2ed,Introduction to Random Processes:with application to signals and systems[M].McGraw-Hill,1990.
    [120]Viterbi A.Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.IEEE transactions on Information Theory.1967,13(2):260-269.
    [121]Huff R J,Sunnyvale,Calif.Composite trellis system and method[P],Patent US005974091A,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700