用户名: 密码: 验证码:
纠缠态制备及量子计算的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息学引起了科学家们的广泛关注.作为一门交叉学科,其诞生和发展能够丰富量子力学的内容,有力的推动量子理论的发展,并且量子信息能够为我们未来的信息处理带来革命性的变革.量子纠缠态的制备和量子计算是量子信息中的两个重要课题.研究量子纠缠及其应用,不仅对于深刻理解量子力学的某些特性有积极的意义,而且对于开发新的量子信息处理方法也有重要的实用价值.尽管目前量子计算还处于研究的初期,实验上对于多比特执行量子计算仍然存在困难,但是有许多国家和军事基金支持以民用或国家安全为目标的量子计算的研究.并得到了一些有意义的结果.因此,本文主要在理论上研究了利用腔QED系统制备纠缠态及量子计算(主要包括多比特GHZ的制备、在噪音通道中进行W态制备、制备多比特团簇态、实现空间分离的原子间的两比特相位门以及利用输入输出关系实现交换门等量子门).全文共分为七章,其中第三章到第七章是本人的工作,整篇论文内容的具体安排如下:
     第一章简要介绍本文的研究背景,研究的重要性,简单的阐述了量子纠缠的研究现状.最后我们给出了本博士论文的主要研究内容和章节安排.
     第二章介绍量子信息的基本概念和理论.首先介绍量子比特、纯态和混态、保真度、量子纠缠、量子纠缠的度量方法等概念.然后,对于量子门操作、量子计算、量子主方程、腔QED系统以及线性光学器件做了简单的介绍.
     第三章讨论如何在远程腔中利用绝热演化执行量子相位门和制备原子纠缠态.利用量子跳跃的方法讨论了各种退相干过程对我们方案的保真度和成功几率的影响.此外,这种方法能够用来制备多原子纠缠态.一个显著的优点是不用严格的控制作用时间,因此,我们希望利用当今的科学技术能够实现我们的方案.
     第四章研究如何在远程腔中利用两个和多个六能级的原子制备最大四维纠缠态.通过适当的选择经典场的强度和失谐量,原子的自发辐射和腔场的衰减能够被有效的抑制.因此当考虑到色散的影响时我们仍然能够产生一个高保真度的高维纠缠.通过对这种方法的延伸,我们发现能成功的制备多原子四维纠缠态.此外,我们还研究了囚禁在远程腔场中的两个多能级原子组成的系统.通过选择系统的参数值,在两原子之间实现了长距离的偶极-偶极相互作用.通过这个模型,能够确定性的产生任意维的两原子纠缠态.应用主方程的方法,我们讨论了光子泄露和原子激发态自发辐射的影响.
     第五章研究如何在一个量子网络中通过绝热过程进行Grover搜索算法.在这个方案中,任何带有不同标记的目标原子,能够按照搜索条件,通过绝热调节经典场找到它.此外,这个方案能够用来在三个或三个以上腔组成的网络中进行搜索过程.我们也说明整个过程能够满足绝热条件,并且在量子网络中能够近似的实现Grover加速过程.
     第六章研究在一个两模腔中实现三原子GHZ态和团簇态,这个方案能够抑制原子激发态和腔中的光子引起的退相干效应.同时,利用多个腔这个方案能够用来产生多原子纠缠态.我们也研究了在耦合腔阵中实现一步产生N比特团簇态,尤其是执行多比特团簇态的制备,要求的作用时间不会随着原子比特数的增加而增加.更重要的特点是一些实验参数的波动不会影响产生团簇态的保真度.
     第七章首先研究在极化噪音通道中利用单光子干涉和时间加密的方法实现W态的制备.说明了极化噪音不会影响产生纠缠态的保真度,并且成功几率不会随着原子数目的增加而减小.此外也研究通过腔的输入输出过程实现量子交换门和Fredkin门.这两个方案能够被推广用来执行多比特门操作.利用数值计算讨论了保真度和光子丢失几率的变化.
     最后给出了全文的总结和展望.
Recently, quantum information science has attracted much attention. As a new cross subject of information science and quantum mechanics, quantum information enriches the research fields of quantum mechanics and greatly promotes the development of quantum the-ory. In addition, the progresses in quantum information theory bring us the exciting future for science and technology. In quantum information science, the generation of quantum en-tangled states and quantum computation are two important subjects. The study of both quantum entanglement and its application are necessary and valuable not only to compre-hend the special properties of quantum mechanics but also to exploit the new information processing methods. Although quantum computation is still in its infancy, it is still difficult to implement multi-qubit quantum operation in experiments. Many national government and military funding agencies support quantum computing research for civilian and nation security purpose, and scientists have obtained some important results. The theoretical study on the generation of entangled state and quantum computation in the system of cavity QED are mainly discussed in this thesis. The thesis has been divided into seven chapters, with our own research works contained in the chapters from 3 to 7.
     In Chapter 1, the background and the position of the study are introduced, as well as the general situation of quantum entanglement is briefly described, and the organization of the dissertation is given at the end of this chapter.
     In Chapter 2, the basic concepts and theories in quantum information are introduced. Quantum bits, pure and mixed states, fidelity, quantum entanglement, and entanglement measurement methods are first introduced, then quantum gate operations, quantum comput-ing, quantum master equation, cavity QED system, and linear optics elements are reviewed.
     In Chapter 3, a protocol is proposed to implement nongeometric phase gates and generate entangled states by the adiabatic evolution of dark states in two distant cavities. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity and success probability is also discussed using the quantum jump method. This protocol can be generalized to generate N-atom entangled states. An important advantage of the proposed protocol is that the interaction time of the atom and cavity need not to be accurately adjusted.
     In Chapter 4, the generation of a maximally four-dimensional entangled state of two six-level atoms is investigated in two remote cavities. Through choosing suitable intensities and detunings of fields, the atomic spontaneous radiation and photon leakage out of cavity and fibre can be efficiently suppressed. Thus, the intended state can be generated with high fidelity in the presence of decoherence. The scheme is extended to generate an N-atom four-dimensional entangled state. In addition, a system consisting of two multi-level atoms is also studied, which are trapped in two spatially separated cavities. Through appropriate choosing the parameters of the system, an effective long-range dipole-dipole interaction between the atoms is achieved. Based on the model, an arbitrary-dimensional entangled atomic state can be deterministically generated. Applying the method of master equation, the influence of photon decay and atomic spontaneous emission on the generation of atomic entangled state is also discussed.
     In Chapter 5, a scheme to implement the analog Grover search algorithm is proposed in a quantum network. Any atom with different marks can be found by adjusting the clas-sical fields according to the search condition. Moreover, the scheme can be generalized to implement the search process in the system consisting of more than three cavities. We show that the condition for the adiabatic approximation can be satisfied in the search process. In addition. the present scheme satisfies the Grover speedup approximately in a quantum network.
     In Chapter 6, the generation of GHZ and cluster states of three atoms is studied in a two-mode cavity. The advantages of the schemes are their robustness against decoherence due to the spontaneous emission of the excited states and the decay of the cavity modes. Moreover, the schemes can be generalized to generate N-atom entangled states. In this chapter. a method is also proposed to generate N-qubit cluster state by adiabatic passage in coupled cavities. The required interaction time remains unchanged with the increasing of the number of qubits and need not be accurately controlled. In addition, the scheme is robust against the fluctuations of some experimental parameters.
     In Chapter 7, firstly, generating W states by using single-photon interference and time-bin encoding in polarization noise channels is proposed. The polarization noise cannot affect the fidelity of the intended entangled state generation, and the successful probability does not change as the number of atoms in a single quantum node increases. In addition, implementing quantum swap gate and Fredkin gate encoded by atomic qubits are also investigated through the input-output process of the cavity. Through numerical calculations, the fidelity and photon loss probability for implementing the quantum swap gate between photon and atom are also discussed.
     Finally, the results are summarized and some problems for future research work are outlined.
引文
[1]Nielsen M A, Chuang I L. Quantum computation and quantum information [M]. Cambridge:Cam-bridge Univ. Press,2000.
    [2]宋鹤山.量子信息论[M].大连:大连理工大学出版社,2007.
    [3]C. H. Bennett, F. Bessette, G. Brassard, et al. Experimental quantum cryptography [J]. J. Cryp-tology 5,3 (1992).
    [4]Townsend P. Optical Encryption Makes Networks More Secure [J]. Fibre Systems International. 2000,1(1):30-32.
    [5]Hughes R J, Morgan G L, Peterson C G. Quantum Key Distribution Over a 48 km Optical fibre Networks [J]. J. Mod. Opt.2000,47(2):533-547.
    [6]Buttler W T, Hughes R J, Lamoreaux S K, et al. Daylight Quantum Key Distribution Over 1.6 km [J]. Phys. Rev. Lett.2000,84(24):5652-5655.
    [7]Ursin R, Tiefenbacher F, Schmitt-Manderbach T, et al. Entanglement-based quantum communica-tion over 144 km [J]. Nature Phys.2007,3:481-486.
    [8]Bouwmeester D, Pan J W, Daniell M, et al. Observation of three-photon Greenberger-Horne-Zeilinger entanglement [J]. Phys. Rev. Lett.,1999,82(7):1345-1348.
    [9]Monroe C, Meekhof D M, King B E, et al. Demonstration of a Fundamental Quantum Logic Gate [J]. Phys. Rev. Lett.,1995,75(25):4714-4717.
    [10]Chuang I L, Gersehenfeld N and Kubinec M. Experimental implementatin of fast quantum searching [J]. Phys. Rev. Lett.,1998,80(15):3408-3411.
    [11]Nakamura Y, Pashkin Y A, Tsai J S. Coherent control of macroscopic quantum states in a single-Cooper-pair box [J]. Nature (London),1999,398:786-788.
    [12]曾谨言,裴寿镛.量子力学新进展(一)[M].北京大学出版社,2000.
    [13]Duan L M, Guo G C. Preserving Coherence in Quantum Computation by Pairing Quantum Bits [J]. Phys. Rev. Lett.,1997,79(10):1953-1956.
    [14]Duan L M, Guo G C. Probabilistic Cloning and Identification of Linearly Independent Quantum States [J], Phys. Rev. Lett.,1998,80(22):4999-5002.
    [15]Zheng S B, Guo G C. Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED [J]. Phys. Rev. Lett.2000,85(11):2392-2395.
    [16]Osnaghi S, Bertet P, Auffeves A, et al. Coherent Control of an Atomic Collision in a Cavity [J]. Phys. Rev. Lett.,2001,87(3):037902(1-4).
    [17]Mo X F, Zhu B, Han Z F, et al. Faraday-Michelson system for quantum cryptography [J]. Opt Let, 2005,30(19):2632-2634.
    [18]Zhao Z, Chen Y A, Zhang A N, et al. Experimental demonstration of five-photon entanglement and open-destination teleportation [J]. Nature (Londou),2004,430(6995):54-58.
    [19]Lu C Y, Zhou X Q, Giihne O, Gao W B, et al. Experimental entanglement of six photons in graph states [J]. Nature Phys.2007,3(2),91-95.
    [20]Lu C Y, Browne D E, Yang T, et al. Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits [J]. Phys. Rev. Lett.,2007,99(25):250504(1-4).
    [21]Peng X H, Zhu X W, Fang X M, et al. Experimental implementation of Hogg's algorithm on a three-quantum-bit NMR quantum computer [J]. Phys. Rev. A,2002,65(4):042315(1-7).
    [22]Du J F. Zou P, Shi M J, et al. Ericsson M Observation of geometric phases for mixed states using NMR interferometry [J]. Phys. Rev. Lett.,2003,91(10):100403(1-4).
    [23]Long G L, Xiao L. Experimental realization of a fetching algorithm in a 7-qubit NMR spin Liouville space computer [J]. J. Chem. Phys.,2003,119(16):8473-8481.
    [24]Jia X J. Su X L. Pan Q, et al. Experimental Demonstration of Unconditional Entanglement Swap-ping for Continuous Variables [J]. Phys. Rev. Lett.,2004,93(25):250503(1-4).
    [25]宋鹤山.量子力学[M].大连:大连理工大学出版社,2004.
    [26]张永德等.量子信息论:物理原理和某些进展[M].武汉:华中师范大学出版社,2002.
    [27]Einstein A, Podolsky B, Rosen N, Can quantum-mechanical description of physical reality be con-sidered complete? [J]. Phys. Rev..1957.108(4):1070-1076.
    [28]Yu C S, Yi X X. Song H S. et al. Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms [J]. Phys. Rev. A,2007,75(4):044301(1-4).
    [29]Dur W. Vidal G. Cirac J I. Three qubits can be entanglement in two inequivalent ways [J]. Phys. Rev. A,2000,62(6):062314(1-12).
    [30]Briegel H J. Raussendorf R. Persistent Entanglement in Arrays of Interacting Particles [J]. Phys. Rev. Lett.,2001.86(5):910-913.
    [31]Werner R F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hiddenvariable model [J]. Phys. Rev. A,1989.40(8):4277-4281.
    [32]Vidal G. Werner R F. Computable measure of entanglement [J]. Phys. Rev. A.2002.65(3): 032314(1-11).
    [33]Wootters W K. Entanglement of formation and concurrence [J]. Quantum Information and Com-putation,2001.1(1):27-44.
    [34]Pellizzari T, Gardiner S A, Cirac J I, et al. Decoherence, Continuous Observation. and Quantum Computing:A Cavity QED Model [J]. Phys. Rev. Lett.,1995,75(21):3788-3791.
    [35]Cirac J I, Zoller P. Quantum Computations with Cold Trapped Ions [J]. Phys. Rev. Lett..1995. 74(20):4091-4094.
    [36]Biolatti E B, Lotti R. Zanardi P. et al. Quantum Information Processing with Semiconductor Macroatoms [J]. Phys. Rev. Lett.,2000,85(26):5647-5650.
    [37]Gershenfeld N A, Chuang I L, Bulk Spin-Resonance Quantum Computation [J]. Science,1997, 275(5298):350-356.
    [38]Makhlin Y, Schon G, Hermon Z. Quantum-state engineering with Josephson-junction devices [J]. Rev. Mod. Phys.,2001,73(2):357-400.
    [39]Sleator T, Weinfurter H. Realizable Universal Quantum Logic Gates [J]. Phys. Rev. Lett.,1995, 74(20):4087-4090.
    [40]Charron E, Cirone M A, Negretti A, et al. Theoretical analysis of a realistic atom-chip quantum gate [J]. Phys. Rev. A,2006,74(1):012308(1-9).
    [41]Chen C Y, Feng M, Zhang X L, et al. Strong-driving-assisted unconventional geometric logic gate in cavity QED [J]. Phys. Rev. A,2006,73(3):032344(1-7).
    [42]Unanyan R G, Fleischhauer M. Geometric phase gate without dynamical phases [J]. Phys. Rev. A, 2004,69(5):050302(1-4).
    [43]Kiesel N, Schmid C, Weber U, et al. Linear Optics Controlled-Phase Gate Made Simple [J]. Phys. Rev. Lett.,2005,95(21):210505(1-4).
    [44]Xiao Y F, Zou X B, Han Z F, et al. Quantum phase gate in an optical cavity with atomic cloud [J]. Phys. Rev. A,2006,74(4):044303(1-4).
    [45]Zheng S B. High-speed geometric quantum phase gates for trapped ions in thermal motion [J]. Phys. Rev. A,2006,74(3):032322(1-5).
    [46]Zheng S B. One-Step Synthesis of Multiatom Greenberger-Horne-Zeilinger States [J]. Phys. Rev. lett.,2004,87(23):230404(1-4).
    [47]Qian J, Qian Y, Feng X L, et al. Generation and discrimination of Greenberger-Horne-Zeilinger states using dipole-induced transparency in a cavity-waveguide system [J]. Phys. Rev. A,2007,75(3): 032309(1-4).
    [48]Jin L, Song Z. Generation of Greenberger-Horne-Zeilinger and W states for stationary qubits in a spin network via resonance scattering [J]. Phys. Rev. A,2009,79(4):042341(1-8).
    [49]Marr C, Beige A, Rempe G. Entangled-state preparation via dissipation-assisted adiabatic passages [J]. Phys. Rev. A,2003,68(3):033817(1-11).
    [50]Zheng S B. Nongeometric Conditional Phase Shift via Adiabatic Evolution of Dark Eigenstates:A New Approach to Quantum Computation [J]. Phys. Rev. Lett.,2005,95(8):080502(1-4).
    [51]Zheng S B. Nongeometric phase gates via adiabatic passage of dark states in cavity QED [J]. Phys. Lett. A,2007,362(2-3):125-127.
    [52]Deng Z J, Gao K L, Feng M. Generation of N-qubit W states with rf SQUID qubits by adiabatic passage [J]. Phys. Rev. A,2006,74(6):064303(1-4).
    [53]Song K H, Xiang S H, Liu Q, et al. Quantum computation and W-state generation using supercon-ducting flux qubits coupled to a cavity without geometric and dynamical manipulation [J]. Phys. Rev. A,2007,75(3):032347(1-5).
    [54]Cirac J I, Zoller P, Kimble H J, et al. Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network [J]. Phys. Rev. Lett.,1997,78(16):3221-3224.
    [55]Lim Y L, Barrett S D, Beige A, et al. Repeat-until-success quantum computing using stationary and flying qubits [J]. Phys. Rev. A,2006,73(1):012304(1-14).
    [56]Stace T M, Milburn G J, Barnes C H W. Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity [J]. Phys. Rev. B,2003,67(8):085317(1-15).
    [57]Browne D E, Rudolph T. Resource-Efficient Linear Optical Quantum Computation [J]. Phys. Rev. Lett.,2005,95(1):010501(1-4).
    [58]Browne D E, Plenio M B, Huelga S F. Robust Creation of Entanglement between Ions in Spatially Separate Cavities [J]. Phys. Rev. Lett.,2003,91(6):067901(1-4).
    [59]Pellizzari T, Quantum Networking with Optical Fibres [J]. Phys. Rev. Lett.,1997,79(26):5242-5245.
    [60]Serafini A, Mancini S, Bose S. Distributed Quantum Computation via Optical Fibers [J]. Phys Rev. Lett.,2006,96(1):010503(1-4).
    [61]Yin Z Q, Li F L. Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber [J]. Phys. Rev. A,2007.75(1):012324(1-11)
    [62]Plenio M B. Knight P L. The quantum-jump approach to dissipative dynamics in quantum optic [J]. Rev. Mod. Phys.,1998.70(1):101-144.
    [63]Kis Z, Renzoni F. Qubit rotation by stimulated Raman adiabatic passage [J]. Phys. Rev. A.2002. 65(3):032318(1-4).
    [64]Yang C P. Chu S I. Han S. Quantum Information Transfer and Entanglement with SQUID Qubits in Cavity QED:A Dark-State Scheme with Tolerance for Nonuniform Device Parameter [J]. Phys. Rev. Lett.,2004,92(11):117902(1-4).
    [65]Bennett C H. Brassard G. Proceedings of the IEEE International Conference on Computers (C). Systems and Signal Processing, Bangalore. (IEEE. New York.1984).
    [66]Gottesman D. Chuang I L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations [J]. Nature (London),1999.402(6760):390-393.
    [67]Bennett C H. Brassard G, Crepeau C. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett.,1993.70(13):1895-1899.
    [68]Xiao Y F. Zou X B. G. C. Guo. Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics [J]. Phys. Rev. A.2007.75(1):012310(1-5).
    [69]Moller D. Madsen L B. M(?)lmer K. Quantum Gates and Multiparticle Entanglement by Rydberg Excitation Blockade and Adiabatic Passage [J]. Phys. Rev. Lett.,2008,100(17):170504(1-4).
    [70]R.auschenbeutel A. Nogues G. Osnaghi S. et al. Step-by-Step Engineered Multiparticle Entangle-ment [J]. Science.2000,288(5473):2024-2028.
    [71]Duan L M. Kimble H J. Efficient Engineering of Multiatom Entanglement through Single-Photon Detections [J]. Phys. Rev. Lett.,2003,90(25):253601(1-4).
    [72]Zou X B, Pahlke K, Mathis W. Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay [J]. Phys. Rev. A,2003,68(2):024302(1-4).
    [73]Peng P, Li F L. Entangling two atoms in spatially separated cavities through both photon emission and absorption processes [J]. Phys. Rev. A,2007,75(6):062320(1-7).
    [74]Chen L B, Ye M Y, Lin G W, et al. Generation of entanglement via adiabatic passage [J]. Phys. Rev. A,2007,76(6):062304(1-7).
    [75]Song J, Xia Y, Song H S, et al. Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities [J]. Europhys. Lett.2007,80(6):60001(1-6).
    [76]Bourennane M, Karlsson A, Bjork G. Quantum key distribution using multilevel encoding [J]. Phys. Rev. A,2001,64(1):012306(1-5).
    [77]Bru(?) D, Macchiavello C. Optimal Eavesdropping in Cryptography with Three-Dimensional Quan-tum States [J]. Phys. Rev. Lett.,2002,88(12):127901(1-4).
    [78]Cerf N J, Bourennane M, Karlsson A, et al. Method for Direct Detection of Quantum Entanglement [J]. Phys. Rev. Lett.,2002,89(12):127902(1-4).
    [79]Jin G S, Li S S, Feng S L, Zheng H Z. Method for generating maximally entangled states of multiple three-level atoms in cavity QED [J]. Phys Rev A,2004,69(3),034302(1-4).
    [80]Zou X B, Mathis W. One-step implementation of maximally entangled states of many three-level atoms in microwave cavity QED [J]. Phys Rev A,2004,70(3):035802(1-5).
    [81]Yarnall T, Abouraddy A F, Saleh B E A, et al. Synthesis and Analysis of Entangled Photonic Qubits in Spatial-Parity Space [J]. Phys. Rev. Lett.,2007,99(25):250502(1-4).
    [82]Li Y M, Zhang K S, Peng K C. Generation of qudits and entangled qudits [J]. Phys. Rev. A,2008, 77(1):015802(1-4).
    [83]Zou X B, Pahlke K, Mathis W. Generation of an entangled state of two three-level atoms in cavity QED [J]. Phys. Rev. A,2003,67(4):044301(1-3).
    [84]Ye S Y, Zhong Z R, Zheng S B. Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities [J]. Phys. Rev. A,2008,77(1):014303(1-4).
    [85]Song J, Xia Y, Song H S. Schemes for Greenberger-Horne-Zeilinger and cluster state preparation [J]. J. Phys. B:At. Mol. Opt. Phys.,2008,41(6):065507(1-5).
    [86]Keller M, Lange B, Hayasaka K, et al. A calcium ion in a cavity as a controlled single-photon source [J]. New J. Phys.,2004,6:95(1-22).
    [87]Spillane S M, Kippenberg T J, Vahala K J, et al. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics [J]. Phys. Rev. A,2005,71(1):013817(1-10).
    [88]Spillane S M, Kippenberg T J, Painter O J, et al. Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics [J]. Phys. Rev. Lett.,2003,91(4): 043902(1-4).
    [89]Collins D, Gisin N, Linden N, et al. Bell Inequalities for Arbitrarily High-Dimensional Systems [J]. Phys. Rev. Lett.,2002,88(4):040404(1-4).
    [90]Kaszlikowski D, Kwek L C, Chen J L, et al. Clauser-Horne inequality for three-state systems [J]. Phys. Rev. A,2002,65(3):032118(1-5).
    [91]Langford N K, Dalton R B, M. D. Harvey, et al. Measuring Entangled Qutrits and Their Use for Quantum Bit Commitment [J]. Phys. Rev. Lett.,2004,93(5):053601(1-4).
    [92]Lu X Y, Liu J B, Ding C L, et al. Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms [J]. Phys. Rev. A,2008,78(3):032305(1-6).
    [93]Petrosyan D, Fleischhauer M. Quantum Information Processing with Single Photons and Atomic Ensembles in Microwave Coplanar Waveguide Resonators [J]. Phys. Rev. Lett.,2008,100(17): 170501(1-4).
    [94]Mohapatra A K, Jackson T R, Adams C S. Coherent Optical Detection of Highly Excited Ryd-berg States Using Electromagnetically Induced Transparency [J]. Phys. Rev. Lett.,2007,98(11): 113003(1-4).
    [95]Gallagher T F, Ryberg Atoms (M) (Cambridge University Press, Cambridge,1994).
    [96]Singer K, Reetz-Lamour M, Amthor T, et al. Suppression of Excitation and Spectral Broaden-ing Induced by Interactions in a Cold Gas of Rydberg Atoms [J]. Phys. Rev. Lett.,2004,93(16): 163001(1-4).
    [97]Gorodetsky M L, Savchenkov A A, IIChenko V S, Ultimate Q of optical microsphere resonators [J]. Opt. Lett.,1996,21(7):453-455.
    [98]Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J]. SIAM J. Comput.1997,26(5):1484-1509.
    [99]Grover L K. Quantum Mechanics Helps in Searching for a Needle in a Haystack [J]. Phys. Rev. Lett.,1997,79(2):325-328.
    [100]Brickman K A. Haljan P C. Lee P J. et al. Implementation of Grover's quantum search algorithm in a scalable system [J]. Phys. Rev. A,2005.72(5):R050306(1-4).
    [101]Yang W L. Chen C Y. Feng M. Implementation of three-qubit Grover search in cavity quantum electrodynamics [J]. Phys. Rev. A.2007.76(5):054301(1-4).
    [102]Yamaguchi F. Milman P. Brune M. et al. Quantum search with two-atom collisions in cavity QED [J]. Phys. Rev. A.2002.66(1). R010302(1-4).
    [103]Deng Z J, Feng M, Gao K L. Simple scheme for the two-qubit Grover search in cavity QED [J]. Phys. Rev. A,2005.72(3):034306(1-4).
    [104]Joshi A, Xiao M. Three-qubit quantum-gate operation in a cavity QED system [J]. Phys. Rev. A. 2006,74(5):052318(1-6).
    [105]Farhi E. Goldstone J. Gutmann S. Sipser M. Quantum Computation by Adiabatic Evolution. e-print a.rXiv:quant-ph/0001106:
    [106]Childs A M.Farhi E. Preskill J. Robustness of adiabatic quantum computation [J]. Phys. Rov. A. 2001,65(1):012322(1-10).
    [107]Roland J. Cerf N J. Quantum search by local adiabatic evolution [J]. Phys. Rev. A.2002.65(4): 042308(1-6).
    [108]Duan L M, Cirac J I, Zoller P. Geometric Manipulation of Trapped Ions for Quantum Computation [J]. Science,292(5522):1695-1697.
    [109]Siddiqui S. Gea-Banacloche J. Adiabatic geometric phase gate with a quantized control field [J]. Phys. Rev. A,2006,74(5):052337(1-7).
    [110]Jones J A, Mosca M, Hansen R H, Implementation of a quantum search algorithm on a quantum computer [J]. Nature (London),1998,393(6683):344-346.
    [111]Chuang I L, Gershenfeld N, Kubinec M. Experimental Implementation of Fast Quantum Searching [J]. Phys. Rev. Lett.,1998,80(15):3408-3411.
    [112]Nakamura Y, Pashkin Y A, Tsai J S. Coherent control of macroscopic quantum states in a single-Cooper-pair box [J]. Nature (London),1999,398(6730):786-788.
    [113]Walther P. Resch K J, Rudolph T, et al. Experimental one-way quantum computing [J]. Nature (London),2005,434(7030):169-176.
    [114]Daems D, Guerin S. Adiabatic Quantum Search Scheme With Atoms In a Cavity Driven by Lasers [J]. Phys. Rev. Lett.,2007,99(17):170503(1-4).
    [115]Daems D, Guerin S. Analog Grover search by adiabatic passage in a cavity-laser-atom system [J]. Phys. Rev. A,2008,78(2):022330(1-8).
    [116]Kimble H J. The quantum internet [J]. Nature (London),2008,453(7198):1023-1030.
    [117]Cirac J I, Zoller P, Kimble H J, et al. Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network [J]. Phys. Rev. Lett.,1997,78(16):3221-3224.
    [118]Browne D E, Rudolph T. Resource-Efficient Linear Optical Quantum Computation [J]. Phys. Rev. Lett.,2005,95(1):010501(1-4).
    [119]Deng Z J, Feng M, Gao K L. Preparation of entangled states of four remote atomic qubits in decoherence-free subspace [J]. Phys Rev A,2007,75(2):024302(1-4).
    [120]Song J, Xia Y, Song H S. Quantum nodes for W-state generation in noisy channels [J]. Phys Rev A,2008,78(2):024302(1-4).
    [121]Xia Y, Song J, Song H S. Linear optical protocol for preparation of N-photon Green-berger-Horne-Zeilinger state with conventional photon detectors [J]. Appl. Phys. Lett.,2008, 92(2):021127(1-3).
    [122]McKeever J, Boca A, Boozer A D, et al. Experimental realization of a one-atom laser in the regime of strong coupling [J]. Nature (London),2003,425(6955):268-271.
    [123]Zheng S B. Generation of Greenberger-Horne-Zeilinger states for three atoms trapped in a cavity beyond the strong-coupling regime [J]. Phys. Lett. A,2008,372(5):591-595.
    [124]Biswas A, Agarwal G S. Quantum logic gates using Stark-shifted Raman transitions in a cavity [J]. Phys. Rev. A,2004,69(6):062306(1-5).
    [125]Kiesel N, Schmid C, Weber U, et al. Experimental Analysis of a Four-Qubit Photon Cluster State [J]. Phys. Rev. Lett.,2005,95(21):210502(1-4).
    [126]Vallone G, Pomarico E, Mataloni P, et al. Realization and Characterization of a Two-Photon Four-Qubit Linear Cluster State [J]. Phys. Rev. Lett.,2007,98(18):180502(1-4).
    [127]Lu C Y, Zhou X Q, Giihne O, et al. Experimental entanglement of six photons in graph states [J]. Nat. Phys.2007,3(2):91-95.
    [128]You J Q, Wang X B, Tanamoto T, et al. Efficient one-step generation of large cluster states with solid-state circuits [J]. Phys. Rev. A,2007,75(5):052319(1-5).
    [129]Xue Z Y, Wang Z D. Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity [J]. Phys. Rev. A,2007,75(6):064303(1-4).
    [130]Chen G, Chen Z D, Yu L X, et al. One-step generation of cluster states in superconducting charge qubits coupled with a nanomechanical resonator [J]. Phys. Rev. A,2007,76(2):024301(1-4).
    [131]Lin Z R, Guo G P, Tu T, et al. Generation of Quantum-Dot Cluster States with a Superconducting Transmission Line Resonator [J]. Phys. Rev. Lett.,2008,101(23):230501(1-4).
    [132]Li J Q, Chen G, Liang J Q. One-step generation of cluster states in microwave cavity QED [J]. Phys. Rev. A,2008,77(1):014304(1-2).
    [133]Armani D K, Kippenberg T J, Spillane S M. Ultra-high-Q toroid microcavity on a chip [J]. Natun (London),2003,421(6926):925-928.
    [134]Bayindir M, Temelkuran B, Ozbay E. Tight-Binding Description of the Coupled Defect Modes i Three-Dimensional Photonic Crystals [J]. Phys. Rev. Lett.,2000,84(10):2140-2143.
    [135]Wallraff A, Schuster D I, Blais A, et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics [J]. Nature (London),2004,431(7005):162-167.
    [136]Ogden C D. Irish E k, Kim M S, Dynamics in a coupled-cavity array [J]. Phys. Rev. A,2008 78(6):063805(1-9).
    [137]Cho J. Angelakis D G, Bose S. Fractional Quantum Hall State in Coupled Cavities [J]. Phys. Rev. Lett..2008.101(24):246809(1-4).
    [138]Clio J. Angelakis D G, Bose S, Simulation of high-spin Heisenberg models in coupled cavities [J] Phys. Rev. A.2008,78(6):062338(1-4).
    [139]Angelakis D G. Kay A. Weaving light-matter qubits into a one way quantum computer [J]. New ,J. Phys.2008,10(2):023012(1-10).
    [140]Hartmann M J. Brandao F G S L. and M. B. Plenio. Effective Spin Systems in Coupled Micro-cavities [J]. Phys. Rev. Lett.,2007,99(16):160501(1-4).
    [141]Zhang X L. Feng X L. Wu C F, et al. Nongeometric multiqubit conditional phase gates by adiabatic evolution for trapped ions [J]. Phys. Rev. A,2009.79(3):034301(1-4).
    [142]Hennessy K. Badolato A, Winger M, et al. Quantum nature of a strongly coupled single quantum dot-cavity system [J]. Nature (London).2007,445(7130):896-899.
    [143]Majer J, Chow J M. Gambetta J M, et al. Coupling superconducting qubits via a cavity bus [J]. Nature (London).2007.449(7161):443-447.
    [144]Kiffner M. Evers J. Keitel C H. Quantum Interference Enforced by Time-Energy Complementarity [J]. Phys. Rev. Lett..2006,96(10):100403(1-4).
    [145]Duan L M. Kimble H J. Efficient Engineering of Multiatom Entanglement through Single-Photon Detections [J]. Phys. Rev. Lett.,2003.90(25):253601(1-4).
    [146]Serafini A, Mancini S, Bose S. Distributed Quantum Computation via Optical Fibers [J]. Phys Rev. Lett.,2006,96(1):010503(1-4).
    [147]Duan L M, Kimble H J. Scalable Photonic Quantum Computation through Cavity-Assisted In-teractions [J]. Phys. Rev. Lett.,2002,92(12):127902(1-4).
    [148]Deng Z J, Zhang X L, Wei H, et al. Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference [J]. Phys Rev A,2007,76(4):044305(1-4).
    [149]Chou C W, Laurat J, Peng H, et al. Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks [J]. Science 2007,316(5829):1316-1320.
    [150]Li X H, Deng F G, Zhou H Y. Faithful qubit transmission against collective noise without ancillary qubits [J]. Appl. Phys. Lett.,2007,91(14):144101(1-3).
    [151]Yamamoto T, Shimamura J, Ozdemir S K, et al. Faithful Qubit Distribution Assisted by One Additional Qubit against Collective Noise [J]. Phys. Rev. Lett.,2005,95(4):040503(1-4).
    [152]Bennett C H, Brassard G, Popescu S, et al. Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels [J]. Phys. Rev. Lett.,1996,76(5):722-725.
    [153]Steane A M. Error Correcting Codes in Quantum Theory [J]. Phys. Rev. Lett.,1996,77(5):793-797.
    [154]Briegel H J, Dur W, Cirac J I, et al. Quantum Repeaters:The Role of Imperfect Local Operations in Quantum Communication [J]. Phys. Rev. Lett.,1998,81(26):5932-5935.
    [155]Xiao Y F, Lin X M, Gao J, et al. Realizing quantum controlled phase flip through cavity QED [J]. Phys. Rev. A,2004,70(4):042314(1-5).
    [156]Kuzmich A, Bowen W P, Boozer A D. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles [J]. Nature,2003,423(6941):731-734.
    [157]Sauer J A, Fortier K M, Chang M S, et al. Cavity QED with optically transported atoms [J]. Phys. Rev. A,2004,69(5):(R)051804(1-4).
    [158]Puppe T, Schuster I, Grothe A, et al. Trapping and Observing Single Atoms in a Blue-Detuned Intracavity Dipole Trap [J]. Phys. Rev. Lett.,2007,99(1):013002(1-4).
    [159]Koonath P, Indukuri T, Jalalib B. Add-drop filters utilizing vertically coupled microdisk resonators in silicon [J]. Appl. Phys. Lett.,2005,86(9):091102(1-3).
    [160]Xiao Y F, Han Z G, Guo G C. Quantum computation without strict strong coupling on a silicon chip [J]. Phys. Rev. A,2006,73(5):052324(1-6).
    [161]Knill E, Laflamme R, Milburn G. A scheme for efficient quantum computation with linear optics [J]. Nature (London),2001,409(6816):46-52.
    [162]Zou X B, Pahlke K, Mathis W. Teleportation implementation of nondeterministic quantum logic operations by using linear optical elements [J]. Phys. Rev. A,2002,65(6):064305(1-2).
    [163]Zou X B, Li K, Guo G C. Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate [J]. Phys. Rev. A,74(4):044305(1-4).
    [164]Cernoch A, Soubusta J, Bartuskova L, et al. Experimental Realization of Linear-Optical Partial swap Gates [J]. Phys. Rev. Lett.,2008,100(18):180501(1-4).
    [165]C. Y. Lu, D. E. Browne, T. Yang, et al. Demonstration of a Compiled Version of Shor's Quantum Factoring Algorithm Using Photonic Qubits [J]. Phys. Rev. Lett.,2007,99(25):250504(1-4).
    [166]Rauschenbeutel A, Nogues G, Osnaghi S, et al. Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED [J]. Phys. Rev. Lett.,1999,83,5166-5169.
    [167]Zheng S B. Quantum logic gates for two atoms with a single resonant interaction [J]. Phys. Rev. A,2005,71(6):062335(1-4).
    [168]Zou X B, Xiao Y F, Li S B, et al. Quantum phase gate through a dispersive atom-field interaction [J]. Phys. Rev. A,2007,75(6):064301(1-4).
    [169]Xiao Y F, Zou X B, Guo G C. One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavity [J]. Phys. Rev. A,2007,75(5):054303(1-4).
    [170]Zubairy M S, Kim M, Scully M O, Cavity-QED-based quantum phase gate [J]. Phys. Rev. A, 2003,68(3):033820(1-6).
    [171]Garcia-Maraver R, Corbalan R, Eckert K, et al. Cavity QED quantum phase gates for a single longitudinal mode of the intracavity field [J]. Phys. Rev. A,2004,70(6):062324(1-6).
    [172]Shu J, Zou X B, Xiao Y F, et al. Quantum phase gate of photonic qubits in a cavity QED systen [J]. Phys. Rev. A,2007,75(4):044302(1-4).
    [173]Cho J, Lee H W. Generation of Atomic Cluster States through the Cavity Input-Output Proces [J]. Phys. Rev. Lett.,2005,95(16):160501(1-4).
    [174]Duan L M, Wang B. Kimble H J. Robust quantum gates on neutral atoms with cavity-assiste photon scattering [J]. Phys. Rev. A,2005,72(3):032333(1-4).
    [175]Wang B. Duan L M. Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation [J]. Phys. Rev. A,2007,75(5):R050304(1-4).
    [176]An J H. Feng M. Oh C H. Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities [J]. Phys. Rev. A,2009,79(3):032303(1-7).
    [177]Lee J, Park J. Lee S M. et al. Scalable cavity-QED-based scheme of generating entanglement o(?) atoms and of cavity fields [J]. Phys. Rev. A.2008,77(3):032327(1-7).
    [178]Liang L M. Li C Z. Realization of quantum SWAP gate between flying and stationary qubits [J]. Phys. Rev. A,2005,72(2):024303(1-4).
    [179]Wei H. Deng Z J. Zhang X L, et al. Transfer and teleportation of quantum states encoded in decoherence-free subspace [J]. Phys. Rev. A.2008,78(1):014304(1-4).
    [180]Hijlkema M. Weber B. Specht H P. et al. A single-photon server with just one atom [J]. Nat. Phys.,2007.3(4):253-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700