用户名: 密码: 验证码:
温轧Ti-IF钢板在冷轧和退火过程中的结构演变规律及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IF钢板广泛应用的最主要原因在于它极其优良的深冲性能。IF钢板优良的性能与钢板中晶体的织构密切相关。板材中的γ纤维织构(<111>//ND,ND为轧面法线方向)越强,其深冲性能越好。铁素体区热轧工艺,即温轧工艺能够有效提高IF钢中的γ纤维织构,这一点已经得到了公认。众多的科研工作者已经对IF钢温轧工艺进行了大量的研究,但是对其后续的冷轧和退火过程织构的研究尚少。本文通过X-ray分析和EBSD分析对Ti-IF钢板温轧,冷轧及再结晶过程中织构的演变规律和形成机制进行了系统实验研究。论文主要工作和结果如下:
     1)热轧织构对冷轧和退火织构起着决定性作用,本文选取了具有不同热轧织构的Ti-IF钢板,对其进行冷轧和退火,通过X-ray分析对不同的热轧织构在随后的冷轧和退火过程中的演变过程进行了综合性研究。结果表明:只有当冷轧板中γ纤维织构上各组分分布均匀并且取向密度较高时,最终的退火板中才能形成理想的分布均匀的γ再结晶纤维织构。这就要求热轧板中形成以γ纤维织构为主的织构类型,这种热轧织构可以通过温轧后高温卷取或者温轧后直接退火获得。
     2)应用EBSD技术研究了温轧后直接退火时再结晶初期温轧Ti-IF钢板的微观组织结构形貌、再结晶晶核的取向和形成位置及晶核的长大规律。结果表明,温轧后退火过程中Ti-IF钢板的再结晶机制以定向形核机制起主要作用。在温轧Ti-IF钢板再结晶初期,γ取向的再结晶晶核优先形成于γ取向的变形带内部和γ取向与α取向变形带的晶界上。γ取向的再结晶晶核形成后,首先吞并其周围相邻的γ取向的变形基体;再结晶后期,吞并κ取向的变形基体,形成再结晶γ纤维织构。
     3)通过选择多种冷轧压下率,对温轧高温卷取和低温卷取的Ti-IF钢板进行冷轧实验,以及X-ray分析,得到了冷轧过程温轧Ti-IF钢板中取向变化的路径为:{110}<001>-{554}<225>-{111}<112>-{111}<110>-{223}<110>-{112}<110>-{113}<110>-{114}<110>-{001}<110>。并从冷轧织构入手解释了再结晶织构的特点,结合退火后钢板的性能分析,确定了获得最佳退火织构和深冲性能的冷轧压下率为75%。
     4)对冷轧后退火过程中温轧Ti-IF钢板的织构变化及机理进行了系统研究,确定了最佳退火温度范围为710-750℃。研究表明:退火温度为710℃和750℃时,得到了单一的强烈均匀分布的再结晶γ纤维织构;退火温度为600℃时,减弱的α纤维织构并没有完全被丫取向晶粒吞并,有部分转变成了{554}<225>-{332}<113>组分。退火温度不同,再结晶初期形成的晶核取向不同,对600℃退火保温较短时间的Ti-IF钢板进行EBSD分析发现,冷轧后的退火过程中,温轧Ti-IF钢板的再结晶机制仍以定向形核为主,但再结晶初期形成的晶核的主要取向除γ取向外还有{332}<113>取向。
     5)通过在冷轧和退火过程中,对温轧和常规热轧的高强Ti-IF钢板的织构演变及性能对比分析表明,尽管织构类型基本一致,但是温轧Ti-IF钢板的织构比常规热轧的Ti-IF钢板的织构强烈很多,由于织构的遗传性,冷轧退火后,温轧Ti-IF钢板的再结晶织构也强烈得多。因此,温轧的Ti-IF钢板具有较高的r值和n值。证实了在不改变化学成分的前提下,温轧工艺是提高高强IF钢深冲性能的有效手段。
IF steel is widely used to due to its excellent deep drawability. It is well known that the drawability of IF steel is closely related to the texture formed during recrystallization and that a high volume fraction of near{111} components is essential for good drawability. Ferritic rolling, namely, warm rolling has been generally accepted as an effective method to improve {111} components in IF steel. Many researches have been conducted on the warm rolling process, however researches on the subsequent cold rolling and annealing process are quite scarce. In this paper, texture evolution during warm rolling, cold rolling and annealing of the Ti-IF steel is systematically investigated by means of the micro structure observation, X-Ray diffraction and EBSD analysis. The main work and the results are as follows:
     1) The hot rolled texture has decisive effect on the cold rolled and annealed texture due to the heredity of texture. The texture evolution during cold rollng and annealing process has comprehensively studied by XRD analysis with different initial texture hot bands. The results show that an ideal y fiber beneficial for improving deep drawability can be formed after annealing only when a well-proportioned y fiber dominates in the cold rolled texture. This requires the formation of strong y fiber in the hot band, which can be obtained by high temperature coiling or direct annealing after warm rolling.
     2) The microstructure, the orientation of the nuclei, the nucleation site at the early stage of recrystallization and the growth mechanism of the nuclei have been studied by EBSD analysis in Ti-IF steel during direct annealing after warm rolling. It is concluded that the formation of the recrystallization texture is dominated by the oriented nucleation mechanism. The recrystallized nuclei with y-orientation emerged preferentially at the beginning of recrystallization and preferred to form in the deformed bands withγ-orientation and on the boundaries betweenγandα-orientation. The recrystallized grains first consumed their neighboring y-oriented matrix, and then consumed the a-oriented deformed bands at the late stage of recrystallization, leading to strong y-fiber.
     3) The texture evolution during cold rolling with various reductions has been investigated in warm rolled and subsequent high and low temperature coiled Ti-IF steels. The orientation rotates along the following path:{111}<112>-{111}<110>-{223}<110>-{112} <110>-{113}<110>-{114}<110>-{001}<110>. The characteristic of the recrystallization texture has been analyzed from the point of cold rolled texture and the best cold rolling reduction is 75% which is determined by analyzing the properties and the recrystallization texture.
     4) The texture evolution during annealing after cold rolling of warm rolled Ti-IF steel has been systematically studied in this thesis. It is found that 710-750℃is the optimal annealing temperature range. When the annealing temperature is 710℃and 750℃, a strong and well-proportioned y fiber is obtained.When the annealing temperature is 600℃, the reduced a fiber transforms to{554}<225>-{332}<113> components as well asγfiber at the late stage of recrystallization. The EBSD analysis shows that orientated-nucleation dominates during recrystallization, but the orientation of the nuclei includes{332}<113> component besides y orientation.
     5) The texture evolution and the properties of the austenite rolled and the warm rolled high strength Ti-IF steels have been compared. Aithough the texture types have no differences, the intensity of the texture in the warm rolled one is much higher which leads to higher mechanical properties in the warm rolled, cold rolled and annealed high strength Ti-IF steel. It is proved that warm rolling is an effective method to improve the drawability of high strength Ti-IF steel.
引文
1.康永林.现代汽车板的质量控制与成形性[M],北京:冶金工业出版社,1999,29.
    2. Chabbi L, Spitel T. Experimental simulation of hot-rolling of thin sheets in a laboratory rolling mill and in plasteters[J], In: W. Bleck. Processing and Properties. Aachen: Modem LC and ULC Sheet Steels for Cold Forming,1998,313-328.
    3. Akbari G H, Sellars C M and Whiteman J A. Microstructure Development during Warm Rolling of an IF Steel [J], Acta materialia.,1997,45 (12):5047-5058.
    4. Comstock C F, Urban S F and Cohen M. Titanium in Steel [M], New York, NY: Pitman Publishing Corp.1949,320.
    5. Karlyn D A, Vieth R W, Forand J L. Mechanical Working and Steel Processing [J], AIME,1969,7: 127-130.
    6. Elias J A, Hook R E. Mechanical Working and Steel Processing II [J], AIME,1970,8:348-352.
    7.康永林,唐荻,王先进.现代汽车薄板的品质要求[J],轧钢,1996,73(5):53-56.
    8. Cramb A, Byrne W. Metallurgy of Vacuum-Degassed Steel Products [J], ed. by R. Pradhan, Proc. Conf., 1989,3-27.
    9.高宗仁.IF钢概述[J],太钢科技,1999,(4):68-70.
    10. Hulka Klaus, Heisterkamp Friedrich. Stand der entwicklung und anwendung von IF-staehlen (Status of the development and application of IF-steels) [J], Stahl und Eisen,1990,110 (9):65-68.
    11. Takechi H. IF钢-21世纪起领先作用的薄板钢[J],国外钢铁,1996,(7):53-56.
    12. Grossheim H, Schotten K, Bleck W. Physical simulation of hot rolling in ferrite range of steels [J], Journal of Materials Processing Technology,1996,60 (1-4):609-614.
    13. Bleck W, Langner H. Metallurgical aspect of near-net-shape processing routes[J], Proceeding of the 7th international conference on steel rolling,1998, Chiba, Japan, The Iron and Steel Institute of Japan, 349-358.
    14. Ray R K and Jonas J J. Transformation textures in steels [J], International Materials Reviews,1990,35 (1):1-36.
    15. Hook R E. Physical Asymmetry of the Crystallographic texture of an Interstitial-Free sheet steel [J], Metallurgical Transactions,1993,24A (9):2009-2019.
    16. Schlippenbach U von, Emren F, and Ucke K. Investigation of the development of the cold rolling textures in deep drawing steels by ODF analysis [J], Acta Metall.,1986,34, (7):1289-1301.
    17. Hutchinson W B. Development and control of annealing textures in low-carbon steels [J]. International Metals Reviews,1984,29 (1):25-42.
    18. Ray R K, Jonas J J, Hook R E. Cold rolling and annealing textures in low carbon and extra low carbon steels [J], International Materials Reviews,1994,39 (4):129-172.
    19. Saitoh H, Ushtoda K, Senuma T. Structural and textural evolution during subsequent annealing of steel sheet hot-rolling in a phase[J], THERMEC'88, the Iron and Steel Institute of Japan, Tokyo,1988: 628-635.
    20. Nakamura T, Esaka K. Development of hot rolled steel sheet with high r value [J], International Conference on physical Metallurgy of Thermo mechanical Processing of steels and other Metals, THERMEC'88, the Iron and Steel Institute of Japan, Tokyo,1988:644-651.
    21. Asensio J, Romano G, Martunez V J, etal. Ferritic steels optimization of hot-rolled textures through cold rolling and annealing[J], Materials Characterization,2001,47 (2):119-127.
    22. Barrett C J, Wilshire B. The production of ferritically hot rolled interstitial-free steel on a modern hot strip mill[J], Journal of Materials Processing Technology,2002,122 (1):56-62.
    23. Zhao H, Rama S C, Barber G C, etal. Experimental study of deep drawability of hot rolled IF steel[J], Journal of Materials Processing Technology,2002,128 (1-3):73-79.
    24. Jonas J J. Effects of shear band formation on texture development in warm-rolled IF steels[J], Journal of Materials Processing Technology,2001,117 (3):293-299.
    25. Leroy V, De Paepe A, Herman J C. Ferritic hot rolling of thin gauge hot strips:processing and properties. Recent development of modern LC and ULC sheet steels in Japan, Modern LC and ULC Sheet Steels for Cold Forming:Processing and Properties, Aachen, ed. W. Bleck,1998,51-60.
    26. Chen Yu, Zhong Dingzhong, Ye Mingjia, etal. Study of hot rolled deep drawing steel sheets, Recent development of modern LC and ULC sheet steels in Japan, Modern LC and ULC Sheet Steels for Cold Forming: Processing and Properties, Aachen, ed. W. Bleck,1998,615-622.
    27. Barnett M R and Jonas J J. Influence of Ferrite rolling temperature in microstructure and texture in deformed low C and IF steels [J], ISIJ International,1997,37 (7):697-705.
    28. Haggerty C, Rock T. Ferrite rolling of interstitial free steels for exposed galvanized/galvanneal application [J], GALVATECH'95 conference proceedings:75-79.
    29. Senuma T, Yada H, Shimizu R, etal. Textures of low carbon and titanium bearing extra low carbon steel sheets hot rolled below their AR3 temperatures [J], Acta Metallurgica et Materialia,1990,38 (12): 2673-2681.
    30.鹿岛高弘,王向成.铁素体区轧制时的润滑条件对超低碳钢加Ti冷轧钢扳r值及织构的影响[J],武钢技术,1992,(8):59-66.
    31. Matsuoka S, Morita M, Furukimi O, etal. Structural variation along thickness direction of extra-low carbon sheet steels rolled in ferrite region[J], Journal of the Iron and Steel Institute of Japan,1997,83 (2):127-132.
    32. Senuma T, Kawasaki K. Texture formation in Ti-bearing IF steel sheets throughout the rolling and annealing processes in terms of the influence of hot rolling conditions on deep drawability [J], ISIJ International,1994,34 (1):51-60.
    33.刘正东,杨钢,房昕,等.铁素体区热轧的研究与应用[J],轧钢,2002,9(2):37-38.
    34.王昭东,何晓明,赵昆,等.Ti-IF钢铁素体区热变形行为研究和Zener-Hollomen参数方程的建立[J],材料科学与工艺,2000,8(4):6-10.
    35. Kim G, Kown O J. Effect of frication on texture evolution in ferrtic warm rolled IF steel [J], Modern LC and ULC sheet steels for Cold Forming:Processing and properties, Aachen, ed. W. Bleck, Aachen,1998,363-370.
    36.崔德理.冶金工艺对无间隙原子钢板织构及深冲性能影响的研究[D],北京科技大学,1992.
    37.韩福涛,王作成,景财年,等.铁素体区轧制对超低碳钢和无间隙原子钢组织和力学性能的影响[J],金属热处理,2008,33(1):94-96.
    38.关小军,李云,王作成.铁素体区热轧Ti-IF钢的析出物研究[J],钢铁,2004,39(9):58-60.
    39.景财年,王作成,韩福涛,等.热轧Ti-IF钢析出物的研究[J],金属热处理,2006,31(1):79-82.
    40.高燕,刘战英,李宏军.IF钢铁素体区轧制工艺参数对深冲性能影响的研究[J],河北冶金,2006,(2):10-12,57.
    41. Patricia M, Guillen B, Jonas J J. Effect of Finishing Temperature on Hot Band Textures in an IF Steel [J], ISIJ international,1996,36 (1):68-73.
    42.王作成,关小军,王先进.润滑条件对热轧IF钢的性能及组织的影响[J],钢铁,2000,35(11):44-46.
    43.吴景辉.IF钢铁素体区变形行为与变形抗力模型[D],沈阳:东北大学,1999.
    44. Matsuoka S, Sakata K, Satoh S, etal. Effect of hot-rolling strain rate in the ferrite region on the recrystallization texture of extra-low C sheet steels [J], ISIJ international,1994,34 (1):77-84.
    45. Barnett M R and Jonas J J. Influence of Ferrite rolling temperature on grain size and texture in annealed low C and IF steels [J], ISIJ International,1997,37 (7):706-714.
    46. Toroghinejad M R, Humphreys A O, Liu, Dongsheng, etal. Effect of rolling temperature on the deformation and recrystallization textures of warm-rolled steels [J], Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,2003,34A (5):1163-1174.
    47. Matsuoka S, Morita M, Furukimi O, etal. Effect of lubrication condition on recrystallization texture of ultra-low C sheet hot-rolled in ferrite region [J], ISIJ international,1998,33 (6):633-639.
    48. Yoda Rika, Tsukatani Ichiro, Inoue Tsuyoshi, etal. Effect of chemical composition on recrystallization behavior and r-value in Ti-added ultra low carbon sheet steel [J], ISIJ International,1994,34 (1): 70-76.
    49. Brun C, Patou P, Parniere P. Influence of phosphorus and manganese on the recrystallization texture development during continuous annealing in Ti-IF sheets [J], Metallurgical Soc of AIME,1982: 173-197.
    50. Barrett C J. Influence of lubrication on through thickness texture of ferritically hot rolled interstitial free steel [J], Ironmaking and Steelmaking,1999,26 (5):393-397.
    51. Parks W H, Rock T R. Ferritic rolling of interstitial-free steel [J], Iron and Steel Engineer,1997,74 (10):35-36.
    52. Jeong W C. Effect of hot-rolling temperature on microstructure and texture of an ultra-low carbon Ti-interstitial-free steel [J], Materials Letters,2008,62 (1):91-94.
    53. Vasseur E, Regle H, Pinto Da Costa E, etal. Influence of the ratio of deformation between ferritic warm rolling and cold rolling on the properties of ULC-Ti steels for deep-drawing [J], Revue de Metallurgie. Cahiers D'Informations Techniques,2001,98 (7-8):699-707.
    54. Serajzadeh S. Mohammadzadeh M. Effects of deformation parameters on the final microstructure and mechanical properties in warm rolling of a low-carbon steel [J], Int J Adv Manuf Technol,2007,34: 262-269.
    55.王昭东,李自刚,何晓明,等.冷轧压下量对铁素体区热轧Ti-IF钢冷轧板的再结晶织构特点和深冲性能的影响[J],金属学报,2000,36(6):613-617.
    56.李晋霞.IF钢冷变形及热处理工艺研究[D],沈阳:东北大学,2002.
    57. Urabe T and Jonas J J. Modeling Texture Change during the Recrystallization of an IF Steel [J], ISIJ International,1994,34 (5):435-442.
    58.左训伟.IF钢铁素体轧制工艺的计算机模拟[D],武汉:武汉科技大学,2004.
    59.李志杰.IF钢温轧工艺的计算机模拟[D],武汉:武汉科技大学,2004.
    60. Kestens L and Jonas J J. Modeling Texture Change During the Static Recrystallization of a Cold Rolled and Annealed Ultra Low Carbon Steel Previously Warm Rolled in the Ferrite Region [J], ISIJ International,1997,37 (8):807-814.
    61. Li J X, Liu Z Y, Gao C R, etal. Evolution of textures in interstitial free steel during multiple cold rolling and annealing [J], Journal of Materials Processing Technology,2005,167 (1):132-137.
    62.刘战英,李晋霞,刘相华,等.两次冷轧压下率分配对IF钢深冲性能的影响[J],东北大学学报(自然科学版),2004,25(3):254-257.
    63.李艳娇,刘战英,李晋霞,等.冷轧压下量对铁素体区热轧Ti-IF钢冷轧板深冲性能的影响[J],钢铁研究学报,2003,15(1):34-37.
    64. Wang Z C, Wang X J. A new technology to improve the r-value of interstitial-free (IF) steel sheet[J], Journal of Materials Processing Technology,2001,113 (1-3):659-661.
    65. Wang Z D, Guo Y H, Zhao Z, etal. Effect of processing condition on texture and drawability of a ferritic rolled and annealed Interstitial-Free steel[J], Journal of Iron and Steel Research, International, 2006,13 (6):60-65.
    66. Wolfgang Bleck, Rolf Groβterlinden, Ulrich Lotter, etal. Textures in Steel Sheets [J], Steel Research, 1991,62 (12):580-586.
    67. Toth L S, Jonas J J, Daniel D, etal. Development of Ferrite Rolling Textures in Low and Extra Low-Carbon Steels [J], Metal. Trans.,1990,21A (11):2985-3000.
    68. Inagaki Hirosuke. Fundamental Aspect of Texture Formation in Low Carbon Steel [J], ISIJ International,1994,34 (4):313-321.
    69.李四军.IF钢织构优化及其与表面纳米化的交互作用[D],沈阳:东北大学,2007.
    70. Martinez V J, Verdeja J I, Pero-Sanz J A. Interstitial free steel:Influence of a Phase hot-rolling and cold-rolling reduction to obtain extra-deep drawing quality [J], Materials Characterization,2001,46 (1): 45-53.
    71. Tomitz A, Kaspar R. Deep-drawable thin-gauge hot strip of steel as a substitution for cold strip[J], ISIJ International,2000,40 (9):927-931.
    72.张锦刚.冶金工艺参数对IF钢组织性能的影响[D],沈阳:东北大学,2007.
    73. Haldar A, Ray R K. Microstructural and textural development in an extra low carbon steel during warm rolling[J], Materials Science and Engineering A,2005,391 (1-2):402-407.
    74. Li B L, Godfrey A, Liu Q, etal. Microstructural evolution of IF-steel during cold rolling [J], Acta Mater. 2004,52(4):1069-1081.
    75. Liu Y Z, Sun J H, Zhou L Y. Experiment investigation of deep-drawing sheet texture evolution [J]. Journal of Materials Processing Technology,2003,140 (1-3):509-513.
    76. Kashima T, Hashima S, Inoue H, et al. Effect of Lubricated conditions during hot rolling in ferrite phase on r value and texture of annealed and cold rolled Ti-added low carbon steel sheet[J], Testue-to-Hagane,1991,77 (2):96-103.
    77.赵昆.IF钢铁素体区热变形行为研究和铁素体轧制工艺开发[D],沈阳:东北大学,1999.
    78.门华.IF钢铁素体轧制对组织性能影响的研究[D],沈阳:东北大学,1998.
    79. Tomitz A, Kaspar R. Ferritic rolling with additional annealing to produce a deep-drawable ultra-thin-gauge hot strip[J], Steel Research,2000,71 (12):497-503.
    80. Quadir M Z, Duggan B J. A microstructural study of the origins of γ recrystallization textures in 75% warm rolled IF steel [J], Acta Materialia,2006,54 (16):4337-4350.
    81. Patricia M, Guillen B, Jonas J J. Effect of Finishing Temperature on Hot Band Textures in an IF Steel [J], ISIJ international,1996,36 (1):68-73.
    82. Baneriee Kumkum, Verma Anil K, Venugopalan T. Improvement of drawability of titanium-stabilized interstitial-free steel by optimization of process parameters and texture [J], Metall. Mater. Trans. A, 2008,39A (6):1410-1425.
    83.刘战英.提高IF钢深冲性能的工艺与机理研究[D],沈阳:东北大学,2004.
    84.王轶农,赵骧,左良,等.冷轧IF (Ti+Nb)深冲钢板再结晶γ纤维织构的形成机制[J],佳木斯大学学报(自然科学版),2000,18(3):201-204.
    85.王绪,杨弟,毛为民,等.超深冲IF钢退火过程中织构变化的ODF分析[J],钢铁研究学报,1995,7(1):60-64.
    86. Tiitto K M, Jung C, Wray P, etal. Evolution of Texture in Ferritically Hot Rolled Ti and Ti+Nb Alloyed ULC Steels during Cold Rolling and Annealing [J], ISIJ International,2004,44 (2):404-413.
    87. Bate P S, Quinta J, da Fonseca. Texture development in the cold rolling of IF steel [J], Materials Science and Engineering A,2004,380 (1-2):365-377.
    88.沈凯,Duggan B J.冷轧体心立方IF钢中剪切带的形成[J],南京航空航天大学学报,2005,37(5):571-575.
    89.蔡艳霞.冷轧IF钢板织构、微观组织及其相互关系的研究[D],沈阳:东北大学,2005.
    90. Shen K, Duggan B J. Microbands and crystal orientation metastability in cold rolled interstitial-free steel [J], Acta Materialia,2007,55 (4):1137-1144.
    91. Samajdar I, Verlinden B, Vanhoutte P, etal. y-Fibre recrystallization texture in IF-steel:an investigation on the recrystallization mechanisms [J], Materials Science and Engineering A,1997,238 (2):343-350.
    92. Samajdar I, Verlinden B, Vanhoutte P. Development of recrystallization texture in IF-steel:an effort to explain developments in global texture from microtextural studies [J], Acta Mater.,1998,46 (8): 2751-2763.
    93. Kiaei M, Chiron R, Bacroix B. Investigation of recrystallization mechanisms in steels during in situ annealing in a SEM [J], Scripta Materialia,1997,36 (6):659-666.
    94. Samet-Meziou A, Etter A L, Baudin T, etal. Relation between the deformation sub-structure after rolling or tension and the recrystallization mechanisms of an IF steel [J], Materials Science and Engineering A,2008,473 (1-2):342-354.
    95. Sang Heon Lee, Dong Nyung Lee. Shear rolling and recrystallization textures of interstitial-free steel sheet [J], Materials Science and Engineering A,1998,249 (1-2):84-90.
    96. Shengquan CAO, Youyuan LI, Jinxu ZHANG, etal. EBSD Investigation on Oriented N ucleation in IF Steels [J], J. Mater. Sci. Technol.,2007,23 (2):262-266.
    97. Shi-Hoon C, Jae Hyung C. Primary recrystallization modeling for interstitial free steels [J], Materials Science and Engineering,2005,405A (1-2):86-101.
    98. Barnett M R. Role of In-grain shear bands in the nucleation of<111>//ND recrystallization texture in warm rolled steel [J], ISIJ international,1998,38 (1):78-85.
    99. Nagataki Y and Hosoya Y. Origin of the Recrystallization Texture Formation in an Interstitial Free Steel [J], ISIJ International,1996,36 (4):451-460.
    100. Eloot K, Okuda K, Sakata K, etal. Texture evolution during cold rolling and recrystallization of IF steel with a strong{111} hot band texture [J], ISIJ international,1998,38 (6):602-609.
    101. Baczynski J and Jonas J J. Torsion Texture Produced by Dynamic Recrystallization in a-Iron and Two Interstitial-Free Steels [J], Metallurgical and Materials Transactions A,1998,29A (2):447-462.
    102. Dong Nyung Lee.The Evolution of Recrystallization Textures from Deformation Textures [J], Scripta Metallergica et Materialia,1995,32 (10):1689-1694.
    103. Seung-Hyun HONG and Dong Nyung Lee. Recrystallization Textures in Cold-Rolled Ti Bearing IF Steel Sheets [J], ISIJ International,2002,42 (11):1278-1287.
    104. Dirk Vanderschueren, Naoki Yoshinaga, Kazuo Koyama. Recrystallization of Ti IF Steel Investigated with Electron Backscattering Pattern (EBSP) [J], ISIJ International,1996,36 (8):1046-1054.
    105.Natsuko HASHIMOTO, Naoki YOSHINAGA and Takehide SENUMA. Texture Evolution of Steel Due to Recrystallization [J], ISIJ international,1998,38 (6):617-624.
    106. Barnett M R and Kestens L. Formation of{111}<110> and{111}<112> textures in cold rolled and annealed IF sheet steel [J], ISIJ International,1999,39 (9):923-929.
    107. Inagaki H. Nucleation of a{111} recrystallized grain at the grain boundary of cold rolled polycrystalline iron [J], Trans. Jpn. Inst. Met.,1987,28 (4):251-263.
    108. Verbeken K, Kestensa L, Jonas J J. Microtextural study of orientation change during nucleation and growth in a cold rolled ULC steel [J], Scripta Materialia,2003,48 (10):1457-1462.
    109. Helena Magnusson, Dorte Juul Jensen and Bevis Hutchinsson. Growth rates for different texture components during recrystallization of IF steel [J], Scripta Materialia,2001,44 (3):435-441.
    110. Quadir M Z, Duggan B J. Deformation banding and recrystallization of a fibre components in heavily rolled IF steel [J], Acta Materialia,2004,52 (13):4011-4021.
    111. Tse Y Y, Liu G L and Duggan B J. Deformation banding and nucleation of recrystallization in IF steel [J], Scripta materialia,1999,42 (1):25-30.
    112. Samajdar I, Verlinden B, Kestens L, etal. Physical parameters related to the developments of recrystallization textures in an ultra low carbon steel [J], Acta materialia,1999,47 (1):55-65.
    113. Gangli P, Jonas J J, and Urabe T. A Combined Model of Oriented Nucleation and Selective Growth for the Recrystallization of Interstitial-Free Steels [J], Metall. Mater. Trans. A,1995,26 (9): 2399-2406.
    114. Tsukatan L. Effect of Hot Band Microstructural Factors on Recrystallization Texture in Ti-added Ultra-low Carbon Cold-rolled Sheet Steels [J], ISIJ international,1998,38 (6):625-632.
    115. Nave M D, Barnett M R and Beladi H. The Influence of Solute Carbon in Cold-rolled Steels on Shear Band Formation and Recrystallization Texture [J], ISIJ international,2004,44 (6):1072-1078.
    116.王先进,崔德理,唐荻,等.退火条件对IF钢再结晶织构和深冲性能的影响[J],钢铁,1992,27(6):48-52,69.
    117.何长树,刘沿东,蒋奇武,等.再结晶退火IF深冲钢板的微观组织特征[J],中国体视学与图像分析,2003,8(3):158-161.
    118.王先进,石京,崔德理.罩式退火工艺对无间隙原子钢织构和性能的影响[J],钢铁研究学报,1999,11(2):34-38.
    119.赵骧,阴史江,伊藤邦夫.退火制度对高纯超低碳深冲钢板再结晶γ纤维织构的影响[J],钢铁,1996,39(5):39-43.
    120.左军,张开华,常军,等.Nb+Ti IF钢冷轧板罩式炉退火工艺研究[J],钢铁,2008,43(4):105-108.
    121.李锋,吕家舜,敖列哥,等.连续退火工艺对Nb+Ti-IF钢性能及再结晶织构的影响[J],钢铁,2008,43(1):64-67,72.
    122. Wu Y, He C S, Zhao X, etal. Effects of magnetic field strength on microstructure and texture evolution in cold-rolled interstitial-free steel by magnetic field annealing [J], Acta Metall. Sin. (Engl. Lett.),2008,21 (2):103-108.
    123. Regle H, Miroux A, Raulet Y, et al. Recrystallisation texture in a steel used in the automotive industry after high rolling level [J], Proceedings of the 21st Ris(?) international symposium,2000,525-532.
    124. Regle H. Mechanisms of microstructure and texture evolution during recrystallization of ferrite steels sheets [J]. Proc. Recrystallization and grain growth proceedings of the first joint international conference,2001,707-717.
    125. Miroux A, Regle H, Bacroix B. Nucleation mechanisms during recrystallization in IF-steels [J], Proceedings of the 21st Ris(?) International symposium,2000,439-444.
    126.贺彤.IF钢板微结构特征与宏微观织构形成机理的研究[D],沈阳:东北大学,2007.
    127. Sanchez-Araiza M, Godet S, Jacques P J, etal. Texture evolution during the recrystallization of a warm-rolled low-carbon steel [J], Acta Materialia,2006,54 (11):3085-3093.
    128. Hutchinson B, Artymowicz D. Mechanisms and modeling of microstructure texture evolution in interstitial-free steel sheets [J], ISIJ interernational,2001,41 (6):533-541.
    129.叶卫平,勾亚峰.加热速率和形变量对IF钢再结晶温度的影响[J],金属热处理,2001,26(3):19-20.
    130. Deardo J. Multi-phase microstures and their properties in high strength low carbon steels [J], ISIJ International,1995,35 (8):946-954.
    131. Hong S H, Jeong H T, Choi C H, etal. Deformation and recrystallization textures of surface layer of copper sheet [J], Mater. Sci. Eng.,1997, A229 (1-2):174-181.
    132. Doherty R D, Hughes D A, Humphreys F J, etal. Current issues in recrystallization [J], Mater. Sci. Eng.,1997, A238 (2):219-274.
    133. Samajdar I, Verlinden B, Vanhoutte P. Texture changes through grain growth in Ti-bearing IF-Steel investigated by orientation imaging microscopy and X-ray diffraction [J], ISIJ International,1997,37 (10):1010-1016.
    134. Butron-Gullen M P, Da Costa Viana C S, Jonas J J. A Variant Selection Model for Predicting the Transformation Texture of Deformed Austenite [J], Metallurgical and Materials Transactions,1997, 28A(9):1755-1768.
    135. Jonas J J, Wittridge N J. The Role of plane Dislocation Reactions during the Transformation of Hot Rolled Austenite [J], Proceedings of the Twelfth International Conference on Textures of Materials, 1999:1049-1058.
    136. Humphreys F J, Matherly M. Recrystallization and related annealing phenomena [M], New York: Elsevier Science Ltd. Publications,1995,173-178.
    137. Inagaki H. Stable and orientation in the rolling textures of the polycrystalline iron [J], Z. Metallkde, 1987,78 (6):431-439.
    138. Korbel A, Sczerba M. Strain hardening of copper single crystals at high strains and dynamical recovery processes [J], Acta Metall,1982,30 (10):1961-1968.
    139. Lee W B, Chan K C. A criterion for the prediction of shear band angles in fcc metals [J], Acta Metallurgica et Materialia,1991,39 (3):411-417.
    140. Kestens L, Jonas J J. Modeling texture change during the static recrystallization of interstitial free steels [J], Metallurgical and Materials Transactions A,1996,27A (1):155-164.
    141. Hutchinson W B. Recrystallization textures in iron resulting from nucleation at grain boundaries [J], Acta Metall.,1989,37(4):1047-1056.
    142. Abe M, Kokabu Y, Hayashi Y, etal. Effect of grain boundaries on the cold rolling and annealing textures of pure iron [J], Trans. Jpn. Inst. Met.,1982,23 (11):718-725.
    143. Ushioda K, Hutchinson W B. Role of shear bands in annealing texture formation in 3% Si-Fe {111}<112> single crystals [J], ISIJ Int.,1989,29 (10):862-867.
    144. Haratani T, Hutchinson W B, Dillamore I L, etal. Contribution of shear banding to origin of goss texture in silicon iron [J], Metal Science,1984,18 (2):57-65.
    145.章晓中.电子显微分析[M],北京:清华大学出版社,2006,100.
    146. Dillamore I L, Morris P L, Smith C J E, etal. Transition bands and recrystallization in metals [J], Proceedings of the Poyal Society of London, Series A (Mathematical and Physical Science),1972,329 (1579):405-420.
    147. Deardo A J. Physical metallurgy of Interstitial-free steels:precipitates and solutes. International Conference on the Processing, Microstructure and Properties of IF steels. Pittsburgh, Pennsylvania. IF steels 2000 Proceedings,2000,125-136.
    148. Franciosi P. Glide mechanisms in BCC crystals:an investigation of the case of a-iron through multislip and latent hardening tests [J], Acta Metall.,1983,31 (9):1331-1342.
    149. Calnan E A, Clews C J B. The development of deformation textures in metals-part Ⅱ. Body-centred cubic metals [J], Philosophical Magazine,1951,42:616-635.
    150. Lindh E, Hutchinson B, Bate P. Texture evolution during recrystallization of ultra-low carbon steel [J], Materials Science Forum,1994,157 (1):997-1002.
    151.宋余九.金属的晶界与强度[M],西安:西安交通大学出版社,1988,22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700