用户名: 密码: 验证码:
修饰型杂多化合物的合成_表征及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.本文首先制备了n个Fe(n=0,1,2,3)取代的Keggin型Si-W杂多酸盐催化剂TBA_4[α-SiW_12O_40], TBA_5[α-SiW_11{Fe(OH_2)}O_39], TBA-6[γ-SiW_10{Fe(OH_2)}_2O_38]和TBA_7[α-SiW_9{Fe(OH_2)}3O37](TBA=[(C_4H_9)_4N]~+),并通过各种表征手段对杂多化合物的结构特征进行了详细研究。并以H_2O_2为氧化剂,考察Fe中心的不同结构对环己醇催化氧化反应的影响。反应结果表明催化剂TBASiW10Fe2的催化活性最高,说明Fe取代的Keggin型硅钨酸盐的骨架结构对于催化反应活性具有重要的影响。并考察反应溶剂,反应温度,氧化剂用量,催化剂用量等影响因素对催化反应的影响,确定最佳反应条件。此外,还通过IR, UV-vis等表征手段研究了催化剂在反应体系中的稳定性。
     2.制备了以季铵盐(十六烷基三甲基溴化铵(CTAB),四乙基溴化铵(TEAB),四甲基溴化铵(TMAB))作为抗衡离子,二聚体[(PW_11FeO_39)_2O]~(10-)作为杂多阴离子的催化剂,运用IR, XRD, UV-vis, SEM, BET等表征手段对所合成的催化剂的结构特征,物理化学性质进行了系统的研究。研究抗衡离子对杂多酸盐催化环己醇氧化反应的催化活性的影响,研究发现抗衡离子的碳链越长,催化剂的催化活性越高。同时还考察了催化剂在反应过程中结构的变化对其催化性能的影响,结果发现二聚体结构的杂多酸盐在反应后结构发生变化,在二聚体到单体[PW_11Fe(H_2O)O_39]~(4-)的转化过程中,环己醇的转化率快速升高,待转化过程结束后,环己醇的转化率无明显变化。因此这个转化过程是一个动态过程,可以提高催化反应活性。同时进一步探讨了其反应机制。
     3.通过共沉淀法将二聚体杂多酸盐CTA_10[(PW_11FeO_39)_2O]负载于载体SiO_2上,运用IR, XRD, DRS UV-vis, TG-DTA, BET等表征手段对所合成的催化剂的结构特征,物理化学性质进行了系统的研究。表征结果说明二聚体CTA_10[(PW_11FeO_39)_2O]高度分散于SiO_2表面。以叔丁醇为溶剂,H_2O_2为氧化剂,考察负载型催化剂CTAFe_2/SiO-2对液-固相正己醇氧化反应的催化性能,发现在液固相氧化反应中,负载量为60%时,催化活性最高,反应后负载型催化剂中杂多酸盐有部分流失,但催化剂的结构稳定,没有发生改变;以O_2为氧化剂,考察负载型催化剂CTAFe_2/SiO_2对气-固相正己醇氧化反应的催化性能,在气-固相氧化反应中,负载量为60%时,催化活性最高,负载型催化剂在反应后结构发生改变,二聚体结构消失。CTA_10[(PW_11FeO_39)2O]在反应后结构发生重排,变成1:12系列Keggin型杂多阴离子[PW_12O_40]~(3-),取代金属Fe从结构中释放出去,而处于抗衡离子的位置。
     4.考察了以离子体积大的碱金属阳离子(Rb~+, Cs~+)作为抗衡离子,[SiFe(OH_2)W_11O_39]~(5-)作为杂多阴离子主体的合成和表征,研究抗衡离子对杂多酸盐的物理化学性质和结构特征的影响,以及对环己醇-H_2O_2氧化反应的反应性能的影响,并探索其简单反应机制。结果表明催化剂均具有Keggin型结构,引入不同的抗衡离子,并没有改变硅钨酸盐的Keggin型结构。随着抗衡离子半径的增大Rb     5.在杂多化合物中引入有机配体对其进行修饰,设计以及制备了一个新型的无机-有机杂化材料,以金属取代的杂多酸盐[PW_11Ni(H_2O)O_39]~(5-)作为无机物种,有机胺作为有机配体,通过杂多化合物中的取代金属Ni与有机胺中的氮原子配位成键而形成无机-有机杂化材料。通过IR, UV, XRD, XPS, TG-DTA, ICP等表征手段对杂化材料的结构进行了系统的研究,并考察了杂化材料对染料的光催化降解的能力。
Oxidation reactions constitute an important research area because they have awide range of applications in organic synthesis and fine chemical industry. Theselective oxidation of alcohols into their corresponding carbonyl compounds is one ofcrucially important and fundamental transformations from both synthetic andindustrial points of view, due to the wide-ranging utility of these products as versatileintermediates of valuable compounds such as pharmaceuticals, agricultural chemicalsand vitamins. Oxidation of alcohols has always been the research hot spot, in thepursuit of fast reaction rate and high yield, meanwhile, researchers begin to payattention to how to develop environment friendly, mild reaction conditions of alcoholoxidation process. In selective catalytic oxidation of organic compounds, hydrogenperoxide is an attractive oxygen donor as it has a high content of active oxygenspecies, and water is only byproduct. It is also much cheaper and safer to use thanorganic peroxides or peracids, making the process promising for future application.Most examples of alcohol oxidation with hydrogen peroxide employed heteropolycompounds as catalysts have been reported. Heteropoly compounds are a kind of newexcellent acid catalyst and redox catalyst due to their tunable acid and redoxproperties, a certain structure and electrons and protons move/storage capacity,hydrolytic and thermal stability, solubility in various media, and so forth. Heteropolycompounds can also be supported on carriers such as SiO2or carbon, etc, and showhigh catalytic ability and selectivity. The structure and composition of heteropolycompounds can be modified and changed, thus changing their catalytic properties.
     In this paper, heteropoly compounds were modified by changing theircountercations and amount of substituted metals, introduction of organic ligands orbeing supported on suitable carriers, thus making their application in the oxidation ofalcohols. The heteropoly compounds after modification were characterized by IR,XRD, UV-vis, SEM, BET to study their structural characteristics and physicochemicalproperties such as: stability, morphology, solubility, etc. The influence of modification of heteropoly compounds on their catalytic properties was studied. The relationshipbetween countercations, structural change of heteropoly compounds and catalyticproperties was studied systematically, and the mechanism of the oxidation overmodified heteropoly compounds was studied preliminary.The main experimental results and conclusions are as follows:
     1. Firstly, Fen-substituted (n=0,1,2,3) Keggin-type silicotungstates TBA4[α-SiW_12O_40],TBA_5[α-SiW_11{Fe(OH_2)}O_39], TBA_6[γ-SiW_10{Fe(OH_2)}2O_38] and TBA7[α-SiW9{Fe(OH_2)}3O37](TBA=[(C4H9)4N]~+) were synthesized and characterized by IR, UV-vis and XRD. Theresults illuminated that the amount of Fe did not affect the Keggin-type structure ofsilicotungstates. But TBA4[α-SiW_12O_40], TBA_5[α-SiW_11{Fe(OH_2)}O_39] and TBA7[α-SiW_9{Fe(OH_2)}3O37] were α-isomer, diiron-substituted TBA_6[γ-SiW_10{Fe(OH_2)}2O_38] wasγ-isomer.With H_2O_2as oxidant, the influence of Fe-center on the catalytic oxidation ofcyclohexanol was studied. Non-substituted Keggin anion [α-SiW_12O_40]4-was inactive.Only when Fe was on the coordination site, the catalytic activity of silicotungstateswas increased. These results showed that Fe was the active center of catalytic system.The catalyst TBA_6[γ-SiW_10{Fe(OH_2)}2O_38] showed the highest catalytic reactivity. Thisresult showed that the skeleton structure of Keggin-type silicotungstates played animportant role in catalytic reactivity, and diiron site of γ-Keggin silicotungstates waseffective for the oxygenation with H_2O_2. With TBA_6[γ-SiW_10{Fe(OH_2)}2O_38] as catalyst,the optimal condition: acetonitrile as solvent, temperature at70oC, n(H_2O_2)=160mmol, n (catalyst)=0.3mmol,89.2%conversion of cyclohexanol was achieved. IRand UV-vis spectra of TBA_6[γ-SiW_10{Fe(OH_2)}_2O_38] after reaction showed thatγ-Keggin structure was stable and the catalyst was not deactivated under the reactionconditions used.
     2. The dimeric mono-Fe(III)-substituted phosphotungstates [CTA]_10[(PW_11FeO_39)_2O],[TEA]10[(PW_11FeO_39)_2O] and [TMA]_10[(PW_11FeO_39)_2O](cetytrimethyl ammonium bromide(CTAB), tetraethylammonium bromide (TEAB) and tetramethy lammonium bromide(TMAB)) were synthesized and characterized by IR, XRD, UV-vis, SEM and BET.The results showed that the longer alkyl chains of the organic countercations was, theless compact the particles showed, thus the specific surface area was bigger and thecatalyst was more accessible to the substrate. The catalytic activities of thesephosphotungstates were tested in the oxidation of cyclohexanol using H_2O_2as oxidantand tert-Butanol as solvent.[CTA]_10[(PW_11FeO_39)_2O] showed to be the most efficient catalyst, the result indicated that longer alkyl chains of the organic countercations wasfavorable to enhancing the catalytic activity of the catalysts.
     In addition, IR spectra of the recovered catalyst at different reaction temperatureand at different reaction time at70oC, showed that the catalyst [CTA]10[(PW_11FeO_39)_2O]was not stable at70oC and decomposed completely with the formation of monomeric[CTA]_4PW_11Fe(H_2O)O_39after3h of the reaction. But there was still dimeric[CTA]10[(PW_11FeO_39)_2O] partially existing in the catalytic system at the first3h of thereaction. During the first3h of the reaction, the dimeric [CTA]10[(PW_11FeO_39)_2O]gradually decomposed into monomeric [CTA]4PW_11Fe(H_2O)O_39, this dynamic processfacilitated catalytic oxidation of cyclohexanol.
     3. SiO_2-supported CTA_10[(PW_11FeO_39)_2O] was synthesized by a co-precipitationmethod. IR, XRD, DRS UV-vis, TG-DTA and BET results proved that CTA_10[(PW_11FeO_39)_2O]could be finely dispersed on the SiO_2, and the dimeric structure was stable in thesupported catalysts. All samples had evenly distributed mesoporous channel.
     With H_2O_2as oxidant and tert-Butanol as solvent, the catalytic activity ofCTAFe2/SiO_2was tested in the liquid-solid phase oxidation of hexanol. The resultsshowed that SiO_2had no catalytic reactivity. The conversion of hexanol increasedafter [CTA_10[(PW_11FeO_39)_2O] supported on SiO_2. The yield of hexanal and hexanoicacid all increased with the load of CTAFe2/SiO_2increasing. From the selectivity andactivity into consideration, the optimal load was60%. A little leaching of the activespecies occurred during the reaction, but the dimeric structure of CTAFe2/SiO_2was stable.
     With O_2as oxidant, the catalytic activity of CTAFe2/SiO_2was tested in thegas-solid phase oxidation of hexanol. The results showed that their reactivity wasenhanced after CTA_10[(PW_11FeO_39)_2O] supported on SiO_2. When the load was60%,the catalytic activity of CTAFe2/SiO_2reached highest. IR spectra and XRD patterns ofthe catalysts after reaction showed that the structure of the catalysts changed anddimeric structure disappeared. The structure of CTA_10[(PW_11FeO_39)_2O] changed aftergas-solid phase oxidation of hexanol and rearranged into1:12Keggin anion[PW12O40]3-. That’s because organic cations decomposed from250oC to400oC, whichdrived the release of Fe from the Keggin anion [(PW_11FeO_39)_2O]10-yielding Fe ascountercation. The remained lacunary [PW_11FeO_39]4-was unstable and rearrangedinto [PW12O40]3-.
     4. The mono-iron-substituted Keggin-type silicotungstates Rb5SiFe(OH_2)W_11O_39·7H_2O and Cs5SiFe(OH_2)W_11O_39·6H_2O were synthesized, which were characterized by IR,XRD, UV-vis, SEM, BET, and TG-DTA. The results showed that the preparedsilicotungstates were of Keggin structure and Keggin unit of heteropoly anion[SiFe(OH_2)W_11O_39]5-did not change by introducing different countercations. Butcountercations could change the morphology, specific surface area and dissolubility ofthe silicotungstates. The specific surface area increased gradually and the particlesaccumulated loosen gradually and dissolubility in water decreased gradually with theradius of countercations increasing in the order of Rb     With H_2O_2as oxidant, cyclohexanol was efficiently oxidized to cyclohexanone overthese two silicotungstates. The results showed that the catalyst Rb5SiFe(OH_2)W_11O_39·7H_2Oshowed the highest catalytic reactivity. For organic liquid phase oxidation with H_2O_2asoxidant, the catalyst with good dissolubility could form water-oil biphasic reactionsystem, thus making it better catalytic reactivity. The catalyst Rb5SiFe(OH_2)W_11O_39·7H_2Ocould dissolved in H_2O_2and presented as liquid state in the reaction process. Thus thecontact area between the catalyst and organic substrate magnified and the conversionof cyclohexanol was increased. Moreover, water-oil biphasic system allowed easyrecovery of catalyst. The catalyst could be reused three times without appreciable lossof activity. With Rb5SiFe(OH_2)W_11O_39·7H_2O as catalyst and tert-Butanol as solvent,the optimal conditions: temperature at80oC, n(H_2O_2)/n(cyclohexanol) was1.5,n(catalyst) was0.4mmol,52.1%conversion of cyclohexanol was achieved.
     5. Introducing organic ligand into heteropoly compound, a new inorganic-organichybrid material Na(ANIH)4ANI[PW_11Ni(ANI)O_39]·12H_2O (ANI=aniline) was prepared basedon transition-metal monosubstituted Keggin type anion [PW_11Ni(H_2O)O_39]5-as inorganicspecies and aniline as organic ligand by a covalent bonding of Ni-N. The as-preparedhybrid material was characterized by elemental analysis, IR,UV-vis, XRD, TG-DTA,ICP and XPS. The results approved that the Keggin structure of the hybrid materialstill remained and the Ni-N covalent bond is formed between the transition-metal inthe Keggin-type anion [PW_11Ni(H_2O)O_39]5-and the nitrogen atom of ANI, whichilluminated that heteropoly anions reacted chemically with organic ligand, andelectrons transferred from the nitrogen atom to the transition metal Ni center. Also theanion [PW_11Ni(ANI)O_39]5-was surrounded by five ANI containing species: four ofthem were protonated ANIH~~+as countercations and one was noncoordinated ANImolecule. Photocatalytic degradation of dye RB indicated that the as-prepared hybrid material Na(ANIH)4ANI[PW_11Ni(ANI)O_39]·12H_2O showed higher photocatalyticactivity. Therefore, the hybrid material has great potential for application in practicalphotodegradation.
引文
[1]郑汝丽,王恩波.钼钨的多酸化学[J].化学通报,1984,9:12-18.
    [2] CORONADO E, GOMEZ-GARCIA C J. Polyoxometalate-based molecularmaterials [J]. Chem Rev,1998,98:273-296
    [3] KATSOULIS D E. A survey of applications of polyoxometalates [J]. Chem Rev,1998,98:359-388.
    [4] MIZUNO N, MISONO M. Heterogeneous catalysis [J]. Chem Rev,1998,98:199-217.
    [5] SADAKANE M, STECKHAN E. Electrochemical properties of polyoxometalatesas electrocatalysts [J]. Chem Rev,1998,98:219-238.
    [6] DUNCAN D C, NETZEL T L, Hill C L. Early-time dynamics and reactivity ofpolyoxometalate excited states [J]. Inorg Chem,1995,34:4640-4646.
    [7] KOZHEVNIKOV I V. Catalysis by heteropoly acids and multicomponentPolyoxometalates in liquid-phase reactions [J]. Chem Rev,1998,98:171-198.
    [8] AKID R, DARWENT J R. Heteropolytungstates as catalysts for the photochemical reduction of oxygen and water [J]. J Chem Soc Dalton trans,1985,395-399.
    [9] XI Z W, ZHOU N, SUN Y, et al. Reaction-controlled phase-transfer catalysis forpropylene epoxidation to propylene oxide [J]. Science,1998,292:1139-1141.
    [10] ZHOU G D, YANG X M, LIU J, et al. Structure and catalytic properties ofmagnesia-supported copper salts of molybdovanadophosphoric acid [J]. J PhysChem B,2006,110:9831-9837.
    [11] JAYNES B S, Hill C L. Radical carbonylation of alkanes via polyoxotungstatephotocatalysis [J]. J Am Chem Soc,1995,117:4704-4705.
    [12] EVANS H T, GATEHOUSE B M, LEVERETT P. Crystal structure of theheptamolybdate (VI)(paramolybdate) ion,[Mo7O24]6-, in the ammonium andpotassium tetrahydrate salts [J]. J Chem Soc Dalton Trans,1975,505-514.
    [13] BLOUET-CRUSSON E, RIGOLE M, FOURNIER M, et al. Oxidativedehydrogenation of isobutyric acid with cupric salts of molybdovanadophosphoricacid (CuxH4-2xPVMo11O40). Investigation of catalyst activation and deactivation[J]. Appl Catal A,1999,178:69-83.
    [14] YAMASE T, ISHIKAWA E, YASUSHI A, et al. Alkene epoxidation by hydrogenperoxide in the presence of titanium-substituted Keggin-type polyoxotungstates
    [PTixW12-xO40](3+2x)-and [PTixW12-xO40-x(O2)x](3+2x)-(x=1and2)[J]. J Mol CatalA,1996,114:237-245.
    [15] CAVANI F, KOUTYREV M, TRIFIRò F. The role of promoters in theoxidehydrogenation of ethane over structurally stable Keggin-type heteropolyoxomolybdates [J]. Catal Today,1996,28:319-333.
    [16] MOFFAT J B. Conversion of C2-C3alkanes on heteropolyoxometalates [J]. ApplCatal A: Gen,1996,146:65-86
    [17] ERMOLENKO L, GIANNOTTI C. Aerobic photocatalytic oxidation ofadamantane with heteropolyoxometalates [Xn+W12O40]8-nwhere X=Si, Co2+,Co3+[J]. J Mol Catal A,1996,114:87-91.
    [18] MIZUNO N, SUH D, HAN W, et al. Catalytic performance of Cs2.5Fe0.08H1.26PVMo11O40for direct oxidation of lower alkanes [J]. J Mol Catal A,1996,114:309-317.
    [19] BUSCA G, CAVANI F, ETIENNE E, et al. Reactivity of Keggin-typeheteropolycompounds in the oxidation of isobutane to methacrolein andmethacrylic acid: Reaction mechanism [J]. J Mol Catal A,1996,114:343-359
    [20] XI X, DONG S. Electrocatalytic reduction of nitrite using Dawson-typetungstodiphosphate anions in aqueous solutions, adsorbed on a glassy carbonelectrode and doped in polypyrrole film [J]. J Mol Catal A,1996,114:257-265.
    [21] MOFFAT J B. Implicit and explicit microporosity in heteropoly oxometalates [J].J Mol Catal:1989,52(1):169-191.
    [22] OKUHARA T, NISHIMURA T, WATANABE H, et al. Novel catalysis of cesiumsalt of heteropoly acid and its characterization by solid-state NMR [J]. Stud Surf.Sci. Catal,1994,90:419-428.
    [23] LANGPAPE M, MILLET J M. Effect of iron counter-ions on the redoxproperties of the Keggin–type molybdophosphoric heteropolyacid: Part I. Anexperimental study on isobutane oxidation catalysts [J]. Appl Catal A: Gen,2000,200:89-101.
    [24] JIANG X, LI H, ZHU W, et al. Deep desulfurization of fuels catalyzed bysurfactant-type decatungstates using H2O2as oxidant [J]. Fuel,2009,88:431–436.
    [25] DING Y, ZHAO W. The oxidation of pyridine and alcohol using the Keggin-typelacunary polytungstophosphate as a temperature-controlled phase transfercatalyst [J]. J Mol Catal A,2011,337:45-51
    [26] HUA L, QIAO Y, YU Y, et al. A Ti-substituted polyoxometalate as aheterogeneous catalyst for olefin epoxidation with aqueous hydrogen peroxide[J]. New J Chem,2011,35:1836–1841.
    [27] QIAO Y, HOU Z, LI H, et al. Polyoxometalate-based protic alkylimidazoliumsalts as reaction-induced phase-separation catalysts for olefin epoxidation [J].Green Chem,2009,11:1955–1960
    [28] KAMATA K, KUZUYA S, UEHARA K, et al. μ-η1: η1-peroxo-bridged dinuclearperoxotungstate catalytically active for epoxidaton of olefins [J]. Inorg. Chem,2007,46:3768–3774;
    [29] SANTOS I C M S, ALMEIDA PAZ F A, SIM ES M M Q. Catalytichomogeneous oxyfunctionalization with hydrogen peroxide in the presence of aperoxotungstate [J]. Appl Catal A: Gen,2008,351:166–173.
    [30] KAMATA K, YAMAGUCHI K, HIKICHI S, et al.[{W(=O)(O2)2(H2O)}2(μ-O)]2–-catalyzed epoxidation of allylic alcohols in water with high selectivity andutilization of hydrogen peroxide [J]. Adv Synth Catal,2003,345:1193–1196.
    [31] KAMATA K, YAMAGUCHI K, MIZUNO N. Highly Selective, recyclableepoxidation of allylic alcohols with hydrogen peroxide in water catalyzed bydinuclear peroxotungstate [J]. Chem–Eur J,2004,10:4728–4734.
    [32] YAMAGUCHI K, YOSHIDA C, UCHIDA S, et al. Peroxotungstate immobilizedon ionic liquid-modified silica as a heterogeneous epoxidation catalyst withhydrogen peroxide [J]. J Am Chem Soc,2005,127:530–531.
    [33] WANG J M, YAN L, LI G X, et al. Mono-substituted Keggin-polyoxometalatecomplexes as effective and recyclable catalyst for the oxidation of alcohols withhydrogen peroxide in biphasic system [J]. Tetra Lett,2005,46:7023-7027
    [34] SANTOS I C M S, GAMELAS J A F, BALULA M S S, et al. Sandwich-typetungstophosphates in the catalytic oxidation of cycloalkanes with hydrogenperoxide [J]. J Mol Catal A,2007,262:41-47.
    [35] LI G X, DING Y, WANG J M, et al. New progress of Keggin and Wells-Dawsontype polyoxometalates catalyze acid and oxidative reactions [J]. J Mol Catal A,2007,262:67-76.
    [36] DING Y, MA B, GAO Q, et al. A spectroscopic study on the12-heteropolyacidsof molybdenum and tungsten (H3PMo12-nWnO40) combined with cetylpyridiniumbromide in the epoxidation of cyclopentene [J]. J Mol Catal A,2005,230:121-128.
    [37] BARONETTI G, THOMAS H, QUERINI C A. Wells-Dawson heteropolyacidsupported on silica: isobutane alkylation with C4olefins[J]. Appl Catal A: Gen,2001,217:131-141.
    [38] KHARAT A N, PENDLETON P, BADALYAN A, et al. Oxidation of aldehydesusing silica-supported Co(II)-substituted heteropolyacid [J]. J Mol Catal A,2001,175:277-283
    [39] SIDDIQUI M R H, HOLMES S, HE H, et al. Coking and regeneration pfpalladium-doped H3PW12O40/SiO2catalysts [J]. Catal Lett,2000,66:53-57.
    [40] BLASCO T, CORMA A, MARTíNEZ A, et al. Supported heteropolyacid (HPW)catalysts for the continuous alkylation of isobutane with2-butene: The benefit ofusing MCM-41with larger pore diameters[J]. J Catal,1998,177:306-313.
    [41] IZUMI Y, HASEBE R, URABE K. Catalysis by heterogeneous supportedheteropoly acid [J]. J Catal,1983,84:402-409.
    [42] ALCANIZ-MONGE J, TRAUTWEIN G, PARRES-ESCLAPEZ S, et al.Influence of microporosity of activated carbons as a support of polyoxometalates[J]. Micropor Mesopor Mater,2008,115:440-446.
    [43] BABA T, ONO Y. Heteropolyacids and their salts supported on acidicion-exchange resin as highly active solid-acid catalysts [J]. Appl Catal,1986,22:321-324.
    [44] JERMY B R, PANDURANGAN A. H3PW12O40supported on MCM-41molecular sieves: An effective catalyst for acetal formation [J]. App Catal A: Gen,2005,295(2):185-192.
    [45] KOZHEVNIKOV I V,KLOETSTRA K R,SINNEMA A, et al. Study ofcatalysts comprising heteropoly acid H3PW12O40supported on MCM-41molecular sieve and amorphous silica [J]. J Mol Catal A,1996,114(1-3):287-298.
    [46] MISONO M. Heterogeneous catalysis by heteropoly compounds of molybdenumand tungsten [J]. Catal Rev Sci Eng,1987,29:269-321.
    [47] RAO K M, GOBETTO R, IANNIBELLO A, et al. Solid state NMR and IRstudies of phosphomolybdenum and phosphotungsten heteropoly acids supportedon SiO2, γ-A12O3, and SiO2-A12O3[J]. J Cata1,1989,119(2):512-516.
    [48] KASZTELAN S, PAYEN E, MOFFAT J B. The existence and stability of thesilica-supported12-molybdophosphoric acid keggin unit as shown by Raman,XPS, and31P NMR spectroscopic studies [J]. J Cata1,1990,125(1):45-53.
    [49] BRüCKMAN K, CHE M, HABER J, et al. On the physicochemical and catalyticproperties of H5PV2Mo10O40supported on silica [J]. Catal Lett,1994,25(3-4):225-240.
    [50] MASTIKHIN V M, KULIKOV S M, NOSOV A V, et al.lH and31P MAS NMRstudies of solid heteropolyacids and H3PW12O40supported on SiO2[J]. J MolCatal,1990,60(1):65-70.
    [51] IZUMI Y, NATSUME N, TAKAMINE H, et al. Silica-supported heteropoly acidcatalyst for liquid-phase friedel-crafts reactions [J]. Bull Chem Soc Jpn,1989,62:2159-2162.
    [52]陈宵榕,李永丹,康慧敏等.负载型杂多酸催化乙烷氧化脱氢反应的起燃特性[J].化工学报,2001,52(10):933-936
    [53]杜迎春,郭金宝.负载杂多酸催化剂的表征及催化合成乙酸正丁醋的研究I.负载杂多酸催化剂制备及表征[J].石油炼制与化工,2007,38(7):34-39.
    [54]郭晓俊,黄崇品,张锐.负载型杂多酸催化甲基丙烯醛氧化合成甲基丙烯酸[J].石油化工,2007,36(3):276-281
    [55] ONO Y, TAGUCHI M, SUZUKI S, et al. Heteropolyacids as solid-acid catalysts[J]. Stud Surf Sci Catal,1985,20:167-176.
    [56]姚军品,徐佩若,徐争勇等.乙烯直接催化氧化合成醋酸I.负载型Pd-杂多酸催化剂的组成[J].华东理工大学学报:自然科学版,2001,27(1):46-50
    [57]姚军品,徐佩若,徐争勇等.乙烯直接催化氧化合成醋酸II.负载型Pd-杂多酸催化剂制备条件的选择[J].华东理工大学学报:自然科学版,2001,27(3):230-233
    [58]黄世煜,丁云杰,张连中等.乙烯直接氧化制乙酸的研究I. Pd-Ru/HPA/SiO2:双金属催化剂的催化性能[J].催化学报,2001,22(6):579-580
    [59] MOLNáR A, BEREGSZáSZI T, FUDALA á, et al. The acidity and catalyticactivity of supported acidic cesium dodecatungstophosphates studied by MASNMR, FTIR, and catalytic test reactions [J]. J Catal,2001,202(2):379-386
    [60] ESTRADA A C, SANTOS I C M S, SIM ES M M Q, et al. Silica supportedtransition metal substituted polyoxotungstates: Novel heterogeneous catalysts inoxidative transformations with hydrogen peroxide [J]. App Catal A: Gen,2011,392:28–35.
    [61] SOUSA J L C, SANTOS I C M S, SIM ES M M Q, et al. Iron(III)-substitutedpolyoxotungstates immobilized on silica nanoparticles: Novel oxidativeheterogeneous catalysts [J]. Catal Commun,2011,12:459-463.
    [62]朱万春,孙方龙,常加贵等.异丁烷选择氧化制甲基丙烯酸杂多化合物催化剂P1..33-dMo12VaCubSbcAsdK1.5Ox/SiC的研究[J].燃料化学学报,2004,32(1):87-92.
    [63] ZHANG J, WANG A, LI X, et al. Oxidative desulfurization of dibenzothiopheneand diesel over [Bmim]3PMo12O40[J]. J Catal,2011,279:269-275
    [64] KOZHEVNIKOV I V, SINNEMA A, JANSEN R J J, et al. New acid catalystscomprising heteropolyacids on a mesoporous molecular sieve MCM-41[J]. CatalLett,1994,30:241-252.
    [65] HU J L, LI K X, LI W, et al. Selective oxidation of styrene to benzaldehydecatalyzed by Schiff base-modified ordered mesoporous silica materialsimpregnated with the transition metal-monosubstituted Keggin-typepolyoxometalates [J]. App Catal A: Gen,2009,364:211–220.
    [66] WANG J, ZHU H O. Alkylation of1-dodecene with benzene over H3PW12O40supported on mesoporous silica SBA-15[J]. Catal Lett,2004,93(3-4):209-212.
    [67] MUKAI S R, MASUDA T, OGINO I, et al. Preparation of encaged heteropolyacid catalyst by synthesizing12-molybdophoric Acid in the supercages of Y-typezeolite [J]. App Catal A: Gen,1997,165:219-226.
    [68] MUKAI S R, OGINO I, LIN L, et al,A stable "ship in the bottle" type12-molybdophoric acid encaged Y-type zeolite catalyst for liquid phase reactions[J]. react kinet catal lett,2000,69(2):253-258.
    [69] NOWI SKA K, FóRMANIAK R, KALETA W, et al. Heteropoly compoundsincorporated into mesoporous material structure [J]. App Catal A: Gen,2003,256:115-123
    [70]楚文玲,杨向光,叶兴凯等.硅钨杂多酸在中孔全硅分子筛HMS上的固载及其催化性能[J].催化学报,1997,18(3):225-229.
    [71]张富民,王军,袁超树等.脱铝超稳Y沸石负载杂多化合物催化剂的液相酯化性能[J].中国科学:B辑,2005,35(4):324-330
    [72] LIU Y, MURATA K, INABA M, et al. Selective oxidation of propylene toacetone by molecular oxygen over Mx/2H5-x[PMo10V2O40]/HMS (M=Cu2+, Co2+,Ni2+)[J]. Catal Commun,2003,4(6):281-285.
    [73]王敏,杨水金. MCM-48分子筛负载磷钨杂多酸催化合成缩醛(酮)[J].石油化工.2006,35(12):1160-1165
    [74] JALIL P A. Investigations on polyethylene degradation into fuel oil overtungstophosphoric acid supported on MCM-41mesoporous silica [J]. J AnalAppl Pyrol,2002,65:185-195.
    [75] NAVALIKHINA M D, KRYLOV O V. Hydrogenating activity and adsorptioncapacity of supported nickel catalysts modified by heteropoly compounds [J].Kinet Catal,2001,42(2):264-274.
    [76] DUPONT P, VéDRINE J C, PAUMARD E, et al. Heteropolyacids supported onactivated carbon as catalysts for the esterification of acrylic acid by butanol [J].Appl Catal A: Gen,1995,129:217-227.
    [77] NEUMANN R, LEVIN M. Selective aerobic oxidative dehydrogenation ofalcohols and amines catalyzed by a supported molybdenum-vanadiumheteropolyanion salt Na5PMo2V2O40[J]. J Org Chem,1991,56:5707-5710.
    [78] MULLER J, WATERMAN H I. Die hydratation von then und propen [J].Brennstoff Chem,1957,38:321-329,357-362.
    [79] KOZHEVNIKOV I V, SINNEMA A, JANSEN R J J, et al.17O NMRdetermination of proton sites in solid heteropoly acid H3PW12O40.31P,29Si and17O NMR, FT-IR and XRD study of H3PW12O40and H4SiWl2O40supported oncarbon [J]. Catal Lett,1994,27:187-197.
    [80] IZUMI Y, URABE K. Catalysis of heteropoly acids entrapped in activated carbon[J]. Chem Lett,1981,10:663-666.
    [81]王守国,王元鸿,谢忠魏等.氧化铝负载杂多酸催化甲醇脱水制备二甲醚[J].现代化工,2000,20(11):39-41.
    [82]周广栋,韩洋,刘杰等.氧化镁负载的钼钒磷酸铜催化剂的积碳行为[J].高等学校化学学报,2007,28(2):297-301.
    [83] SONG I K, LEE J K, Lee W Y. Preparation and catalytic activity ofH3PMo12O40-blended polymer film for ethanol conversion reaction [J]. ApplCatal A: Gen,1994,119:107-119.
    [84] KULSZEWICZ-BAJER I, ZAGóRSKA M, PO NICZEK J, et al. Heteropolyanionsdoped polyacetylene-preparation, spectroscopic and catalytic properties [J].Synth Met,1991,41:39-42.
    [85] PO NICZEK J, BIELA SKI A, KULSZEWICZ-BAJER I, et al. Heteropolyanion-doped polypyrrole as catalyst for ethyl alcohol conversion [J]. J Mol Catal,1991,69:223-233.
    [86] HASIK M, PO NICZEK J, PIWOWARSKA Z, et al. Catalytic conversion ofethyl alcohol on polyaniline protonated with12-tungstosilicic acid [J]. J MolCatal,1994,89:329-343.
    [87] DZIEMBAJ R, MALECKA A, PIWOWARSKA Z, et al. XPS study ofpolyaniline supported dodecatungstosilicic acid catalyst [J]. J Mol Catal,1996,112:423-430.
    [88] JANA S K, KUBOTA Y, TATSUMI T. Cobalt-substituted polyoxometalatepillared hydrotalcite: Synthesis and catalysis in liquid-phase oxidation ofcyclohexanol with molecular oxygen [J]. J Catal,2008,255:40-47.
    [89] CARRIAZO D, LIMA S, MARTIN C, et al. Metatungstate and tungstoniobate-containing LDHs: Preparation, characterisation and activity in epoxidation ofcyclooctene [J]. J Phys Chem Solid,2007,68:1872-1880.
    [90]周广栋,程铁欣,郭晓红等.聚苯胺负载H4PMo11VO40催化剂的结构和催化性能[J].催化学报,2004,25(3):189-193.
    [91]胡玉才,叶兴凯,吴越等.杂多酸在膨润土上的固载化(II):液固相中催化合成乙酸丁酯[J].河北轻化工学院学报,1996,17(3):55-61
    [92] BOKADE V V, DESHPANDE S S, PATIL R, et al. Toluene alkylation withmethanol to p-xylene over heteropoly acids supported by clay [J]. J Nat GasChem,2007,16(1):42-45
    [93] YADAV G D, ASTHANA N S. Selective decomposition of cumenehydroperoxide into phenol and acetone by a novel cesium substitutedheteropolyacid on clay [J]. Appl Catal A: Gen,2003,244(2):341-357
    [94] GOMEZ SAINERO L M, DAMYANOVA S, FIERRO J L G. Methanol oxidationover ZrO2-SiO2supported phosphomolybdic acid [J]. Appl Catal A: Gen,2001,208(1-2):63-75
    [95] INGLE R H, VINU A, HALLIGUDI S B. Alkene epoxidation catalyzed byvanadomolybdophosphoric acids supported on hydrated titania [J]. CatalCommun,2008,9:931-938.
    [96] PREDOEVA A, DAMYANOVA S, GAIGNEAUX E M, et al. The surface andcatalytic properties of titania-supported mixed PMoV heteropoly compounds fortotal oxidation of chlorobenzene [J]. Appl Catal A: Gen,2007,319:14-24.
    [97] MAYER C R, THOUVENOT R, LALOT T. New hybrid covalent networksbased on polyoxometalates: Part1. Hybrid networks based on Poly(ethylmethacrylate) chains covalently cross-linked by heteropolyanions: Synthesis andswelling properties [J]. Chem Mater,2000,12:257-260.
    [98] DABLEMONT C, PROUST A, THOUVENOT R, et al. Functionalization ofpolyoxometalates: From Lindqvist to Keggin derivatives.1. Synthesis, solutionstudies, and spectroscopic and ESI mass spectrometry characterization of therhenium phenylimido tungstophosphate [PW11O39{ReNC6H5}]4-[J]. Inor Chem,2004,43(11):3514-3520.
    [99] KIKUKAWA Y J, YAMAGUCHI S, NAKAGAWA Y, et al. Synthesis of adialuminum-substituted silicotungstate and the diastereoselective cyclization ofcitronellal derivatives [J]. J Am Chem Soc,2008,130:15872–15878
    [100] XIN F B, POPE M T, LONG G J, et al. Polyoxometalate derivatives withmultiple organic groups.2. Synthesis and structures of tris(organotin) α,β-Keggin tungstosilicates [J]. Inorg Chem,1996,35:1207-1213.
    [101] KOZHEVNIKOV I V. Heteropoly acids and related compounds as catalysts forfine chemical synthesis [J]. Catal Rev Sci Eng,1995,37:311-352.
    [102] MISONO M, NOJIRI N. Recent progress in catalytic technology in japan [J].Appl Catal,1990,64:1-30.
    [103] OKUHARA T, MIZUNO N, MISONO M. Catalytic chemistry of heteropolycompounds [J]. Adv Catal,1996,41:113-252.
    [104] VERHOEF M J, KOOYMAN P J, PETERS J A, et al. A study on the stability ofMCM-41-supported heteropoly acids under liquid-and gas-phase esterificationconditions [J]. Micropor Mesopor Mater,1999,27:365-371.
    [105] KULIKOV S M, KOZHEVNIKOV I V. The mechanisms of catalytic reactions.Proceedings of the Third All-Union Conference [C], Novosibirsk,1986,270.
    [106] IZUMI Y, MATSUO K, URABE K. Efficient homogeneous acid catalysis ofheteropoly acid and its characterization through ether cleavage [J]. J Mol Catal,1983,18:299-314.
    [107] Joshi M V, NARASIMHAN C S. Catalysis by heteropolyacids: some newaspects [J]. J Catal,1989,120:282-286.
    [108] Izumi Y, Bull. Chem. Soc. Jpn.1989,62,2159
    [109]赵本良,赵宝中.以杂多酸催化法乙醇脱水制乙烯[J].东北师大学报(自然科学版),1995,1(1):70-72.
    [110] NISHIMURA T, OKUHARA T, MISONO M. High catalytic activity of aninsoluble acidic cesium salt of dodecatungstophosphoric acid for liquid-phasealkylation [J]. Appl Catal,1991,73(1): L7-L11.
    [111]陈景林,林青松,蒋山等.气相硝化制备硝基苯的研究[J].分子催化,2001,15(2):119-123.
    [112]李贵贤,王晓宁,司海娟等。凹凸棒石负载磷钨酸催化合成乙酸正丁酯[J].分子催化,2008,22(2):137-141.
    [113]孙瑜,乐英红,高滋.磷钨杂多酸及其铯盐上的常温正戊烷异构化反应[J].化学学报,1998,56:792-798.
    [114] IZUMI Y, URABE K, ONAKA M. Zeolite, clay and heteropoly acid in organicreactions [M]. Kodansha/VCH: Tokyo,1992, p99.
    [115] HILL C L, PROSSER-MCCARTHA C M. Homogeneous catalysis by transitionmetal oxygen anion clusters [J]. Coord Chem Rev,1995,143:407-455.
    [116] SHELDON R A. Homogeneous and heterogeneous catalytic oxidations withperoxide reagent [J]. Top Curr Chem,1993,164:22-43.
    [117] LYONS J E, ELLIS JR P E, DURANTE V A. Active iron oxo centers for theselective catalytic oxidatioin of alkanes [J]. Stud Surf Sci Catal,1991,67:99-116.
    [118] MIZUNO N, HIROSE T, TATEISHI M, et al. Synthesis of [PW9O37{Fe3-xNix(OAc)3}](9+x)-(x=predominantly1) and oxidation catalysis by the catalystprecursor [J]. J Mol Catal,1994,88: L125-L131.
    [119] NEUMANN R, KHENKIN A M, DAHAN M. Hydroxylation of alkanes withmolecular oxygen catalyzed by a new ruthenium-substituted polyoxometalate,
    [WZnRu2III(OH)(H2O)(ZnW9O34)2]11-[J]. Angew Chem Int Ed Engl,1995,34:1587-1589.
    [120] NEUMANN R, LEVIN M. Aerobic oxidative dehydrogenations catalyzed bythe mixed-addenda heteropolyanion PV2Mo10O405-: a kinetic and mechanisticstudy [J]. J Am Chem Soc,1992,114:7278-7286.
    [121] NEUMANN R, ASSAEL I. Oxybromination catalysed by the heteropolyanioncompound H5PMo10V2O40in an organic medium: selective para-bromination ofphenol [J]. J Chem Soc Chem Commun,1988,1285.
    [122] MIZUNO N, HIROSE T, TATEISHI M, et al. A pronounced catalytic activity ofPW11CoO395-for epoxidation of alkenes by molecular oxygen in the presence ofaldehyde [J]. Chem Lett,1993,22:1839-1842.
    [123] HAMAMOTO M, NAKAYAMA K, NISHIYAMA Y, et al. Oxidation of organicsubstrates by a molecular oxygen/aldehyde/heteropolyoxometalate system [J]. JOrg Chem,1993,58:6421-6425.
    [124] BONCHIO M, CARRARO M, FARINAZZO A, et al. Aerobic oxidation ofcis-cyclooctene by iron-substituted polyoxotungstates: Evidence for a metalinitiated auto-oxidation mechanism [J]. J Mol Catal A,2007,262:36-40.
    [125] ISHIMOTO R, KAMATA K, MIZUNO N. Highly selective oxidation oforganosilanes to silanols with hydrogen peroxide catalyzed by a lacunarypolyoxotungstate [J]. Angew Chem Int Ed,2009,48:8900-8904.
    [126] KAMATA K, YONEHARA K, SUMIDA Y, et al. Efficient epoxidation ofolefins with≥99%selectivity and use of hydrogen peroxide [J]. Science,2003,300:964-966.
    [127] NEUMANN R, LEVIN M. Selective aerobic oxidative dehydrogenation ofalcohols and amines catalyzed by a supported molybdenum-vanadiumheteropolyanion salt Na5PMo2V2O40[J]. J Org Chem,1991,56:5707-5710.
    [128] FUJIBAYASHI S, NAKAYAMA K, HAMAMOTO M, et al. An efficientaerobic oxidation of various organic compounds catalyzed by mixed addendaheteropolyoxometalates containing molybdenum and vanadium [J]. J Mol CatalA,1996,110:105-117.
    [129] STOBBE-KREEMERS A W, DIELIS R B, MAKKEE M, et al. Heteropolyanionsas redox components in heterogeneous wacker oxidation catalysts [J]. J Catal,1995,154:175-186.
    [130] NOWI SKA K, DUDKO D, GOLON R. Pd2+Mn2+HPA: a heterogeneousWacker system catalyst [J]. Chem Commun,1996,277-279.
    [131] NOWI SKA K, SOPA M, SZUBA D. Ethene oxidation over supportedheteropoly acids [J]. Catal Lett,1996,39:275-279.
    [132] HUA L, QIAO Y X, LI H, et al. Epoxidation of olefins with hydrogen peroxidecatalyzed by a reusable lacunary-type phosphotungstate catalyst [J]. ScienceChina Chemistry,2011,54:769-773.
    [133]朱秀华,王炜,李海成.磷钨酸光催化降解染料废水研究[J].上海环境科学,2001,20(9):444-445
    [134]杨曦,余刚,孔令仁等.酸性红3B的杂多酸光催化降解动力学[J].环境科学,2002,23(3):40-43
    [135]朱秀华,李海成,王炜.硅钨酸光催化降解甲基橙溶液研究[J].大连铁道学院学报,2001,22(1):101-104
    [136] HILL C L,BOUCHARD D A. Catalytic photochemical dehydrogenation oforganic substrates by polyoxometalates [J]. J Am Chem Soc,1985,107:5148-5157.
    [137] YAMASE T. Photo and electrochromism of polyoxometalates and relatedmaterials [J]. Chem Rev,1998,98:307-325.
    [138]岳斌,许静玉,金松林等.多酸的光化学和光催化(上)[J].上海化工,2001,13:24-26
    [139]岳斌,许静玉,金松林等.多酸的光化学和光催化(下)[J].上海化工,2001,14:15-16
    [140] FRIESEN D A, GIBSON D B, LANGFORD C H. Heterogeneous Cs3PW12O40Photocatalysts [J]. Chem Commum,1998:543-544.
    [141] YOON M, CHANG J A, KIM Y, et al. Heteropoly acid-incorporated TiO2colloids as novel photocatalytic systems resembling the photosynthetic reactioncenter [J]. J Phys Chem B,2001,105:2539-2545.
    [142]林碧洲.某些有机胺十聚钨酸盐的制备和催化性质[J].华侨大学学报(自然科学版),2002,23(3):300-303.
    [143]尚静,朱永法.钨磷酸碱金属盐气相光催化氧化甲醛的性能研究[J].复旦学报(自然科学版),2003,42(6):903-905
    [144] IWAHAMA T, YOSHINO Y, KEITOKU T, et al. Efficient oxidation of alcoholsto carbonyl compounds with molecular oxygen catalyzed by N-hydroxyphthalimide combined with a Co species [J]. J Org Chem,2000,65:6502-6507.
    [145] CORNILS B, HERMANN W A. Applied homogeneous catalysis withorganometallic compounds [M]. VCH, Weinheimm,1996.
    [146] HASAN M, MUSAWIR M, DAVEY P N, et al. Oxidation of primary alcoholsto aldehydes with oxygen catalysed by tetra-n-propylammonium perruthenate[J]. J Mol Catal A,2002,180:77-84.
    [147] DENGEL A C, EI-HENDAWY A M, GRIFFITH W P, et al. Studies ontransition-metal oxo and nitrido complexes. Part11. New oxo complexes ofruthenium as aerobically assisted oxidants, and the X-ray crystal structure of
    [Ru2O6(py)4]·3.5H2O [J]. J Chem Soc Dalton Trans,1990,737-742.
    [148] YAMAGUCHI K, MIZUNO N. Supported ruthenium catalyst for theheterogeneous oxidation of alcohols with molecular oxygen [J]. Angew ChemInt Edit Engl,2002,41(23):4538-4542.
    [149] KLEMET I, LUTJENS H, KNOCHEL P. Transition metal catalyzed oxidationsin perfluorinated solvents [J]. Angew Chem Int Ed Engl,1997,36,1454-1456.
    [150] SMIDT J, HAFNER W, JIRA R, et al. Katalytische umsetzungen von olefinenan platinmetall-verbindungen das consortium-verfahren zur herstellung vonacetaldehyde [J]. Angew Chem,1959,71:176–182.
    [151] LLOYD W G. Homogeneous oxidations of alcohols with palladium (II) salts [J].J Org Chem,1967,32:2816-2819.
    [152] BARAK G., DAKKA J, SASSON Y. Selective oxidation of alcohols by aH2O2-RuCl3system under phase-transfer conditions [J]. J Org Chem,1988,53:3553-3555.
    [153] TAMARU Y, YAMADA Y, INOUE K, et al. Oxidation of primary andsecondary alcohols by the catalysis of palladium [J]. J Org Chem,1983,48:1286-1292.
    [154] BLACKBURN T F, SCHWARTZ J. Homogeneous catalytic oxidation ofsecondary alcohols to ketones by molecular oxygen under mild conditions [J]. JChem Soc Chem Commun,1977,157-158.
    [155] KANEDA K, FUJII M, MORIOKA K. Highly selective oxidation of allylicalcohols to α, β-unsaturated aldehydes using Pd cluster catalysts in the presenceof molecular oxygen [J]. J Org Chem,1996,61:4502-4503.
    [156] NISHIMURA T, ONOUE T, OHE K, et al. Pd(OAc)2-catalyzed oxidation ofalcohols to aldehydes and ketones by molecular oxygen [J]. Tetra Lett,1998,39:6011-6014
    [157] KANEDA K, FUJIE Y, EBITANI K. Catalysis of giant palladium clustercomplexes. Highly selective oxidations of primary of allylic alcohols to α,β-unsaturated aldehydes in the presence of molecular oxygen [J], Tetra Lett,1997,38:9023-9026.
    [158] SEMMELHACK M F, SCHMID C R, CORTES D A, et al. Oxidation ofalcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion[J]. J Am Chem Soc,1984,106(11):3374-3376.
    [159] COLEMAN K S, LORBER C Y, OSBORN J A. Selective catalytic oxidation ofalcohols by a ruthenium-copper bifunctional system using molecular oxygen [J].Eur J Inorg Chem,1998,1673-1675.
    [160] COLEMAN K S, COPPE M, OSBORN J A. Catalytic oxidation of alcohols intoaldehydes and ketones by an osmium-copper bifunctional system usingmolecular oxygen [J]. Tetra Lett,1999,40:3723-3726.
    [161] MARKó I E, GILES P R, TSUKAZAKI M, et al. Copper-catalyzed oxidationof alcohols to aldehydes and ketones: An efficient, aerobic alternative [J].Science,1996,274:2044-2046.
    [162] MARKó I E, GAUTIER A, BROWN S M. Neutral, non-racemising, catalyticaerobic oxidation of alcohols [J]. J Organomet Chem,2001,624:344-347.
    [163] MALLAT T, BAIKER A. Oxidation of alcohols with molecular oxygen on solidcatalysts [J]. Chem Rev,2004,104:3037-3058.
    [164] PRATI L, ROSSI M. Gold on carbon as a new catalyst for selective liquid phaseoxidation of diols [J]. J Catal,1998,176(2):552-560.
    [165] ENACHE D I, EDWARDS J K, LANDON P, et al. Solvent-free oxidation ofprimary alcohols to aldehydes using Au-Pd/TiO2catalysts [J]. Science,2006,311:362-365
    [166] ABAD A, CONCEPCIóN P, CORMA A, et al. A collaborative effect betweengold and a support induces the selective oxidation of alcohols [J]. Angew ChemInt Edit Engl,2005,44(26):4066-4069.
    [167] TSUNOYAMA H, SAKURAI H, NEGISHI Y, et al. Size-specific catalyticactivity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation inwater [J]. J Am Chem Soc,2005,127:9374-9375.
    [168] NEUMANN R, KHENKIN A M, VIGDERGAUZ I. Quinones as co-catalystsand models for the surface of active carbon in the phosphovanadomolybdate-catalyzed aerobic oxidation of benzylic and allylic alcohols: Synthetic,kinetic, and mechanistic aspects [J]. Chem-Eur J,2000,6(5):875-882.
    [169] FARHADI S, AFSHARI M, MALEKI M, et al. Photocatalytic oxidation ofprimary and secondary benzylic alcohols to carbonyl compounds catalyzed byH3PW12O40/SiO2under an O2atmosphere [J]. Tetra Lett,2005,46(49):8483-8486.
    [170] HERAVI M M, ZADSIRJAN V, BAKHTIARI K, et al. Green and reusableheteropolyacid catalyzed oxidation of benzylic, allylic and aliphatic alcohols tocarbonyl compounds [J]. Catal Commun,2007,8(3):315-318.
    [171] XAVIER K O, CHACKO J, YUSUFF K K M, Intrazeolite cobalt(II), nickel(II)and copper(II) complexes of3-formylsalicylic acid for oxidation reactions [J]. JMol Catal A,2002,178:275-281.
    [172] WATERS T, O'HAIR R A J, WEDD A G.. Probing the catalytic oxidation ofalcohols via an anionic dimolybdate centre using multistage mass spectrometry[J]. Chem Commun,2000,225-226.
    [173] BARHATE N B, SASIDHARAN M, SUDALAI A, et al. Selective catalyticoxidation of benzylic alcohols to the corresponding carbonyl compounds withTBHP over CrS2[J]. Tetra Lett,1996,37(12):2067-2070.
    [174] BERKESSEL A, SKLORZ C A. Mn trimethyltriazacyclononane/ascorbic acid:a remarkably efficient catalyst for the epoxidation of olefins and the oxidationof alcohols with hydrogen peroxide [J]. Tetra Lett,1999,40:7965-7968.
    [175] EMERSON G F, PETTIT R. п–Allyl-iron tricarbonyl cations [J]. J Am ChemSoc,1962,84:4591-4592.
    [1] KOZHEVNIKOV I V. Catalysis by heteropoly acids and multicomponentpolyoxometalates in liquid-phase reactions [J]. Chem Rev,1998,98:171-198.
    [2] NEUMANN R. Polyoxometalate complexes in organic oxidation chemistry [J].Prog Inorg Chem,1998,47:317-370.
    [3] OKUHARA T, MIZUNO N, MISONO M. Catalytic chemistry of heteropolycompounds [J]. Adv Catal,1996,41:113-252.
    [4] HILL C L, PROSSER-MCCARTHA C M. Homogeneous catalysis by transitionmetal oxygen anion clusters [J]. Coord Chem Rev,1995,143:407-453.
    [5] POPE M T, MüLLER A. Polyoxometalate chemistry: An old field with newdimensions in several disciplines [J]. Angew Chem Int Ed Engl,1991,30:34-48.
    [6] NEUMANN R, GARA M. Highly active manganese-containing polyoxometalateas catalyst for epoxidation of alkenes with hydrogen peroxide [J]. J Am Chem Soc,1994,116:5509-5510.
    [7] ZHANG X, CHEN Q, DUNCAN D C, et al. Multiiron polyoxoanions. Syntheses,characterization, X-ray crystal structures and catalysis of H2O2-based hydrocarbonoxidations by [FeIII4(H2O)2(P2W15O56)2]12-[J]. Inorg Chem,1997,36:4208-4215.
    [8] HOLM R H, KENNEPOHL P, SOLOMON E I. Structural and functional aspectsof metal sites in biology [J]. Chem Rev,1996,96:2239-2314.
    [9] ROSENZWEIG A C, FREDERICK C A, LIPPARD S J, et al. Crystal structure ofa bacterial non-haem iron hydroxylase that catalyses the biological oxidation ofmethane [J]. Nature1993,366:537-543.
    [10] MéNAGE S, GALEY J-B, HUSSLER G, et al. Aromatic hydroxylation by H2O2and O2catalyzed by a μ–oxo diiron(III) complex [J]. Angew Chem Int Ed Engl,1996,35:2353-2355.
    [11] RABION A, Chen S, WANG J P, et al. Biomimetic oxidation studies.9. Mechanisticaspects of the oxidation of alcohols with functional, active site methanenonooxygenase enzyme models in aqueous solution [J]. J Am Chem Soc,1995,117:12356-12357.
    [12] MASCHMEYER T, OLDROYD R D, SANKAR G, et al. Designing a solidcatalyst for the selective low-temperature oxidation of cyclohexane tocyclohexanone [J]. Angew Chem Int Ed Engl,1997,36:1639-1642.
    [13] QUE L, HO R Y N. Dioxygen activation by enzymes with mononuclearnon-heme iron active sites [J]. Chem Rev,1996,96:2607-2624.
    [14] FEIG A L, LIPPARD S J. Reactions of non-heme iron(II) centers with dioxygenin biology and chemistry [J]. Chem Rev,1994,94:759-805.
    [15] LEISING R A, KIM J, PEREZ M A, et al. Alkane functionalization at (.mu.-oxo)diiron (III) centers [J]. J Am Chem Soc,1993,115:9524-9530.
    [16] SHELDON R A. Biocatalytic, biomimetic and suprabiotic oxidation of alkanes in:Catalytic activation and functionalisation of Light alkanes [M]. NATO ASISeries, Kluwer Academic Publishers, Dordrecht,1998.
    [17] ZHANG X, CHEN Q, DUNCAN D C, et al. Multiiron polyoxoanions. Synthesis,characterization, X-ray crystal structure, and catalytic H2O2-based alkeneoxidation by [(n-C4H9)4N]6[FeIII4(H2O)2(PW9O34)2][J]. Inorg Chem,1997,36:4381-4386.
    [18] MIZUNO N, HIROSE T, TATEISHI M, et al. Synthesis of [PW9O37{Fe3-xNix(OAC)3}](9+x)-(x=predominantly1) and oxidation catalysis by the catalyst precursor [J]. J MolCatal,1994,88: L125-L131.
    [19] NOTARI B. Microporous crystalline titanium silicates [J]. Adv Catal,1996,41:253-334.
    [20] KNOPS-GERRITS P-P, VOS D D, THIBAULT-STARZYK F, et al. Zeolite-encapsulated Mn(II) complexes as catalysts for selective alkene oxidation [J].Nature,1994,369:543-546.
    [21] TéZé A, HERVé G. α-, β-, and γ–dodecatungstosilicic acids: isomers and relatedlacunary compounds [J]. Inorg Synth,1990,27:85-96.
    [22] ZONNEVIJLLE F, TOURNé C M, TOURNé G F. Preparation and characterizationof iron(III)-and rhodium(III)-containing heteropolytungstates. Identification ofnovel oxo-bridged iron(III) dimmers [J]. Inorg Chem,1982,21:2751-2757.
    [23] NOZAKI C, KIYOTO I, MINAI Y, et al. Synthesis and characterization ofdiiron(III)-substituted silicotungstate [γ(1,2)-SiW10{Fe(OH2)}2O38]6-[J]. InorgChem,1999,38:5724-5729
    [24] LIU J F, ORTéGA F, SETHURAMAN P, et al. Trimetallo derivatives of lacunary9-tungstosilicate heteropolyanions. Part1. Synthesis and characterization [J]. JChem Soc Dalton Trans,1992,1901-1906.
    [25]王力,刘宗瑞,王恩波等.取代型钨硅杂多化合物的导电性及磁性[J].东北师大学报自然科学版,1998,4:105-109.
    [26]王恩波,胡长文,许林.多酸化学导论[M],北京:化学工业出版社,1998.
    [27] MIZUNO N, NOZAKI C, KIYOTO I, et al. Highly efficient utilization ofhydrogen peroxide for selective oxygenation of alkanes catalyzed bydiiron-substituted polyoxometalate precursor [J]. J Am Chem Soc,1998,120:9267-9272.
    [1] SHELDON R A, KOCHI J K. Metal-catalyzed oxidations of organic compounds
    [M]. Academic Press, New York,1981.
    [2] DUGGER R W, RAGAN J A, BROWN RIPIN D H. Survey of GMP bulkreactions run in a research facility between1985and2002[J]. Org Process ResDev,2005,9:253-258.
    [3] FEY T, FISCHER H, BACHMANN S, et al. Silica-supported TEMPO catalysts:synthesis and application in the anelli oxidation of alcohols [J]. J Org Chem,2001,66:8154-8159.
    [4] NOYORI R, AOKI M, SATO K. Green oxidation with aqueous hydrogen peroxide[J]. Chem Commun,2003,1977-1986.
    [5] ANASTAS P T, BARTLETT L B, KIRCHHOFF M M. The role of catalysis in thedesign, development, and implementation of green chemistry [J]. Catal Today,2000,55:11-22.
    [6] VENTURELLO C, GAMBARO M. Selective oxidation of alcohols and aldehydeswith hydrogen peroxide catalyzed by methyltrioctylammonium tetrakis(oxodiperoxotungsto) phosphate(3-) under two-phase conditions [J]. J Org Chem,1991,56:5924-5931.
    [7] ISHII Y, YAMAWAKI K, YOSHIDA T, et al. Oxidation of olefins and alcohols byperoxo-molybdenum complex derived from tris(cetylpyridinium)12-molybdo-phosphate and hydrogen peroxide [J]. J Org Chem,1987,52:1868-1870.
    [8] ISHII Y, TANAKA H, NISHIYAMA Y. Selectivity in oxidation of sulfides withhydrogen peroxide by [π-C5H5N+(CH2)15CH3]3PM12O403-and [π-C5H5N+(CH2)15CH3]3{PO4[M(O)(O2)2]4}3-(M=Mo or W)[J]. Chem Lett,1994.23:1-4
    [9] CARRARO M, SANDEI L, SARTOREL A, et al. Hybrid polyoxotungstates assecond-generation POM-based catalysts for microwave-assisted H2O2activation[J]. Org Lett,2006,8:3671-3674.
    [10] POPE M T. Heteropoly and isopoly oxometalates [M]. Springer, Berlin,1983.
    [11] ESTRADA A C, SIM ES M M Q, SANTOS I C M S, et al. Catalytic activity ofiron-substituted polyoxotungstates in the oxidation of aromatic compounds withhydrogen peroxide [J]. Monatsh Chem,2010,141:1223-1235.
    [12] ESTRADA A C, SIM ES M M Q, SANTOS I C M S, et al. Oxidation ofpolycyclic aromatic hydrocarbons with hydrogen peroxide in the presence oftransition metal mono-substituted Keggin-type polyoxometalates [J]. ChemCatChem,2011,3:771-779.
    [13] ESTRADA A C, SIM ES M M Q, SANTOS I C M S, et al. Iron-substitutedpolyoxotungstates as catalysts in the oxidation of indane and tetralin withhydrogen peroxide [J]. Appl Catal A: Gen,2009,366:275-281.
    [14] ESTRADA A C, SIM ES M M Q, SANTOS I C M S, et al. Transition metalsubstituted polyoxotungstates in the catalytic oxidation of1H-indene and1,2-dihydronaphthalene with hydrogen peroxide [J]. Catal Lett,2009,128:281-289.
    [15] ZHANG X, CHEN Q, DUNCAN D C, et al. Multiiron polyoxoanions. Syntheses,characterization, X-ray crystal structures and catalysis of H2O2-based hydrocarbonoxidations by [FeIII4(H2O)2(P2W15O56)2]12-[J]. Inorg Chem,1997,36:4208-4215.
    [16] ZHANG X, CHEN Q, DUNCAN D C, et al. Multiiron polyoxoanions. Synthesis,characterization, X-ray crystal structure and catalytic H2O2-based alkeneoxidation by [(n-C4H9)4N]6[FeIII4(H2O)2(PW9O34)2][J]. Inorg Chem,1997,36:4381-4386.
    [17] SANTOS I C M S, GAMELAS J A F, BALULA M S S, et al. Sandwich-typetungstophosphates in the catalytic oxidation of cycloalkanes with hydrogenperoxide [J]. J Mol Catal A,2007,262:41-47.
    [18] JIANG X, LI H M, ZHU W S, et al. Deep desulfurization of fuels catalyzed bysurfactant-type decatungstates using H2O2as oxidant [J]. Fuel,2009,88:431-436
    [19] LI C, JIANG Z X, GAO J B, et al. Ultra-deep desulfurization of diesel: Oxidationwith a recoverable catalyst assembled in emulsion [J]. Chem Eur J,2004,10:2277-2280.
    [20] L H Y, GAO J B, JIANG Z X, et al. Ultra-deep desulfurization of diesel byselective oxidation with [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled inemulsion droplets [J]. J Catal,2006,239:369-375.
    [21] GAO J B, WANG S G, JIANG Z X, et al. Deep desulfurization from fuel oil viaselective oxidation using an amphiphilic peroxotungsten catalyst assembled inemulsion droplets [J]. J Mol Catal A,2006,258:261-266
    [22] KUZNETSOVA L I, DETUSHEVA L G, FEDOTOV M A, et al. Catalyticproperties of heteropoly complexes containing Fe(III) ions in benzene oxidationby hydrogen peroxide [J]. J Mol Catal A,1996,111,81-90.
    [23] KURTZ JR D M. Oxo-and hydroxo-bridged diiron complexes: a chemicalperspective on a biological unit [J]. Chem Rev,1990,90:585-606.
    [24]王恩波,胡长文,许林.多酸化学导论[M],北京:化学工业出版社,1998.
    [25] QIAO Y X, HOU Z S, LI H, et al. Polyoxometalate-based protic alkylimidazoliumsalts as reaction-induced phase-separation catalysts for olefin epoxidation [J]. GreenChem,2009,11:1955-1960.
    [26] LI H, HOU Z S, QIAO Y X, et al. Peroxopolyoxometalate-based room temperatureionic liquid as a self-separation catalyst for epoxidation of olefins [J]. CatalCommun,2010,11:470-475.
    [27] HUA L, QIAO Y X, LI H, et al. Epoxidation of olefins with hydrogen peroxidecatalyzed by a reusable lacunary-type phosphotungstate catalyst [J]. Sci ChinaChem,2011,54:769-773.
    [28] WENG Z H, WANG J Y, JIAN X G.. A reusable and active lacunary derivative[PW11O39]7-as benzyl alcohol oxidation catalyst with hydrogen peroxide [J].Catal Commun,2008,9:1688–1691
    [29] DENGEL A C, GRIFFITH W P, PARKIN B C. Studies on polyoxo-andpolyperoxometalates. Part1. Tetrameric heteropolyperoxotungstates andheteropolyperoxomolybdates [J]. J Chem Soc Dalton Trans,1993,2683-2688.
    [1] MISONO M. Heterogeneous catalysis heteropoly compounds of molybdenum andtungsten [J]. Catal Rev Sci Eng,1987,29:269-321.
    [2] IZUMI Y, ONO M, KITAGAWA M, et al. Silica-included heteropoly compoundsas solid acid catalysts [J]. Micropor Mater1995,5(4):255-262.
    [3] OKUHARA T, NISHIMURA T, WATANABE H, et al. Novel catalysis of cesiumsalt of heteropoly acid and its characterization by solid-state NMR [J]. Stud SurfSci Catal,1994,90:419–428.
    [4] LEE KY, ARAI T, NAKATA S, et al. Catalysis by heteropoly compounds.20. AnNMR study of ethanol dehydration in the pseudoliquid phase of12-tungstophosphoric acid [J]. J Am Chem Soc,1992,114:2836–2842.
    [5] GUO Y H, HU C W. Porous hybrid photocatalysts based on polyoxometalates [J].J Cluster Sci,2003,14:505–526.
    [6] FAZAELI R, ALIYAN H. Cu3/2PMo12O40/SiO2: A heterogeneous, eco-friendly andreusable catalyst for the solvent-free catalytic preparation of1,1-diacetates fromaldehydes [J]. Chin J Catal,2008,29:10–14.
    [7] GUO Y H, HU C W. Heterogeneous photocatalysis by solid polyoxometalates [J].J Mol Catal A,2007,262:136–148.
    [8] HAMIDI H, SHAMS E, YADOLLAHI B, et al. Fabrication of carbon pasteelectrode containing [PFeW11O39]4-polyoxoanion supported on modifiedamorphous silica gel and its electrocatalytic activity for H2O2reduction [J].Electrochim Acta,2009,54:3495–3500.
    [9] MAKSIMCHUK N V, MELGUNOV M S, CHESALOV Y A, et al. Aerobicoxidation of α-pinene over cobalt-substituted polyoxometalate supported onamino-modified mesoporous silicates [J]. J Catal,2007,246(2):241-248.
    [10] IZUMI Y, URABE K. Catalysis of heteropoly acids entrapped in activated carbon[J]. Chem Lett,1981,10:663-666.
    [11] LAPKIN A, BOZKAYA B, MAYS T, et al. Preparation and characterisation ofchemisorbents based on heteropolyacids supported on synthetic mesoporousCarbons and Silica [J]. Catal Today,2003,81(4):611-621.
    [12] KUMAR D, LANDRY C C. Immobilization of a Mo, V-polyoxometalate oncationically modified mesoporous silica: synthesis and characterization studies.Micropor Mesopor Mater2007,98(1-3):309-316.
    [13] BORDOLOI A, LEFEBVRE F, HALLIGUDI S B, Selective oxidation ofanthracene using inorganic-organic hybrid materials based onmolybdovanadophosphoric acids. J Catal,2007,247(2):166-175.
    [14] NANDIYANTO A B D, KIM S G., ISKANDAR F, et al. Synthesis of sphericalmesoporous silica nanoparticles with nanometer-size controllable pores and outerdiameters [J]. Micropor Mesopor Mater,2009,120:447-453.
    [15] GUO Y H, HU C W, JIANG C J, et al. Preparation and heterogeneousphotocatalytic behaviors of the surface-modified porous silica materialsimpregnated with monosubstituted keggin units [J]. J Catal,2003,217:141–151.
    [16] KHOLDEEVA O A, VANINA M P, TIMOFEEVA M N, et al. Co-containingpolyoxometalate-based heterogeneous catalysts for the selective aerobic oxidationof aldehydes under ambient conditions [J]. J Catal,2004,226:363–371.
    [17] SOUSA J L C, SANTOS I C M S, SIM ES M M Q, et al. Iron(III)-substitutedpolyoxotungstates immobilized on silica nanoparticles: Novel oxidativeheterogeneous catalysts [J]. Catal Commun,2011,12:459-463.
    [18]周友亚,李铭岫.十一钨磷杂多酸盐的合成研究[J].河北师范大学学报(自然科学版),2003,27(1):62-63.
    [19] ZONNEVIJLLE F, TOURNé C M, TOURNé G F. Preparation and characterizationof iron(III)-and rhodium(III)-containing heteropolytungstates. Identification ofnovel oxo-bridged iron(III) dimmers [J]. Inorg Chem,1982,21:2751-2757.
    [20] SCHRODEN R C, BLANFORD C F, MELDE B J, et al. Direct synthesis ofordered macroporous silica materials functionalized with polyoxometalate clusters[J]. Chem Mater,2001,13:1074-1081.
    [21] JIANG X, LI H M, ZHU W S, et al. Deep desulfurization of fuels catalyzed bysurfactant-type decatungstates using H2O2as oxidant [J]. Fuel,2009,88:431–436.
    [22] KNAPP C, UI T, NAGAI K, et al. Stability of iron in the Keggin anion ofheteropoly acid catalysts for selective oxidation of isobutane [J]. Catal Today,2001,71:111-119.
    [1] HILL C L, PROSSER-MCCARTHA C M. Homogeneous catalysis by transitionmetal oxygen anion clusters [J]. Coord Chem Rev,1995,143:407-455
    [2] KATSOULIS D E, POPE M T. New chemistry for heteropolyanions in anhydrousnonpolar solvents. Coordinative unsaturation of surface atoms. Polyanion oxygencarriers [J]. J Am Chem Soc,1984,106:2737-2738.
    [3] BAKER L C W, GLICK D C. Present general status of understanding ofheteropoly electrolytes and a tracing of some major highlights in the history oftheir elucidation [J]. Chem Rev,1998,98:3-50.
    [4] OKUHARA T, NISHIMURA T, WATANABE H, et al. Novel catalysis of cesiumsalt of heteropoly acid and its characterization by solid-state NMR [J]. Stud SurfSci Catal.1994,90:419-428.
    [5] OKUHARA T, NISHIMURA T, MISONO M. Microporous heteropoly compoundas a shape selective catalyst: Cs2.2H0.8PW12O40[J]. Chem Lett,1995,24:155-156.
    [6] ONO Y, THOMAS J M, ZAMARAEV K I. Perspectives in Catalysis [M].Blackwell, London,1992.
    [7] BABA T, HASADA Y, NOMURA M, et al.1H NMR studies on the dynamicproperty of protons in PdoH3PW12O40systems in the presence of dihydrogen [J]. JMol Catal A,1996,114:247-255.
    [8] NA K, OKUHARA T, MISONO M. Skeletal isomerization of n-butane catalyzedby an acidic cesium salt of12-tungstophosphoric acid [J]. Chem Lett,1993,22:1141-1144.
    [9] NA K, OKUHARA T, MISONO M. Isomerization of n-butane over bifunctionalplatinum-heteropoly compounds in the presence of hydrogen [J]. J Chem SocChem Commun,1993,1422-1423.
    [10] NOZAKI C, KIYOTO I, MINAI Y, et al. Synthesis and characterization ofdiiron(III)-substituted silicotungstate [γ(1,2)-SiW10{Fe(OH2)}2O38]6-[J]. InorgChem,1999,38:5724-5729
    [11]王恩波,胡长文,许林.多酸化学导论[M],北京:化学工业出版社,1998.
    [12]徐静,赵振波,李正等.过渡金属磷钼钒杂多化合物的表征及催化性能[J].石油学报,2008,24(5):526-532
    [13]蔡铁军,陈亚中,彭振山等. M-Na-P-Mo-V/SiO2系列催化剂对异丁烯氧化反应的催化性能[J].催化学报,2002,23(3):286-288.
    [14] ESTRADA A C, SIM ES M M Q, SANTOS I C M S, et al. Catalytic activity ofiron-substituted polyoxotungstates in the oxidation of aromatic compounds withhydrogen peroxide [J]. Monatsh Chem,2010,141:1223-1235
    [1] HASENKNOPF B, MICOINE K, LAC TE E, et al. Chirality in polyoxometalatechemistry [J]. J Inorg Chem,2008,32:5001-5013.
    [2] LIS S. Applications of spectroscopic methods in studies of polyoxometalates andtheir complexes with lanthanide(III) ions [J]. J Alloys Compd,2000,300–301:88–94.
    [3] RHULE J T, HILL C L, JUDD D A, et al. Polyoxometalates in medicine [J]. ChemRev,1998,98:327-357.
    [4] HAGRMAN D, ZUBEITA C, ROSE D J, et al. Composite solids constructed fromone-dimensional coordination polymer matrices and molybdenum oxide subunites:polyoxomolybdate clusters within [{Cu(4,4’-bpy)}4Mo8O26] and [{Ni(H2O)2(4,4’-bpy)2}2Mo8O26] and one-dimensional oxide chains in [{Cu(4,4’-bpy)}4Mo15O47]·8H2O [J]. Angew Chem Int Ed Eng,1997,36:873-876.
    [5] LIN H S, MAGGARD P A. Synthesis and structures of a new series ofsilver-vanadate hybrid solids and their optical and photocatalytic properties [J].Inorg Chem,2008,47:8044-8052.
    [6] NAGATA T, POHL M, WEINER H, et al. Polyoxoanion-supported organometalliccomplexes: carbonyls of rhenium(I), iridium(I), and rhodium(I) that are solubleanalogs of solid-oxide-supported M(CO)n+and that exhibit novel M(CO)n+mobility [J]. Inorg Chem,1997,36:1366-1377
    [7] WEI X Y, DICKMAN M H, POPE M T. New routes for multiple derivatization ofpolyoxometalates. Bis(acetato) dirhodium-11-tungstophosphate,[(PO4)W11O35{Rh2(OAc)2}]5-[J]. Inorg Chem,1997,36:130-131
    [8] BAR-NAHUM I, ETTEDGUI J, KONSTANTINOVSKI L, et al. A new methodfor the synthesis of organopolyoxometalate hybrid compounds [J]. Inorg Chem,2007,46:5798-5804.
    [9] DU Y H, RHEINGOLD A L, MAATTA E A. A polyoxometalate incorporating anorganoimido ligand: preparation and structure of [Mo5O18(MoNC6H4CH3)]2-[J]. JAm Chem Soc,1992,114:345-346.
    [10] STRONG J B, OSTRANDER R, RHEINGOLD A L, et al. Ensheathing apolyoxometalate: Convenient systematic introduction of organoimido ligands atterminal oxo sites in [Mo6O19]2-[J]. J Am Chem Soc,1994,116:3601-3602
    [11] CLEGG W, ERRINGTON R J, FRASER K A, et al. Functionalisation of
    [Mo6O19]2-with aromatic amines: synthesis and structure of a hexamolybdatebuilding block with linear difunctionality [J]. J Chem Soc Chem Commun,1995,4:455-456.
    [12] PROUST A, THOUVENOT R, CHAUSSADE M, et al. Phenylimido derivativesof [Mo6O19]2-: syntheses, X-ray structures, vibrational, electrochemical,95Mo and14N NMR studies [J]. Inorg Chim Acta,1994,224:81-95.
    [13] KATSOULIS D E. A survey of applications of polyoxometalates [J]. Chem Rev,1998,98:359-388
    [14] QI W, WU L X. Polyoxometalate/polymer hybrid materials: fabrication andproperties [J]. Polym Int,2009,58:1217–1225.
    [15] WANG M S, XU G, ZHANG Z J, et al. Inorganic-organic hybrid photochromicmaterials [J]. Chem Commun,2010,46:361–376.
    [16] WEAKLEY T J R, MALIK S A. Heteropolyanions containing two differentheteroatoms-I [J]. J Inorg Nucl Chem,1967,29:2935-2944.
    [17] HU J L, LI K X, LI W, et al. Selective oxidation of styrene to benzaldehydecatalyzed by Schiff base-modified ordered mesoporous silica materialsimpregnated with the transtition metal-monosubstituted Keggin-typepolyoxometalates [J]. Appl Catal A: Gen.2009,364:211-220.
    [18] GAMELAS J A, COUTO F A S, TROV O M C N, et al. Investigation of thethermal decomposition of some metal-substituted Keggin tungstophosphates [J].Thermochim Acta,1999,326:165-173.
    [19] EVANS J C. The vibrational assignments and configuration of aniline, aniline-NHDand aniline-ND2[J]. Spectrochim Acta,1960,16:428-442.
    [20] JOHN A, PHILIP D, IDRISSI A K, et al. IR and polarized Raman spectra ofanilinium hydrogenphosphite, C6H5NH3+HPO3H-[J]. J Raman Spectrosc,2000,31:1067-1071.
    [21] FUKAYA K, SRIFA A, ISIKAWA E, et al. Synthesis and structuralcharacterization of polyoxometalates incorporating with anilinium cations andfacile preparation of hybrid film [J]. J Mol Struct,2010,979:221-226.
    [22] LI D F, GUO Y H, HU C W, et al. Photocatalytic degradation of aqueous formicacid over the silica composite films based on lacunary Keggin-typePolyoxometalates [J]. Appl Catal A: Gen,2002,235:11-20.
    [23]王恩波,胡长文,许林.多酸化学导论[M],北京:化学工业出版社,1998.
    [24] LI S Z, ZHAO J W, MA P T, et al. Rare sandwich-type polyoxomolybdatesconstructed from di-/tetra-nuclear transition-metal clusters and trivacant Keggingermanomolybdat fragments [J]. Inorg Chem,2009,48:9819-9830.
    [25] YAU S, LEE Y H, CHANG C Z, et al. Structures of aniline and polyanilinemolecules adsorbed on Au(111) electrode: as probed by in situ STM, ex situ XPS,and NEXAFS [J]. J Phys Chem C,2009,113:13758-13764.
    [26] AMARNATH C A, HONG C E, KIM N H, et al. Aniline-and N,N-dimethylformamide-assisted processing route for graphite nanoplates:intercalation and exfoliation pathway [J]. Mater Lett,2011,65:1371-1374.
    [27] LI S Q, ZHU C X, TANG L, et al. Unique properties of polyaniline in thepresence of applied magnetic field and ferric chloride [J]. Mater Chem Phys,2010,124:168-172.
    [28] XU L, LI M Q, WANG E B. Nanosized inorganic-organic hybrid betweenpolyoxometalate anion [PW9Co3O37]9-and p-phenylenediamine [J]. Mater Lett,2002,54:303-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700