用户名: 密码: 验证码:
中国近零排放煤基电站技术经济评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
技术经济评估是发展近零排放煤基电站的重要前期研究内容。本文发展了主要设备性能成本模型,以此为基础提出了一套适用于我国国情的近零排放煤基电站经济性评价方法,在同一比较基准下对捕集CO2的超(超)临界和采用不同气化技术的IGCC方案进行了技术经济比较,并为我国近零排放煤基电站的发展提出了政策建议。
     首先总结分析了国际现有的技术经济研究方法。根据我国的实际情况,建立了IGCC主要单元和CO2捕集的投资成本预测模型。
     参考国际上广泛采用的IGCC电站经济性评价方法和我国燃煤电站的技术经济概算方法,由下至上地建立了IGCC电站总投资的概算框架。结合文献及实际工程可研数据,确定了各项经济性假定的参考值,建立了适用于我国国情的、以技术性能参数为输入量的IGCC电站经济性评价平台。
     运用该经济性评价平台对我国IGCC电站技术方案及煤基电站捕集CO2技术方案进行了技术经济评价。结果表明,新建400MWe级IGCC电站平均比投资(按供电容量计算)约为7582元/kW,发电成本约为0.43元/kWh,盈亏平衡含税上网电价约为0.51元/kWh。在90%CO2捕集率下,比投资为10834元/kW,提高了43%。发电成本为0.53元/kWh,盈亏平衡含税上网电价约为0.65元/kWh,分别增加了23%和27%。常规煤粉电站采取捕集措施后,比投资由4235元/kW增至7867元/kW,发电成本由0.25元/kWh上涨至0.47元/kWh,分别增加了86%和90%。
     对不确定性因素进行了敏感性分析,研究了年发电小时、煤价、总投资以及技术进步情景下比投资、装机容量、供电效率和可用率对经济性的影响。研究了推动当前中国IGCC电站发展的政策组合。结果表明:当前阶段若给予IGCC电站20年期无息贷款、15%的所得税率及低于9.4%的增值税率,煤炭价格为500元/t时,电站盈亏平衡上网电价(含税)将降至0.34元/kWh。若技术进步导致比投资降低30%、供电效率增至48%、供电功率增至600MW且年发电小时为6500h时,IGCC电站的盈亏平衡含税上网电价将降至0.41元,较当前水平下降了21%。
     对不同的CO2处置方式和减排政策进行了情景分析,明确了采取捕集措施的决策临界点和具体技术选择。研究表明,在当前阶段,捕集CO2的常规煤粉炉电站在CO2出售和排放权交易情景下更具竞争力,而捕集CO2的IGCC电站在征收碳税情景下更具竞争力。如IGCC电站比投资下降30%,碳税税率高于249元/tCO2, IGCC捕集电站的发电成本将低于不采取捕集措施的IGCC或煤粉炉电站,同时也低于煤粉炉带捕集电站。
     本文在当前及未来技术进步的情景下,对各项敏感性因素和政策组合将如何影响中国IGCC电站以及近零排放煤基电站经济性所做的研究,对中国发展近零排放煤基电站的技术选择和政策制定具有一定的参考价值。
The techno-economic evaluation is the significant research content of the near-zero emissions coal-based power station in R&D study. In this work, an economic forecast and evaluation methods for the near-zero emissions coal-based power station is built by improving the performance-cost model for the main units, which is suitable for the national conditions of China. Based on the same benchmark, the techno-economic coMParation of supercritical (ultra supercritical) power station and IGCC power station with different gasification technology are made. Moreover, some policy proposals are given for the development of the near-zero emissions coal-based power station in China.
     First of all, the international existing research methods and system are summarized. Then, according to the national conditions of China, the cost model of the main units of IGCC and the CO2 capture facilities is built.
     Considering international IGCC power station economic evaluation methods and China feasibility study methods, the total capital requirements budget method of China's IGCC power station is built. According to the references and practical engineering data, the referenced values of economic assumptions are confirmed. An IGCC economic evaluation software platform that fits the national conditions of China is built which takes the technical performance parameters as its input parameter.
     By using the platform, the techno-economic evaluations are made to the technology programs of China's IGCC and near-zero emissions coal-based power stations. The results indicates that the average investment of greenfield 400MWe IGCC power station in China is about 7582 Yuan/kW, the average COE is about 0.43 Yuan/kWh and the Break-even electricity price including tax is about 0.51 Yuan/kWh. If 90% CO2 is captured in IGCC power station, the investment will increase to 10834 Yuan/kW (43% increase), while the COE will increase to 0.53 Yuan/kWh (23% increase) and the Break-even electricity price including tax is about 0.65 Yuan/kWh (27% increase). If capture 90% CO2 in PC power station, the investment will increase from 4235 Yuan/kW to 7867 Yuan/kW (86% increase), while the COE will increase from 0.25 Yuan/kWh to 0.47 Yuan/kWh (90% increase).
     Sensitivity analysis is made about the main uncertainty factors in the current and technological progress scenarios. The influence of some uncertainty factors to the economical efficiency has been studied, for example, the annual operating hours, coal price, total investment, and the specific investment, installed capability, power supply efficiency and available rate. The policy mix is studied which prompt the development of IGCC in China. The results indicate that, if the policies mix including 20 years interest-free loan, income tax rate of 15%, value added tax rate of 9.4% below and coal price of 500 Yuan/t have been supplied to an IGCC power station, the Break-even electricity price including tax is decreased to 0.34 Yuan/kWh. If the technical improvements cause a 30% decrease to the investment, a 48% increase to the power supply efficiency, power supply increase to 600WM and the annual operating hours increase to 6500h, the Break-even electricity price including tax will be decrease to 0.41 Yuan/kWh, means a 21% decrease to the nowadays.
     In this wok, a scenario analysis about different CO2 treatment methods and the carbon emission reduction policy have been made, and then the critical point and the specific technology selection are confirmed. Currently, the pulverized coal power station will be more competitive with CO2 sale and CDM contract. However, the IGCC power station will be more competitive with a carbon tax policy. For example, when the investment of IGCC decrease 30% and the carbon tax rate is higher than 249 Yuan/tCO2, the COE of an IGCC power station with CO2 capture will be not higher than a IGCC power station without CO2 capture, a PC power station, or a PC power station with CO2 capture.
     In the current and technological progress scenarios, this thesis studies the sensitivity factors and policies mix to comfirm how they could affect the economic performance of the IGCC and near-zero emissions coal-based power stations. This has important value for China to formulate policy and develop roadmap of near-zero emissions coal-based power stations.
引文
[1]肖云汉.煤制氢零排放系统[J].工程热物理学报,2001,22(1):13-15.
    [2]黄河,何芬,李政,et al.中国整体煤气化联合循环电厂的经济性估算模型[J].动力工程,2008,28(04):633-638.
    [3]Al-Juaied M, Whitmore A. Realistic Costs of Carbon Capture [D]; Harvard Kennedy School, 2009.
    [4]Kanniche M, Gros-bonnivard R, Jaud P, et al. Pre-Combustion, Post-Combustion and Oxy-combustion in Thermal Power Plant for CO2 Capture [J]. Applied Thermal Engineering, 2009,30:53-62.
    [5]高健,倪维斗,李政.一种新型二氧化碳准零排放的IGCC系统[J].燃气轮机技术,2007,20(03):1-5.
    [6]Rubin E, Berkenpas M, Kalagnanam J. Development of the Integrated Environmental Control Model [R]. Report No. DE-AC22-92PC91346, Carnegie Mellon University, Pittsburgh, PA, 1993.
    [7]Rosenberg W G, Alpern D C, Walker M R et al. Deploying IGCC in This Decade with 3party Covenant Financing [R]. Kennedy School of Government, Harvard University,2004.
    [8]张寒,郑洪弢,李政,et al.整体煤气化联合循环的经济性计算和分析[J].燃气轮机技术,2003,16(03):6-12.
    [9]冯静,倪维斗,椙下秀昭,et al.整体煤气化联合循环电站的模拟和经济性分析[J].燃气轮机技术,2006,19(02):25-29.
    [10]Rubin E, Kalagnanam J, Frey H, et al. Integrated Environmental Control Modeling of Coal-fired Power Systems [J]. Journal of the Air & Waste Management Association,1997, 47(11):1180-1188.
    [11]Chen C. A Technical and Economic Assessment of CO2 Capture Technology for IGCC Power Plants [D]; Carnegie Mellon University,2005.
    [12]Alfred O. Techno-economic Modeling of Integrated Advanced Power Cycles [D]; Technical University of Nova Scotia,1996.
    [13]Chen Y. Comparative Evaluation of Advanced Coal-based Power Plants [D]; Technical University of Berlin,2002.
    [14]Rubin E, Chen C, Rao A. Cost and Performance of Fossil Fuel Power Plants with CO2 Capture and Storage [J]. Energy Policy,2007,35(09):4444-4454.
    [15]Rao A, Rubin E, Keith D, et al. Evaluation of Potential Cost Reductions from Improved Amine-based CO2 Capture Systems [J]. Energy Policy,2006,34(18):3765-3772.
    [16]David J. Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide [D]; Massachusetts Institute of Technology,2000.
    [17]NETL. Cost and Performance Baseline for Fossil Energy Plants [R]. Report No. DOE/NETL-2007/1281.2007.
    [18]Ordorica-Garcia G, Douglas P, Croiset E, et al. Techno-economic Evaluation of IGCC Power Plants for CO2 Avoidance [J]. Energy Conversion and Management,2006,47(15-16): 2250-2259.
    [19]Descamps C, Bouallou C, Kanniche M. Efficiency of an Integrated Gasification Combined Cycle (IGCC) Power Plant Including CO2 Removal [J]. Energy,2008,33(06):874-881.
    [20]黄河何芬,李政,et al. IGCC电厂的工程设计、采购和施工成本的估算模型[J].动力工程,2008,28(03):475-479.
    [21]张斌,倪维斗,李政.IGCC及煤气化固体氧化物燃料电池混合循环的技术经济性分析[J].动力工程,2005,25(01):141-146.
    [22]焦树建.关于IGCC的发电成本问题[J].燃气轮机技术,2000,13(04):1-6.
    [23]张斌,倪维斗,李政.火电厂和IGCC及煤气化SOFC混合循环减排CO2的分析[J].煤炭转化,2005,28(01):1-7.
    [24]熊杰.传统燃煤发电系统及CO2减排系统的热经济学成本分析和优化[D];华中科技大学,2007.
    [25]张斌,倪维斗,李政.考虑减排CO2的几种大规模制氢系统技术经济分析(下)[J].天然气工业,2004,24(02):104-108.
    [26]王波.基于输运床气化炉的IGCC系统集成研究[D];中国科学院研究生院(工程热物理研究所),2009.
    [27]焦树建.整体煤气化燃气-蒸汽联合循环(IGCC) [M].中国电力出版社.1996.
    [28]焦树建.对目前世界上五座IGCC电站技术的评估[J].燃气轮机技术,1999,12(02):1-15.
    [29]NETL. Destec Gasifier IGCC Base Cases [R]. Report No. PED-IGCC-98-003.2000.
    [30]NETL. Texaco Gasifier IGCC Base Cases [R]. Report No. PED-IGCC-98-001.2000.
    [31]NETL. Shell Gasifier IGCC Base Cases [R]. Report No. PED-IGCC-98-002.2000.
    [32]NETL. Transport Gasifier IGCC Base Cases [R]. Report No. PED-IGCC-98-006.2000.
    [33]王武义,徐定杰,陈健翼.误差原理与数据处理[M].哈尔滨工业大学出版社.2001.
    [34]焦树建.IGCC的某些关键技术的发展与展望[J].动力工程,2006,26(02):153-167.
    [35]Bonsu A K, Eiland J D, Gardner B F. Power from PRB- Four Conceptual IGCC Plant Designs Using the Transport Gasifier [C]. Twenty-second Annual International Pittsburgh Coal Conference.2005.
    [36]Tampa Electric Company. Final Public Design Report of Tampa IGCC Programme [R]. Report No. DE-FC21-91MC27363-46.1996.
    [37]NETL. KRW Gasifier IGCC Base Cases [R]. Report No. PED-IGCC-98-005.2000.
    [38]NETL. Lurgi Gasifier IGCC Base Cases [R]. Report No. PED-IGCC-98-004.2000.
    [39]El-Sayed Y M, Tribus M. Strategic Use of Thermoeconomics for Process Design and Synthesis, Efficiency and Costing [C]. ACS Symposium Series.1983.
    [40]Traverso A, Massardo A F, Cazzola W, et al. WIDGET-TEMP:A Novel Web-based Approach for Thermoeconomic Analysis and Optimization of Conventional and Innovative Cycles [C]. ASME.2004.
    [41]张娜,蔡睿贤.燃气轮机发电机组简捷估价方法[J].燃气轮机技术,1992,5(04):3741.
    [42]Zhang N, Cai R, Lin R, et al. Price Estimation Formular for Gas Turbing Generation Sets [C]. Ensec'93.1993.
    [43]Frey H C, Akunuri N, Probabilistic Modeling and Evaluation of the Performance, Emissions, and Cost of Texaco Gasifier-based Integrated Gasification Combined Cycle Systems Using ASPEN [R]. North Carolina State University,2001.
    [44]Zhu Y. Evaluation of Gas Turbine and Gasifier-based Power Generation System [D]; North Carolina State University,2004.
    [45]The 2009 GTW Handbook [M]. Gas Turbine World 2009.
    [46]冯为民,付晓灵.工程经济学[M].北京大学出版社,2006.
    [47]Eiland J, Gardner B, Powell C, et al. Impact of CO2 Capture on Transport Gasifier IGCC Power Plant [R]. http://www.netl.doe.gov/technologies/coalpower/gasification/projects/advgas/25140/2006-5-2 1_Clearwater%20Conference_%20CO2%20Capture.pdf.2006.
    [48]Argonne National Laboratory. KRW Oxygen-blown Gasification Combined Cycle:Carbon Dioxide Recovery, Transport, and Disposal [R]. Report No. ANL/ESD-34.1996.
    [49]Chen C, Rubin E S. CO2 Control Technology Effects on IGCC Plant Performance and Cost [J]. Energy Policy,2009,37(03):915-924.
    [50]Huang Y, Rezvani S, Mcilveen-Wright D, et al. Techno-Economic Study of CO2 Capture and Storage in Coal Fired Oxygen Fed Entrained Flow IGCC Power Plants [J]. Fuel Processing Technology,2008,89(09):916-925.
    [51]Zhao L, Xiao Y, Gallagher K S, et al. Technical, Environmental, and Economic Assessment of Deploying Advanced Coal Power Technologies in the Chinese Context [J]. Energy Policy, 2008,36(07):2709-2718.
    [52]陈衬兰.基于工程造价及发电成本的核电与火电比较研究[J].科技与管理,2005,04:5-9.
    [53]刘敬尧,李璟,何畅,et al.燃煤及其替代发电方案的生命周期成本分析[J].煤炭学报,2009,34(10):1435-1440.
    [54]胥蕊娜,陈文颖,吴宗鑫.电厂中CO2捕集技术的成本及效率[J].清华大学学报(自然科学版),2009,49(09):103-106.
    [55]田牧,安恩科.燃煤电站锅炉二氧化碳捕集封存技术经济性分析[J].锅炉技术,2009,40(03):36-41.
    [56]耿妍丽,邹骥,许光清,et al.能源技术的学习曲线研究[J].环境保护,2009,08:63-66.
    [57]高鹏飞,陈文颖.碳税与碳排放[J].清华大学学报(自然科学版),2002,42(10):1335-1338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700