用户名: 密码: 验证码:
水中痕量多环芳烃类物质的分析检测及纳滤去除特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(PAHs)类物质在环境中存在广泛,由于其毒性、生物蓄积性和半挥发性使其在环境中持久存在,故被列入典型持久性有机污染物(POPs),受到了人们的广泛关注。本文以萘、菲、荧蒽为研究对象,研究改进PAHs类物质的浓缩和检测方法,并通过小型错流膜过滤装置研究不同操作压力、pH值、离子强度条件下纳滤膜对PAHs类物质的去除特性。
     通过试验研究,得出以下结果:
     (1)样品前处理的最佳固相萃取条件为:上样流速5mL/min,二氯甲烷洗脱,洗脱剂用量3mL,洗脱流速2mL/min。采用气相色谱-质谱联用(GC/MS)对水中痕量PAHs进行了测定,方法检出限为0.03~0.07μg/L,加标回收率为70~96%,相对标准偏差为3.90~9.58%。测定结果显示,该方法相关性好、精度高,能满足水中痕量PAHs的测定要求。
     (2)分别采用纯水和添加了腐殖酸的溶液与PAHs标准物质配制成一定浓度PAHs水样,研究纳滤在这两种水质条件下对PAHs的去除特性。研究发现下列因素影响纳滤膜对PAHs的截留效果:
     ①在纯水条件下比以腐殖酸为主的可溶性有机质共存条件下的膜通量大,截留率小。说明腐殖酸类物质对提高纳滤膜截留PAHs类物质有改善作用,但在该条件下纳滤膜的制水量较低。
     ②在纯水条件下,操作压力与膜通量成正比,与截留率成反比;原水浓度与膜通量成反比,与截留率也成反比;pH和离子强度条件的改变会影响膜结构和膜面分子作用力。低pH值或高离子强度下,由于膜面分子双电层被压缩,膜面对PAHs分子的斥力减小,因而PAHs分子易吸附在膜面上,膜通量较低,截留率较大。在高pH值或低离子强度下,膜孔扩大,PAHs不易吸附在膜面上,膜通量较大,截留率较小。
     ③在以腐殖酸为主的可溶性有机质共存条件下,pH值增大时,腐殖酸中更多的羧基官能团质子化,使得膜面分子之间、膜面分子和溶液中PAHs分子之间的斥力减小,因而膜通量随之增大。Ca~(2+)能够与腐殖酸中的酸性官能团形成络合物,且由于络合作用腐殖酸的链与链之间的静电斥力减小,使其形成盘绕状的腐殖质大分子。随着Ca~(2+)浓度增加,膜表面污染层的密实程度加剧,导致膜通量减小,PAHs的截留率增加。
     ④纳滤膜对PAHs类物质的吸附试验表明,大约经历6h吸附即会达到平衡,此后纳滤膜对PAHs物质的去除主要靠筛分作用完成。
     ⑤BDXN-90比BDXN-70去除PAHs的截留率高。BDXN-90去除率在99%以上,但产水率较低,但是可以通过改变pH值和离子强度等来优化过滤条件。试验证明BDXN-90分离PAHs的效果是稳定的,可以推广至实际应用。
Polycyclic aromatic hydrocarbons(PAHs) exist in the environment widely, because of their toxicity,bioaccumulation and semi-volatile and persistent in the environment,and included in a typical persistent organic pollutants(POPs),were attentioned widely by the scientific community.In this paper,naphthalene, phenanthrene,fluoranthene as the studied objects,the concentration and analytical methods were investigated and improved.Then the effects of test parameters such as operation pressure,pH,ionic strength on the character of removing PAHs by nanofiltration membrane(NF) filtration process were investigated.The main conclusions are as follows:
     (1) With orthogonal experiment,the optimal SPE conditions obtained were 5mL/min for sampling flow rate,3mL of dichloromethane for elution volume,2mL/min for elution flow rate.The results showed the detection limit of the method was 0.03~0.07μg/L,the recovery efficiency was in a range of 70%~96%and the relative standard deviations was in a range of 3.90%~9.58%.The method had better linear relativity and high precision,which could satisfy the requirements to determine the trace PAHs concentration in water.
     (2) The characteristic of PAHs removed by nanofiltration membrane(NF) filtration process was investigated with two process as follows:pure water and water(humic acid added) as solvent,then mixed with PAHs.The following factors influence the removal rate.
     ①The membrane permeability under pure water conditions was higher than the humic acid coexistence,but the removal rate was opposite.This shows that the humic acid in surface water could improve the removal rate of PAHs,but the water preparation amount was lower under this condition.
     ②The operation pressure was proportional to membrane flux,and removal rate was inversely proportional to the operation pressure;the concentration of raw water was inversely proportional to the membrane flux and the removal rate.pH and ionic strength would change the membrane structure and membrane surface intermolecular forces.At low pH or high ionic strength,electric double layer of the membrane surface molecular were compressed,while the repulsive forces between membrane surface and PAHs decrease,leading to that the PAHs molecules adsorbed on the membrane surface easily, low membrane flux,and high removal rate.Under high pH and low ion strength,the result was opposite.
     ③Under the condition of humic acid coexistence,carboxyl functional groups from the humic acid material were protonated as the pH increasing.It leaded to repulsive forces decreasing among membrane surface molecules and the force between the membrane surface molecules and PAHs.As a result,the membrane flux increased. Complex would be formed by Ca~(2+) and acidic functional groups from humic acid material.The electrostatic repulsion among the humic acid material's chain reduced for comlex formed,which leaded to the formation of coiling-shape huge humic molecules. With the Ca~(2+) concentration increasing,dense degree of membrane surface contamination layer was increasing.It leaded to the lower membrane flux and higher removal rate.
     ④The adsorption tests of nanofiltration to PAHs showed that the adsorption equilibrium were finished after 6h,after this the PAHs removal through nanofiltration were accomplished with screening.
     ⑤The removal rate of BDXN-90 were higher than BDXN-70.The removal rate of BDXN-90 was all above 99%.BDXN-90 has lower water preparation amount,but the filtration condition could be optimized by changing pH and ionic strength.It testified that BDXN-90 has stable separation of PAHs and can be extended to practical applications.
引文
[1]杨忠发.多环芳烃研究进展[J].云南化工,2005,(2):35-37.
    [2]周文敏,傅德黔,孙宗光.水中优先控制污染物名单[J].中国环境监测,1990,(4):23-26.
    [3]董瑞斌.多环芳烃在环境中的行为[J].环境与开发,1999,(4):89-90.
    [4]曹楠.多环芳烃的污染与防治[J].化学教育,2001,(12):44-48.
    [5]岳敏,谷学新,邹红,等.多环芳烃的危害与防治[J].首都师范大学学报(自然科学版),2003,24(3):43.
    [6]赵文昌,程金平,谢海贇,等.环境中多环芳烃(PAHs)的来源与监测分析方法[J].环境科学与技术,2006,29(3):105-106.
    [7]王桂山,仲兆庆.多环芳烃的危害及产生的途径[J].山东环境,2001(2):41-43.
    [8]俞誉福.环境化学导论[M].上海:复旦大学出版社,1997:249-250.
    [9]毕新慧,盛国英,谭吉华,等.多环芳烃(PAHs)在大气中的相分布[J].环境科学学报,2004,24(1):101-106.
    [10]张逸,陈永桥,张晓山,等.北京市不同区域采暖期大气颗粒物中多环芳烃的分布特征[J].环境化学,2004,23(6):681-684.
    [11]彭林,陈名墚,张春梅.兰州市大气飘尘中多环芳烃分布及来源判识[J].太原理工大学学报,2000,3 1(2):126-127.
    [12]牛红云,王荟,王格慧,等.南京大气气溶胶中多环芳烃源识别及污染评价[J].中国环境科学,2005,25(5):544-548.
    [13]Chen Y.,Sheng G.,Bi X.,et al.Emission factors for carbonaccous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China[J].Environmental Science and Technology,2005,39(6):1861-1867.
    [14]Odabasia M.,Vantarb N.,Sofuoglub A.,et al.Polycyclic aromatic hydrocarbons (PAHs) in Chicago air[J].The Science of the Total Environment,1999,227(1):57-67.
    [15]唐银健,陈玲,李竺,等.黄浦江表层水体中低环多环芳烃的分布特征[J].环境科学与技术,2007,30(2):1-4.
    [16]彭华,李明,王玲玲,等.河南省主要城市饮用水源水中多环芳烃污染状况的研究[J].中国环境监测,2004,20(3):17-19.
    [17]张铁山.水厂处理工艺中有机污染物转化规律研究[D].北京科技大学,2004.
    [18]Shi Z.,Tao S.,Pan B.,et al Contamination of rivers in Tianjin,China by polycyclic aromatic hydrocarbons[J].Environmental Pollution,2005,134(1):97-111.
    [19]曹学丽,胡学华,姚渭溪.同步荧光一高效液相色谱联用法分析多环芳烃同分异构体[J].分析化学,1994,22(7):664-667.
    [20]Lee.H.B.,翁建华,黄连芬.超临界二氧化碳萃取GC/MS测定土壤中的多环芳烃[J].中国环境监测,1996,12(2):9-11.
    [21]Tao S.,Cui Y.H.,Xu F.L.,et al.Polycyclic aromatic hydrocarbons(PAHs)in agricultural soil and vegetables from Tianjin[J].The Science of the Total Environment,2004 320(1):11-24
    [22]Zhong W.,Wang M.,Some polycyclic aromatic hydrocarbons in vegetables from Northern China[J].Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and environmental Engineering,2002,37(2):287-296.
    [23]Martinez E.,Gros M.,Lacorte S.,etal.Simplified procedures for the analysis of polycyclic aromatic hydrocarbons in water,sediments and mussels[J].chromatogrA,2004,1047(2):181-188.
    [24]刘菲,刘永刚.固相萃取-气相色谱测定地下水中多环芳烃的质量控制研究[J].有色矿冶.2004,20(1):51-55.
    [25]陈慧,黄要红,蔡铁云.固相萃取-气相色谱/质谱法测定水中多环芳烃[J].环境污染与防治,2004,26(1):72-74.
    [26]Hu Y.L.,Fu Y.L.,Li G.K.,Preparation of Anilinemethyl triethoxysilane/polyimethy siloxane Sol-gel Coatings for Solid-phase Microextraction of Aromatic Compounds[J].Anal Chim Acta,2006,567:211-217.
    [27]杨蕾,王保兴,侯英,杨燕.应用搅拌棒吸附萃取.热脱附-气象色谱/质谱法快速测定滇池水系中的16种多环芳烃[J].色谱,2007,25(5):747-752.
    [28]王成云,杨左军,刘丽,余淑媛.气相色谱-质谱联用法测定金属皂中的多环芳烃[J].塑料助剂,2007,2:40-45.
    [29]郭丽,惠亚梅,郑明辉,刘文彬,等.气象色谱-质谱联用测定土壤及底泥样品中的多环芳烃和硝基多环芳烃[J].环境化学,2007,26(2):192-196.
    [30]魏万之,胡妍波,夏建军,等.气相色谱-质谱联用法分析卷烟烟气中15种多环芳烃[J].湖南大学学报,2005,32(2):76-80.
    [31]陶敬奇,王超英,李碧芳,等.固相微萃取-高效液相色谱联用分析环境水样中的痕量多环芳烃[J].色谱,2003.21(6):599-602.
    [32]MAJCHERCAYK A,JOHANNES C,H(U|¨)TERMANN A.Oxidation of Polycyclic Aromatic Hydrocarbons(PAH) by Laccase ofTrametesVersicolor[J].Enzyme Microbial Technology,1998,22(5):335-341.
    [33]ANGOVEM J.,FERNANDESM B.,IKHSAN J..The sorption of a thracene onto goethite and kaolinite in the presence of some benzene carboxylic acids[J]. Journal of Colloid and Interface Science,2002,247:282-289.
    [34] DOUCE D. S., CLENCH M. R.,COOKE M.,et al Evidence for the adsorption of nitrated polycyclic aromatic hydrocarbons by tree bark[J]. Journal of Chromatography,1997,786:275-283.
    [35] (?)MKO P.,(?)MON P,KHUNOV(?) V.Removal of polycyclid aromatic hydrocarbons from water by migration in to polyethylene[J]. Food Chemistry, 1999,64:157-161.
    [36] GABORIAU H,SAADA A. Influence of heavy organic pollutants of anthropic origin on PAH retetion by kaolinite[J].Chemosphere,2001,44:1633-1639.
    [37] MASTEAL A M,GARC(?)a T,CALL(?)nM S, et al.Influence of sorbent characteristics on the adsorption of PAC Ⅱ Adsoption of PAHs with different numbers of rings[J].Fuel Processing Technology,2002,77-78:365-372.
    [38] BOVING T B, ZHANG W.Removal of aqueous-phase polynuclear arom atic hudrocarbons using aspen wood fibers[J].Chemosphere,2004,54:831-839.
    [39] SABAT(?) J BAYONA J M,SOLANAS A M.Photolysis of PAHs in aqueous phase by UV irradiation[J].Chemoshere,2001,44:119-124.
    [40] LEHTO K M,VUORMAAE,LEMMETYNEN H.Photolysis of polycyclic aromatic hydrocarbons(PAHs) in dilute aqueous solutions deteced by fluorescence[J]. Jourmal of Photochemistry and Photobiology A:Chemistry,2000,136:53-60.
    [41] Raman L. P.,Cheryan M.,Rajagopalan N.Conside nanofitration for membrane separations[J].ChemEngProg, 1994,90(1):68-74.
    [42] B.Van der Bruggen,J. Schaep, D. Wilms, C. Vandecasteeler.Influence of molecular size,polarity and charge on the retention of organic molecules by nanofiltration [J].Journal of Membrane Science, 156(1999)29-41.
    [43] Van der Bruggen B., Everaert K., Wilms D., et al. Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation[J]. Membr Sci, 2001,193:239-248.
    [44] Thanuttamavong M., Yamamoto K., Oh J. I., et al. Rejection characteristics of organic and inorganic pollutants by ultralow-pressure nanofiltration of surface water for drinking water treatment [J]. Desalination,2002,145(2):257-264.
    [45] K.Mehiguene,Y. Garba,S. Taha. Etc. Influence of operating conditions on the retention of copper and cadmium in aqueous solutions by nanofiltration experimental results and modeling[J].Separation and Purification Technology, 1999,15:181-187.
    [46]许振良编著.膜法水处理技术[M].化学工业出版社,2001.
    [47]Y.Garba,S.Taba,N.Gondrexon,J.Cabon and G.Dorange,Mechanism involved in cadmium salts transport through a nanofiltration membrane:characterization and distribution[J].Membr.Sci,2000,168:135.
    [48]A.E.Yaroshchuk.Asymptotic behaviour in the pressure driven separations of ions of different mobilities in charged porous membranes[J].Membr.Sci,2000,167:153.
    [49]Courfia K.Diawara,Sidy M.L.,Oumar Sarr.A phenomenological mass transfer approach in nanofiltration of halide ions for a selective defluorination of brackish drinking water[J].Journal of Membrane Science,2003,219:103-112.
    [50]Andriy E.Yaroshchuk.Rejection of single salts versus transmembrane volume flow in RO/NF:thermodynamic properties,model of constant coefficients,and its modification[J].Journal of Membrane Science,2002,198:285-297.
    [51]SANGHO LEE and CHUNG-HAK LEE.Effect of operating conditions on CaSO_4scale formation mechanism in nanofiltration for water softening[J].Waters,2000,34(15):3854-3866.
    [52]T.Tsuru,D.Hironaka,T.Yoshioka,M.Asaeda,Sep.Pur.Tech.2001,25:307-313.
    [53]C.Labbez,P.Fievet,A.Szymczyk,A.Vidonne,A.Foissy,J.Pagetti,[J].Membr.Sci.2002,208:315-329.
    [54]J.Schaep,C.Vandecasteele[J].Membr.Sci.2001,188:129-136.
    [55]W.R.Bowen,A.W.Mohammad,and N.Hilal,[J].membrane Sci.1997,126:91 - 105.AI Ch E Journal,in press.
    [56]W.Richard Bowen,A.Wahab Mohammad.A theoretical basis for specifying nanofiltration membranes-Dye/salt/water streams;Desaltination,1998,117:257-264.
    [57]环国兰.纳滤膜及其应用[J].天津工业大学学报,2003,22(1):47-50.
    [58]王从厚,吴鸣.国外膜工业发展概况[J].膜科学与技术,2002,2:65-77.
    [59]Schaep J,Van der Bruggen B,Uytterhoeven S,et al.Removal of hardness from groundwater by nanofiltration[J].Desalination,1998,119(1-3):295-301.
    [60]Wittmann E.,cote P.,Medici C.,et al Treatment of ahard borehole water containing low levels of pesticide by nanofiltration[J].Desalination,1998,119(1-3):347-352.
    [61]Koyuncu I.,Yazgan M..Application of nanofiltration and reverse osmosis membranes to the salty and polluted surface water[J].Environ Sci Health,2001,A36(7):1321-1333.
    [62]Van der Bruggen B.,Everaert K.,Wilms D.,et al.Application of nanofiltration for removal of pesticides,nitrate and hardness from groundwater:rejection properties and economic evaluation[J].J Membr Sci,2001,193:239-248.
    [63]Thanuttamavong M.,Yamamoto K.,Oh J I,et al.Rejection characteristics of organic and inorganic pollutants by ultralow-pressure nanofiltration of surface water for drinking water treatment[J].Desalination,2002,145(2):257-264.
    [64]Khalik A,Praptowidodo V S.Nanofiltraion for drinking water production from deep well water[J].Desalination,2000,132:287-292.
    [65]Wang X.L.,Tsuru T.,Togoh M.,et al.Evalution of pore structure and electrical pro-perties of nanofiltration membranes[J].Chem Eng Japan,1995,28(2):186-192.
    [66]Paul Fu,Hector Ruiz,Jim Lozier,et al.A pilot study on ground water natural organics removal by low-pressure membranes[J].Desalination,1995,102:47-56.
    [67]A.Gorenflo,D.Velazquez-padron,F.H.Frimmel.Nanofiltration of a German groundwater of high hardness and NOM content:performance and costs[J].Desalination,2002,151:253-265.
    [68]Mohamed Siddiqui,Gary Amy,Joseph Ryan,et al.Membranes for the control of natural organic matter from surface water[J].Wat.Res,2000,34(13):3355-3370.
    [69]俞三传,高从堦,张慧.纳滤膜技术和微污染水处理[J].水处理术,2005,31(9):6-9.
    [70]李灵芝,王占生.纳滤膜组合工艺去除饮用水中可同化有机碳和致突变物[J].重庆环境科学,2003,25(3):17-18.
    [71]Katsuki Kimura,Gary Amyb,J(o|¨)rg E.Drewesc.Rejection of organic micropollutants(disinfection by-products,endocrine disrupting compounds,and pharmaceutically active compounds) by NF/RO membranes[J].Journal of Membrane Science,2003,22(7):113-121.
    [72]L.D.Nghiema,A.Manis,K.Soldenhoff,A.I.Sch(a|¨)fer,Estrogenic hormone removal from wastewater using NF/RO membranes[J].Journal of Membrane Science,2004,24(2):37-45.
    [73]Thomas Wintgens,Martin Gallenkemper,Thomas Melin.Endocrine disrupter removal from wastewater using membrane bioreactor and nanofiltration technology[J].Desalination,2002,14(6):387-391.
    [74]Kenneth O.Agenson,Jeong-Ik Oh,Taro Urase.Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes:controlling parameters of process[J].Journal of Membrane Science,2003,22(5):91-103.
    [75]王磊,张睿,程爱华,等.固相萃取气质联用测定水中邻苯二甲酸酯类物质[J].中国 给水排水,2007,23(14):86-89.
    [76]Yan Liu,YuKi Hashi,Jin-Ming Lin.Continuous-flow microextraction and gas chromatographic-mass spectrometric determination of polycyclic aromatic hydrocarbon compounds in water[J].Analytica Chimica Acta.2007:294-299.
    [77]张莉.纳滤去除水中痕量环境荷尔蒙污染物质的影响因素研究[D].西安建筑科技大学,2007.
    [79]王磊,福士宪一.影响超滤膜长期、稳定运行的因素分析[J].中国给水排水,2002,18(4):44-46.
    [80]周尊隆,吴文玲,李阳,等.三种多环芳烃在木炭上的吸附/解析行为[J].农业环境科学学报,2008,27(2):813-819.
    [81]Verbrugge,M.W.,Hill,R,F.Experimental and theoretical investigation of perfluorosulfonic acid membranes equilibrated with aqueous sulfuric acid solutions[J].Phys.Chem,1992:6778-6783.
    [82]程爱华.几种典型内分泌干扰物在地表水及其净化过程中的赋存、迁移特征与纳滤膜分离基础研究[D].西安建筑科技大学,2007.
    [83]Anne braghetta,Francis A.DiGiano,William P.Ball.Nanofiltration of natural organic matter:pH and ionic strength effrects[J]Journal of environmental engineering,2007,7:628-629.
    [84]何艳静,张旺达,郭怡欣.原水浓度对纳滤膜过滤过程的影响[J].山西能源与节能.2007,3:40-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700