用户名: 密码: 验证码:
涡轴发动机/旋翼综合建模、控制及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新一代直升机的各种性能不断提高,对直升机火控系统,操纵品质,生存性,敏捷性和机动性的要求越来越高,直升机各子系统的复杂程度大大增加,子系统间的耦合作用也大大加强,传统的将各子系统分割独立设计的方法已不能满足要求,只有采用综合设计和综合控制技术。发动机从功率涡轮输出经过主减速器带动旋翼,旋翼既是发动机的负载,又是使直升机产生升力、控制飞行速度以至飞行姿态的重要部件,可见发动机/旋翼系统对整个直升机性能影响至关重要。本文以直升机为对象,建立了直升机/发动机一体化综合仿真平台,并在此平台上进行涡轴发动机/旋翼控制及优化研究。
     本文第一章首先介绍了直升机综合飞行/发动机控制研究,模型预测控制研究及最优化问题研究现状。第二章以黑鹰直升机数据为基础建立了直升机/发动机综合仿真平台,此平台可以在飞行包线内任意点开始仿真计算,并解决了发动机/旋翼扭振问题,为后续章节的展开提供了仿真平台。第三章采用统一建模语言(UML)建立了基于C++的优化算法库,包括单纯形算法求解线性规划(LP)问题、有效集算法求解二次规划问题(QP)及序列二次规划算法(SQP)求解一般非线性优化问题,为后续章节的研究提供了实时优化算法的保证。第四章进行了基于SQP的涡轴发动机非线性模型预测控制研究,采用神经元网络进行预测模型的计算,采用SQP算法进行在线滚动优化计算,并讨论了此控制器的实时性问题。第五章针对全局优化问题进行了填充函数方法(FFM)研究,提出了一种新的单参数填充函数算法,并利用此算法进一步进行非线性模型预测控制研究,设计了基于FFM的涡轴发动机非线性模型预测控制器。第六章分别采用LP和SQP算法对涡轴发动机进行了在线导叶角优化控制研究,讨论了在发动机性能寻优过程中的LP算法和SQP算法在实时性方面的差别,论述了SQP算法在实时性方面应优于LP算法。第七章针对发动机/旋翼系统进行了变旋翼转速综合优化控制研究,打破了传统的恒定旋翼及功率涡轮转速限制。第八章进行了全文总结,并对后续工作提出了展望。
With the performance improvement of new generation of helicopters, the demands of helicopter’s fire control system, maneuver quality, survivability, agility and maneuverability become higher and higher, and the complexity and the coupling dynamic effects of helicopter’s subsystems also increase. The traditional design methods of individual subsystems have been unable to meet the demand, and the only solution is the integrated design and control methods. The rotor is driven by a shaft projecting from main gear box which connects to the turboshaft engine’s power turbine, and the rotor is not only the load of the turboshaft engine, but also the important component of generating the lift of the helicopter and controlling the flight velocity and attitude, so the turboshaft engine/rotor system has the important influence on the whole helicopter performance. In this dissertation, the integrated helicopter/engine simulation platform is built, and the control and optimization of the turboshaft engine/rotor are researched based on the platform.
     In the first Chapter, a general introduction of the helicopter integrated flight/engine control, the model predictive control and the optimization program is presented with a brief description. The helicopter/engine integrated simulation platform is built based on the Black-Hawk helicopter’s experimental data in Chapter 2. In Chapter 3, the optimization library based on C++ is built with Unified Modeling Language (UML), which includes the Simplex algorithm to Linear Programming(LP), the Active Set algorithm to Quadratic Programming(QP) and the Sequential Quadratic Programming(SQP) to the general nonlinear optimization problem. In Chapter 4, the nonlinear model predictive controller based on SQP is designed, in which the neural network model is used to get the predictive model; the SQP optimization algorithm is used to optimize the fuel flow of the turboshaft engine online. Finally, the real-time problem of the controller is discussed in detail. In Chapter 5, the Filled Function Method(FFM) for the global optimization is researched, and a new FFM with one parameter is proposed. The nonlinear model predictive controller based on the new FFM is designed. In Chapter 6, the online optimization for turboshaft engines based on variable inlet guide vane with LP and SQP methods is studied. The difference on real-time problem between the LP and SQP for aero-engine performance seeking control is discussed, and it states that the SQP is better than LP in real-time aspect. In Chapter 7, the optimization for turboshaft engines based on variable rotor speed is researched. The last Chapter is the conclusion of this dissertation.
引文
[1] Zinn, BT; Allen, M; Brooke,etal;Intelligent Turbine Engine,Georgia Inst. of Tech., Atlanta. 2002
    [2] Smith, B. Zagranski, R. Next Generation Control System for Helicopter Engines 57th Annual Forum of AHS 2001
    [3] Smith, B J; Zagranski, R D; Closed loop bench testing of the next generation control system for helicopter engines 58th Annual Forum Proceedings of AHS June 2002
    [4] Mihir C. Desai, Cristina Crainic; Adaptive Thermodynamic Engine Model for the Next Generation Control System for Helicopter Engines 58th Annual Forum of the AHS 2002
    [5] Sun Jianguo, V.Vasilyev, B.Ilyasov, Advanced Multivariable Control System of Aeroengines,北京:北京航空航天大学出版社,2005
    [6]孙健国;面向21世纪航空动力控制展望航空动力学报2001,4
    [7] HU Cuuandong, NI Xianping & SUN Jianguo, Helicopter Integrated Flight/Propulsion Control Technology, Proceedings of the Fifth Annual Conference for Young Scientists of China Association for Science and Technology, 2004, Shanghai China
    [8] James R. Mihaloew ; Mark G. Ballin ; D. G. Ruttledge: Rotorcraft Flight-Propulsion Control Integration NASA-CP-2495
    [9] Ketao Liu, Manoj Mittal,etal; a Study of Coupled Engine/Rotor Dynamic Behavior, AHS 51th Annual Forum, 1995
    [10] W.Kenneth Stephen; Integrated Flight/Propulsion Control Specifications: Accounting for Two Way Coupling AIAA 1994
    [11] W. A. Kuczynski, D. E. Cooper,etal; the Influence of Engine/Fuel Control Design on Helicopter Dynamics and Handling Qualities 35th Annual Forum of AHS 1979
    [12] F. Straub, J. Harding, etal; Flight Simulation Modeling in Support of Engine/Airframe Integration, 7th European rotorcraft forum 1991
    [13] Carl J. Ockier, Roberto Celi; Dynamics and Aeroelasticity of aCoupled Helicopter Rotor-Propulsion System in Hover, AIAA, 1991
    [14] A.Stewart Hopkins, Gene C.Ruzicka, Analytical Investigations of Coupled Rotorcraft/Engine/Drive Train Dynamics, AHS 2nd International Region Aeromechanics Specialists’s Conference, Bridgeport, 1995
    [15] Stephen M. Rock, W. Kenneth; Integrated Flight/Propulsion Control for Helicopters 49th Annual Forum of AHS 1993
    [16] Lewis D; Future Challenges in Helicopter Flight/Propulsion Control Integration, AHS 37th Annual Forum, 1981
    [17] Robert L.Bolton, Adaptive Fuel Control Feasibility Investigation, AHS 38th Annual Forum, 1982
    [18] David H. Sweet, Flight Testing of the Chandler Evans Adaptive Fuel Control on the S-76A Helicopter, AHS 45th Annual Forum, 1989
    [19] Stephen W. Killion, Flight Tests of Adaptive Fuel Control and Decoupled Rotor Speed Control Systems, AHS 49th Annual Forum, 1993
    [20] Selwyn H. Sturisky, William D. Lewis,etal, Development and Validation of a Comprehensive Real Time AH-64 Apache Simulation Model, AHS 48th Annual Forum , 1992
    [21] P. Shanthakumaran, J. Harding, etal, Flight Simulation Model Application for AH-64A Apache Engine Integration, AHS 49th Annual Forum, May 19-21 1993
    [22] Timothy L. Kopra, Comanche Flight Test Simulation Station Development, Verification, and Validation Methodology, AHS 54th Annual Forum, Washington, D.C, 1998
    [23] William Warmbrodt, Development of a Helicopter Rotor/Propulsion System Dynamics Analysis, AIAA/ASME/SAE 18th Joint Propulsion Conference, Cleveland, 1982
    [24] Kenneth Hui, Advanced Modelling of the Engine Torque Characteristics of a Bell 412HP Helicopter, AIAA A99-36898
    [25] William H. Pfeil, Gustavo de los Reyes,etal, the Application of LQR Synthesis Techniques to the Turboshaft Engine Control Problem, AIAA, 1984
    [26] Operational Requirements for Helicopter Engine for UK services AGAR-D Meeting on“Technology Requirements for small gas Turbine”Oct. 1993
    [27] J.J. Howlett; T. Morrison, R. D.Zagranski, Adaptive Fuel Control for Helicopter Applications , Journal of AHS, 1984
    [28] K.Robinsion, Digital Controls for Gas Turbine Engines, Gas Turbine Conference and Exhibition, Anaheim, California, 1987
    [29] T.H.Wong, Designing and Simulating the Engine Speed Governor for Helicopter Applications, the International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas, 1995
    [30] Mario G. Perhinschi, Controller Design for Autonomous Helicopter Model Using a Genetic Algorithm, AHS 53rd Annual Forum, Virginia Beach, Virginia 1997
    [31]郭允良等,国内外涡轴发动机性能、结构特点及其技术发展,北京蓝天出版社1990
    [32]胡传东,直升机发动机控制系统,直升机技术, 2000(01)
    [33]郭虹,张明恩,直升机动力装置控制系统总体优化分析沈阳航空工业学院学报1994
    [34]王志峰,姜广伦,安锦文,直升机飞行/推进系统综合模型的建立,飞行力学1999,17(4):17~21
    [35]王志峰,姜广伦,安锦文,直升机飞行/推进综合控制器的设计,西北工业大学学报,2000,18(4):621~624
    [36]王旭,综合飞行/推进系统控制技术研究, CSAA PA-90-036
    [37]袁春飞,飞行/推进系统综合优化控制模式及其关键技术[博士学位论文],南京:南京航空航天大学,2004
    [38]孙丰城,航空发动机性能寻优控制技术研究[博士学位论文],南京:南京航空航天大学,2007
    [39] Ni, X.; Sun, C.; Zhu, G.; Mei, B. Real-time simulative model for high fidelity engineering simulator of rotorcraft. Journal of Nanjing University of Aeronautics & Astronautics. Vol. 34, no. 4, pp. 398-402. July-Aug. 2002
    [40]戴文雯,新型无人直升机飞行控制技术研究[硕士学位论文],南京:南京航空航天大学,2007
    [41]袁友荣,小型无人直升机的飞行力学建模与仿真[硕士学位论文],南京:南京航空航天大学,2007
    [42] Grant, Peter R; Yam, Bonnie; Hosman, Ruud; Schroeder, Jeffery A. The Effect of Simulator Motion on Pilot's Control Behavior for HelicopterYaw Control Tasks. AIAA Modeling and Simulation Technologies Conference and Exhibit; San Francisco, CA; USA; 15-18 Aug. 2005
    [43] Frye, Michael; Colgren, Richard. Controller development and simulation using the Raptor 50 helicopter longitudinal model. AIAA Modeling and Simulation Technologies Conference and Exhibit; Providence, RI; August 16-19, 2004
    [44] Frost, Chad R; Hindson, William S; Moralez, Ernesto; Tucker, George E; Dryfoos, James B. Design and testing of flight control laws on the RASCAL research helicopter. AIAA Modeling and Simulation Technologies Conference and Exhibit, Monterey, CA; UNITED STATES; 5-8 Aug. 2002
    [45] Curtis, Robert F. Developing the CH-47F Chinook Transportable Flight Proficiency Simulator (TFPS). AIAA Modeling and Simulation Technologies Conference and Exhibit, Monterey, CA; UNITED STATES; 5-8 Aug. 2002
    [46] Qin S J, Badgwell T A, An Overview of Industrial Model Predictive Control Technology, Chemical Process Control, 1997
    [47] MorariM, Lee J H, Model Predictive Control: the Good, the Bad and the Ugly, Chemical Process Control, 1991
    [48]席裕庚,关于预测控制的进一步思考,控制理论与应用,1994,11(2)
    [49]诸静等,智能预测控制及其应用,浙江大学出版社2000
    [50]席裕庚,耿晓军,陈虹,预测控制性能研究的新进展,控制理论与应用,2000,17(4)
    [51]许超,陈治纲,邵惠鹤,预测控制技术及应用发展综述,化工自动化及仪表,2002,29(3)
    [52] Campo P J, MorariM, Robust Model Predictive Control, Proceeding of American Control Conference 1987
    [53] Badgwell T A, A robust Model Predictive Control Algorithm for Stable Nonlinear Plants, Proc. IFACADCHEM Banff, 1997
    [54]陈虹,刘志远,解小华,非线性模型预测控制的现状与问题[J],控制与决策2001 Vol.16 No.4
    [55] Gattu G, Zafirium E, Nonlinear Quadratic Dynamic Matrix Control with State Estimation, Ind Eng Chem Res, 1992,31(4)
    [56] Mayne D Q, Nonlinear Model Predictive Control: an Assessment,Chemical Process Control, 1997
    [57] Zhu X F, Seborg D E, Nonlinear Predictive Control Based on Hammerstein Models,控制理论与应用,1994,1(5)
    [58] Wang W, Generalized Predictive Control of Nonlinear Systems of the Hammerstein forms,控制理论与应用,1994,11(6)
    [59] Roubos J A F, Mollov S, Fuzzy Model Based Predictive Control using Takagi-Sngeno Models, Int J Approx Reas, 1999,22:3-30
    [60] Lu Y, Arkun Y, Quasi min-max MPC Algorithms for LPV Systems, Automatica, 2000,36(4)
    [61]王殿辉,柴天佑,基于ANN模型的非线性自校正预测控制器,自动化学报,1997,23(3)
    [62]刘军,赵霞,许晓鸣,基于NN非线性模型的扩展DMC预测控制,信息与控制,1998,27(5)
    [63]苏成利,非线性模型预测控制的若干问题研究,[博士论文],浙江:浙江大学,2006
    [64]邹健,智能预测控制及其应用研究,[博士论文],浙江:浙江大学,2002
    [65]孙峻,非线性模型预测控制理论及应用研究,[博士论文],西安:西北工业大学,2002
    [66]杨建军,刘民,吴澄,基于遗传算法的非线性模型预测控制方法;控制与决策2003年02期
    [67]包哲静,支持向量机在智能建模和模型预测控制中的应用[博士论文];浙江:浙江大学2006
    [68] Man G N,Upadhyaya B R. Model predictive control of an SP-100 spacereactor using support vector regression and genetic optimization[J] .IEEE Transactions on Nuclear Science, 2006, 2 (53)
    [69] Tipping ME. Sparse bayesian learning and the relevancevector machine[J] .Journal of Machine Learning Research, 2001, 1 (3) :211-244
    [70]张广莹,邓正隆,林玉荣,一类基于神经网络的非线性模型预测控制;系统仿真学报, 2003年02期
    [71]陆冬娜,基于神经网络的非线性模型预测控制[硕士论文];浙江:浙江工业大学
    [72]周建锁,刘志远,裴润,带终端滑模约束的非线性模型预测控制方法;控制与决策, 2001年04期
    [73]包哲静,皮道映,孙优贤,基于并行支持向量机的多变量非线性模型预测控制;控制与决策2007年08期
    [74]王娟,非线性模型预测控制算法及混沌系统预测控制同步研究[硕士论文];河北:燕山大学
    [75]谢树光,周学才,一种空间飞行器姿态控制非线性模型的预测控制新算法;计算机仿真, 2002年03期
    [76]孙文瑜,徐成贤,朱德通,最优化方法,高等教育出版社,2004
    [77]李董辉,童小娇,万中,数值最优化,科学出版社,2005
    [78]申培萍,全局优化方法,航空出版社,2006
    [79]吴至友,全局优化的几种确定性方法[博士论文],上海:上海大学,2003
    [80] Ge R.P.A, Filled Function Method for Finding a Global Minimizer of a Function of Several Variables. Mathematical Programming, 1990
    [81] Galperin E.A., Zheng Q, Nonlinear Observation via Global Optimization Methods: Measure Theorem Approach, Journal of Optimization Theorem and Applications, 1985
    [82] Liu X, Finding Global Minimization with a Computable Filled Function, Journal of Global Optimization, 2001
    [83] Ge R.P, The Globally Convex Filled Functions for Global Optimization, Applied Mathematics and Computation, 1990
    [84] Liu X, Several Filled Functions with Mitigators, Applied Mathematics and Computation,2002
    [85] Liu X, A Class of Generalized Filled Functions with Improved Computability, Journal of Computational and Applied Mathematics, 2001
    [86]刘炜,朱文兴,一个参数动态调节的全局凸填充函数算法,莆田学院学报,2007年05期
    [87]李铭明,樊庆端,李路,一个求无约束全局优化问题的填充函数算法,上海工程技术大学学报, 2006年02期
    [88]朱文兴,整数规划的一类填充函数算法,应用数学学报, 2000年04期
    [89]林耿,朱文兴,整数规划的一类变邻域填充函数算法,中国运筹学会第八届学术交流会中国广东深圳2006
    [90]张连生,杨永健,求全局最优化的填充函数算法的研究,中国运筹学会数学规划分会代表会议暨第六届学术会议杭州2006
    [91]杨洪杰,葛修润,王建华等,序列二次规划(SQP)算法在三维下限分析中的应用,上海交通大学学报, 2004年06期
    [92]朱志斌,简金宝,不等式约束优化一个具有超线性收敛的可行序列二次规划算法,系统科学与数学, 2005年06期
    [93]简金宝,张可村,不等式约束最优化的一个具有强收敛性的强次可行方向法;西安交通大学学报, 1999年08期
    [94]叶留青,司清亮,陈绍春,一个改进的序列二次规划可行下降算法及其全局收敛性,数学的实践与认识, 2006年08期
    [95]臧子龙,李永军,一个改进的二次规划型算法,兰州交通大学学报, 2006年03期
    [96] J.J.Howlett UH-60A Black Hawk Engineering Simulation Program: Volume 1-Mathematical Model. NASA 166309 1981
    [97] Hilbert K B, A Mathematical Model of UH-60 Helicopter, NASA-TM-85890, 1984
    [98] Thaddeus T. Kaplilta, UH-60 Black Hawk Engineering Simulation Model Validation and proposed Modifications, NASA-177360, 1987
    [99] Mark G B, Sikorsky HEL UH-60A Black Hawk Simulation Updates at NASA Ames, 1988
    [100] Mark G.B, A High Fidelity Real-Time Simulation of a Small Turboshaft Engine, NASA-100991, 1988
    [101] Ahmet Duyar, Zhen Gu, Identification of the Open Loop Dynamics of the T700 Turboshaft Engine, AHS 48th Annual Forum, Washington, D.C 1992
    [102] Ahmet Duyar, Zhen Gu, Jonathan S.Litt, A Simplified Dynamic Model of the T700 Turboshaft Engine, NASA TM 105805 1992
    [103]陈仁良,直升机飞行动力学数学建模及机动性研究[D].南京:南京航空航天大学博士论文, 1998
    [104] Wayne Johnson, Helicopter Theory, Princeton University Press,1980
    [105]陈仁良,高正,旋翼桨叶非定常挥舞运动的分析计算,空气动力学报,1997
    [106] Chen R T N, A Simplified Rotor System Mathematical Model for Piloted Flight Dynamics Simulation, NASA-TM-78575,1979
    [107]高正,陈仁良,直升机飞行动力学,科学出版社,2003
    [108] R.W.普劳蒂,直升机性能及稳定性和操纵性,航空工业出版社,1990
    [109] Sheridan P F, Smith R P, Interactional Aerodynamics—A newChallenge to Helicopter Technology, 35th Annual Forum of American Helicopter Society, Washington D.C. 1979
    [110] Simplified Theoretical Method of Determining the Characteristics of a Lifting Rotor in Forward Flight, Bailey, NACA Report 716
    [111]尚义.航空燃气涡轮发动机航空工业出版社1995
    [112]孙健国,现代航空动力装置控制,北京,航空工业出版社,2001
    [113]周剑波,涡轴发动机建模技术研究[硕士论文].南京:南京航空航天大学1995
    [114]王信德,某型涡扇发动机自适应建模研究,[硕士学位论文],南京:南京航空航天大学,2003
    [115]袁鸯,发动机自适应建模及神经网络控制,[硕士学位论文],南京:南京航空航天大学,2005
    [116]李胜泉,杨征山,孙健国,多滤波器并联方式解决直升机动力传动链扭振耦合,航空动力学报,Vol.21,No.3 2006
    [117] Jorge Nocedal, Stephen J.Wright, Numerical Optimization, Springer, 1999
    [118] Roscoe A.Bartlett, Object-Oriented Approaches to Large-Scale Nonlinear Programming for Process Systems Engineering [PHD.thesis] Carnegie Mellon University, 2001
    [119] Stanley B.Lippman, Josee Lajoie, C++ Primer,中国电力出版社,2002
    [120]杨道奇,C++和面向对象数值计算,人民邮电出版社,2003
    [121]徐士良,常用算法程序集(C语言描述),清华大学出版社, 2004
    [122] William H.Press, C数值算法,北京电子工业出版社, 2004
    [123] Booch G.,J.Rumbaugh and I.Jacobson, The Unified Modeling Language User Guide, Addison-Wesley, 1999
    [124] Martin Fowler, UML精粹,清华大学出版社,2005
    [125]周长发,科学与工程数值算法(Visual C++版),清华大学出版社,2002
    [126]胡清淮,魏一鸣,线性规划及其应用,科学出版社,2003
    [127] Demmel,J, Applied Numerical Linear Algebra, SIAM 1997
    [128] Betts J.T, P.D.Frank, A Sparse Nonlinear Optimization Algorithm, J. Opt. Theory Appl, 1994
    [129] Boggs. P, J. Tolle, Successive Quadratic Programming, Acta Numerica 1996
    [130] Fletcher,R. Practical Methods of Optimization, John Wiley & Sons, 1981
    [131]李胜泉,杨征山,孙健国;基于内模原理的涡轴发动机状态反馈控制方法航空动力学报Vol. 22 No. 5 2007
    [132]杨征山,李胜泉,章霖官;涡轴发动机功率涡轮转速控制回路方案研究,航空发动机2005(2)
    [133]焦李成,神经网络系统理论,西安,西安电子科技大学出版社,1995.3。
    [134]陈果;用结构自适应神经网络预测航空发动机性能趋势,航空学报2007 28(3):535-539
    [135] Junxia Mu, David Rees, G.P. Liu; Advanced controller design for aircraft gas turbine engines[C]. Control Engineering Practice, vol. 13, no. 8, 1001-1015, 2005
    [136] Junxia Mu, David Ress; Approximate model predictive control for gas turbine engines[C]. Proceeding of the 2004 American Control Conference, Boston, Massachusetts June 30-July 2, 2004
    [137]何黎明,樊丁;利用SQP控制涡扇发动机加速过程的多目标最优化研究[J],航空动力学报,2001,16(2):179-181
    [138]孙丰城,孙健国;基于序列二次规划算法的发动机性能寻优控制[J].航空动力学报Vol. 20 No. 5 2005
    [139] Schmid, C. L. T. Biegler; Accleration of reduced Hessian methods for large-scale nonlinear programming[C]. Comp. Chem. Eng. 17:451, 1993
    [140] P. T. Boggs and J. W. Tolle; Sequential quadratic programming for large-scale nonlinear optimization, J. Computational and Applied Mathematics, vol.124, pp.123-137, 2000
    [141] Brent.J.Brunell, Robert R.Bitmead, Allan J.Connolly; Nonlinear model predictive control of an aircraft gas turbine engine[C]. Proceedings of the 41st IEEE conference on decision and control Las Vegas, Nevada USA, December 2002
    [142]王忠,王永军,用于全局优化的一种有效的单参数填充函数,内蒙古师范大学学报,Vol.35 No.3 2006
    [143] Dixon L.C.M., Szego G.P., Towards Global Optimization 2, North-Holland, Amsterdam, 1978
    [144] Branin F., Widely Convergent Methods for Finding Multiple Solutions of Simultaneous Nonlinear Equations, IBM Journal of ResearchDevelopment, 1972,16:504-522
    [145] Rastrigin L., Systems of Extremal Control, Nauka, Moscow,1974
    [146]朱行健,王雪瑜“燃气轮机工作原理及性能”科学出版社1992
    [147]廉筱纯,吴虎“航空发动机原理”西北工业大学出版社2005
    [148] Pfeil W H, Athans M, Spang H.A. Multi-variable control of the GE T700 engine using the LQG/LTR design methodology. Proceeding of American Control Conference Seattle WA 1986 :1297~1312
    [149] H.Brow ,Multi-Variable Cycle Optimization by Gradient Methods, AIAA-80-0052
    [150] Eric J. Tich, Peter D. Shaw, Donald F. Berg, etal, Performance Seeking Control for Cruise optimization in Fighter Aircraft, AIAA-87-1929
    [151] F.D.Mueller, Dual Engine Application of the Performance Seeking Control Algorithm ,AIAA-93-1822
    [152] George Kopasakis, Adaptive Performance Seeking Control Using Fuzzy Model Reference Learning Control and Positive Gradient Control, AIAA-97-3191
    [153] George Kopasakis, Nonlinear Performance seeking Control Using Fuzzy Model Reference Learning Control and The Method of steepest descent, AIAA-97-3362
    [154] Glenn B. Gilyard , John S. Orme, Performance-Seeking Control: Program overview and future directions , AIAA-93-3765-CP
    [155] Conners T. R., Thrust stand Evaluation of Engine Performance Improvement Algorithms in an F-15 Airplane, AIAA-92-3747.
    [156] J. Orme ,G. Schkolnik, Flight Assessment of the Onboard Propulsion System model for the Performance Seeking Control Algorithm on an F-15 Aircraft, AIAA-95-2361
    [157] Maruyama Masatoshi, Yasuda Tomoshige, Research of Engine Optimal Control, Engineering Review,2005,38(2):70~73
    [158]袁春飞,孙健国,熊智等,推进系统优化控制模式研究,航空动力学报2003,19(1):159~163
    [159]孙丰诚,孙健国,航空发动机先进控制模式及模式选择器设计,中国航空学会第十二届发动机自动控制学术会议论文集,2004:270~274
    [160]袁春飞,孙健国,熊智等,飞/推综合控制模式亚音速半物理仿真试验,推进技术,2003,24(4):353-356.
    [161] Tatsuhiko G, Kawakami K. Variable rotor speed transmission with high speed traction drive. 55th Annual Forum Proceedings of AHS, Montreal, Canada, May 1999
    [162] Takanori Iwata, Integrated flight/propulsion control with variable rotor speed command for rotorcraft. Stanford University, California 1996
    [163] Takanori Iwata, Stephen M. Rock. Benefits of variable rotor speed in integrated helicopter/engine control. AIAA-93-3851-CP

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700