用户名: 密码: 验证码:
益生菌Lactobacillus casei Zhang高密度培养技术及发酵过程中关键酶基因表达变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Lactobacillus casei Zhang是从中国内蒙古地区传统酸马奶中分离的一株具有良好益生特性的新生益生菌。因为益生菌产品中高浓度的活性菌体细胞是其发挥功效的必要条件,所以本研究针对L. casei Zhang的高密度培养技术展开研究,同时采用实时定量PCR技术从转录水平上研究了发酵过程中不同培养条件和不同生长阶段对菌体的影响。
     研究了不同碳源、氮源、碳氮比例、微量元素及缓冲盐对L. casei Zhang增殖培养的效果,并采用响应面法对优选的碳源、氮源和缓冲盐类的组成含量进行优化,得到L. casei Zhang的增殖培养基为:葡萄糖20.9g/L、大豆蛋白胨10.4g/L、酵母粉10.4 g/L、K2HPO43.5 g/L、醋酸钠14.6 g/L、柠檬酸钠2.3 g/L、MgSO4·7H2O 1 g/L、MnSO4·5H2O 54mg/L、CuSO4·5H2O 10mg/L、吐温80 1g/L。通过对温度,初始pH、摇床转速等条件的研究得到菌体在此培养基中适宜的试管培养条件为:初始pH6.5,37℃,保温静止发酵。经18~20h培养后,L. casei Zhang活菌数可达到4.78×109 CFU/mL,比在MRS中(4.8×108 CFU/mL)提高近10倍。
     在优化增殖培养基的基础上,研究了不同中和剂、缓冲盐浓度、葡萄糖浓度、pH值控制、通气条件和接种量对菌体在恒pH条件下发酵的影响情况,根据不同条件下菌体的比生长速率、菌体密度和活菌数情况,确定L. casei Zhang较适宜的高密度培养条件为:培养基葡萄糖浓度为80 g/L,以氨水为中和剂使pH保持5.9,采用间歇通氮气的方法保持环境厌氧,接种量7%以分批培养方式下37℃保温发酵,10~12h后,L. casei Zhang细胞干重达到7.45 g/L,活菌数3.68×1010 CFU/mL,较优化前提高7倍以上。
     分别在不同pH和不同乳酸浓度条件下接种L. casei Zhang进行培养结果表明乳酸和低pH都抑制菌体生长并且两者有协同作用。不控制pH条件下,乳酸浓度20 g/L(pH4.0)就足以抑止菌体的生长,如果添加中和剂保持pH6则乳酸达到120 g/L才完全抑止菌体的生长
     根据发酵过程中菌体生长和代谢曲线变化规律,采用Origin7.5软件非线性拟合建立L. casei Zhang的生长、葡萄糖代谢和产乳酸的动力学模型,模型与试验值拟合良好,平均误差小于10%,能够真实地反应发酵过程。分别以100 mL/h和200 mL/L补料速度流加新鲜培养基研究了补料分批培养,结果表明100 mL/h补料分批培养与分批培养结果无差异,200 mL/h补料在发酵8h时出现稀释效应。
     在L. casei Zhang高密度培养小试基础上,进行50 L(有效工作容积30 L)到200 L(有效工作容积150 L)逐级放大中试生产工艺验证。200 L规模发酵罐发酵菌体密度可达2.9×1010 CFU/mL,与小试水平无差异。证明本研究所得到的L. casei zhang高密度培养技术切实可行,能够实现工业化生产。
     初步探讨发酵后菌体的离心和冷冻干燥过程对菌体的影响,虽然发酵液经离心收集菌体并冷冻干燥可得到平均活菌数2.65×1011 CFU/g的菌粉,能够满足益生菌制剂和发酵剂对高活菌数的要求,但冻干前后活菌得率仅49.97%。有必要针对L. casei Zhang的冻干保护剂和冻干工艺进一步优化,以提高菌体存活率得到更高菌体浓度的益生菌粉。
     研究了不同培养条件下,gapd、gyrB、ldh、16s rRNA和recA 5个常用管家基因的表达情况,并应用GeNorm软件分析了管家基因的稳定性,结果表明5个管家基因在本试验所研究条件下表现都比较稳定,尤以gapd和gyrB最稳定,可以作为实时定量PCR的内参。
     采用荧光实时定量PCR技术研究了pH、乳酸浓度、通气条件和生长阶段的变化对L. casei Zhang一些关键酶基因(涉及葡萄糖转运、糖酵解和分子伴侣蛋白等方面的13个基因)表达变化的影响,结果表明不同培养条件对不同基因表达的影响程度不一,从转录水平描述了各种不同的发酵条件对菌体生长代谢的影响,为后续深入研究该菌生长代谢的分子机制奠定基础。
Lactobacillus casei Zhang is a new probiotic strain isolated from home-made koumiss in Inner Mongolia, China. High number of viable cells is a prerequisite for the effectiveness of probiotics. Therefore, we studied the high cell density culture (HCDC) of L. casei Zhang in this paper in order to use it for probiotic products. At the same time, we also studied the influences of cultural conditions and growth phases on this strain at genetic level.
     The effects of various carbon source, nitrogen source, microelement and buffer salts on the growth of L. casei Zhang were studied. Then the composition of enrichment medium for L. casei Zhang was optimized by using response surface analysis, as follows: glucose 20.9 g/L, soy peptone10.4 g/L, yeast extract 10.4g/L, K2HPO4 3.5 g/L, sodium acetate 14.6g/L, citrate sodium 2.35 g/L, MgSO4.7H2O 1.0 g/L, MnSO4.5H2O 54 mg/L, CuSO4.5H2O 10 mg/L, tween 80 1.0 g/L. By investigating the effects of start pH, temperature and shaking speed on the strain, the suitable test-tube cultural conditions were determined as: start pH 6.5, cultured at 37℃without shaking. After cultivated in these conditions for 18h-20h, the viable cells of L. casei Zhang can reach to 4.78×109 CFU/mL, which was about 10 times higher than in MRS (4.8×108 CFU/mL).
     The influences of neutralizing agents, concentration of buffer salts and glucose in the medium, pH, and aeration on the growth of L. casei Zhang during pH-stat batch culture were investigated to optimize the cultural conditions. Then, according to the values of maximum specific growth rate, biomass and viable cells count of the strain growing under above cultural conditions, the appropriate cultural conditions were determined as: temperature controlled at 37℃, glucose concentration of the medium set as 80 g/L, pH maintained at 5.9 by automatic addition of aqua ammonia and anaerobic condition kept by injection of nitrogen periodically. By cultured under these conditions for 10-12 h, the biomass and viable cells count of L. casei Zhang can reach to 7.45 g/L and 3.68×1010 CFU/mL respectively, which were seven times as high as the before optimization.
     To figure out the inhibition of lactate and low pH on the growth of L. casei Zhang, it was fermented under different lactate concentration and pH. The results showed that both low pH and lactate inhibited the growth of this strain and act synergistically. Cultured in non-regulated pH, lactate concentration of 20 g/L (pH4.0) in the medium is enough to repress the growth of cells absolutely. However, cultured in pH maintained at 6.0 with neutralizer, the growth of cells can not stop until the concentration of lactate arrived at 120 g/L.
     The kinetic models of growth, glucose consumption, and lactic acid production for L. casei Zhang were built up with nonlinear curve fitting method using Origin 7.5 software and fit well with the experiment data as relative error less than 10%. These models can forecast the actual fermentation process well.
     Fed-batch culture was carried out with feed rate of 100 mL/h and 200 mL/h respectively. When feed at 100 mL/h, there is no different between fed-batch and batch fermentation, but when feed at 200 mL/h, dilution effect was found after cultured for 8 h.
     Based on lab scale experimentation, the pilot plant scale test (50L and 200L scale) of the high cell density culture of L. casei Zhang was studied to get the optimal fermentation technology for industrial production. The viable cells count of fermented liquid from pilot plant test was 2.9×1010 CFU/mL and no significant different from that in the lab scale test. So it can be concluded that the HCDC technology obtained in this study was operable.
     Preliminary study was carried out on the influences of centrifugation and freeze-drying processes on the cells after fermentation. Although the viable cells count of the lyophilized powder was 2.65×1011 CFU/g, which can meet the requirements of the probiotics and starter cultures, only 49.97% of L. casei Zhang cells were survived from freeze drying. So it’s necessary to make further study on how to improve the survival of L. casei Zhang during freeze-drying.
     In order to evaluate the gene expression pattern in L. casei Zhang, a study was conducted to evaluate different cultural conditions and growth phases on the expression levels of five housekeeping genes. The expression stability of HKG candidates were analyzed by GeNorm software. The result showed that all these five tested HKG candidates (gapd, gyrB, ldh, 16s rRNA, and recA) were proved to be stable, and the gapd and gyrB were the most stable genes, which were suggested as reference genes for real-time PCR of L. casei Zhang.
     The influences of various cultural conditions and growth phases on expressions of thirteen key enzyme genes of L. casei Zhang involved in glucose transport, glycolysis and molecular chaperone were investigated by real-time quantitative PCR. The results showed that the influences of different cultural conditions on gene expression were depended on the kinds of genes. These results can provide reference for the further study on the molecular mechanism of growth and metabolism of L. casei Zhang.
引文
1陈朝东,何岚.功能食品科学与消化道的生理及功能(一)[J].中国微生态学杂志,2000,(2):110-112, 118.
    2 Metchnikoff E.In the prolongation of life: optimistic studies[M]. C. Mitchell (Ed.), London: William Heinemann,1907.
    3 Sanders, M.E. Considerations for use of probiotic bacteria to modulate human health[J]. J. Nutr., 2000, Vol.130:384s-390s.
    4 Lilley D.M. and Stillwell R.H. Probiotics: growth promoting factors produced by microorganisms[J]. Science, 1965, Vol.147: 747-748.
    5 Parker R.B. Probiotics, the other half of the antibiotic story[J]. Animal Nutrition and Health, 1974, Vol.29:4-8.
    6 Fuller R. Probiotics in man and animals[J]. J. Appl. Bacteriol., 1989. Vol.66:365-378.
    7 Gorbach S.L. The discovery of L. GG. Nutrition Today, 1996, Vol.31:2S-4S.
    8 Schaafsma G. State of the art concerning probiotic strains in milk products[J]. IDF Nutr. Newsl., 1996, Vol.5:23-24.
    9 Report of a Joint FAO/WHO Working group on Drafting Guidelines for the Evaluation of Probiotics in Food[R], London Ontario, Canada, April 30 and May 1, 2002.
    10 Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of the Member States relating to food supplements[R].
    11 Lee Y.K. and Salminen S. The coming of age of probiotics[J]. Trends in Food Science and Technology, 1997, Vol.6:241-245.
    12 Salminen S., Ouwehand A.C. and Isolauri E. Clinical applications of probiotic bacteria[J]. Int. Dairy Journal, 1998, Vol.8:563-572.
    13 Chandan R.C. Enhancing Market Value of Milk by Adding Cultures[J]. J.Dairy Sci., 1999, Vol.82:2245-2256.
    14郭兴华.益生菌基础与应用[M].北京科学技术出版社, 2002.
    15李妍.益生菌的筛选及其功能特性的研究[D].东北农业大学硕士学位论文, 2002.
    16 Rolfe R.D. The role of probiotic cultures in the control of gastrointestinal health[J]. J.Nutr., 2000, Vol.130:396s-402s.
    17 Marin M.L., Tejada-Simon M.V., Lee J.H., Murtha J., Ustunol Z., and Pestka J.J. Stimulation of cytokine production in clonal macrophage and T-cell models by Streptocoddus thermophilus: comparison with Bifidobacterium sp. And Lactobacillusbulgaricus[J]. J. Food Prot., 1998, Vol.61:859-864.
    18 Perdigon G., Valdez J.C., and Rachid M. Antitumour activity of yogurt: study of possible immune mechanisms[J]. J.Dairy Res., 1998, Vol.65:129-138.
    19 Fukushima M. and Nakano M. The effect of a probiotic on faecal and liver lipid classes in rats[J]. Bri.J.Nutr. 1995, Vol.73:701-710.
    20 Fukushima M. and Nakano M. Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on cholesterol metabolism in rats fed on a fat- and cholesterol-enriched diet[J]. Bri. J. Nutr., 1996, Vol.76:857-867.
    21 Reid G. and Fraser N. Oral probiotics can resolve urogenital infections[J]. FEMS Microbiol. Immunol., 2001, Vol.30:49-52.
    22 Yadav H., Jain S. and Sinha P.R. Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats[J]. Nutrition, 2007, Vol.23:62-68.
    23 Klaenhammer T.R. Probiotic bacteria:today and tomorrow [J].J. Nutr., 2000, Vol.130:415-416.
    24 Hassan A.N. and Frank J.F. Starter cultures and their use. Applied dairy microbiology[M]. Edited by EElmer H. Marth and James L. Steele. Second edition, revised and expanded Marcel Dekker, Inc. New York Basel. 2001,151-206.
    25 Meril?inen V.I. Preparation of starter cultures[J]. Bulletion of the IDF, 1988, Vol.227:56-65.
    26 Farr S.M. Milk fermenting product and method of making same[P]. U. S. Pat. No. 3,420,742, 1969.
    27 Huggins A.R. Progress in Dairy starter culture technology[J]. Food Technology, 1984, Vol.32:41-49.
    28胡学智.国外微生态制剂的研究与市场概况[J].工业微生物,2002, Vol.32:55-61.
    29杜鹏,霍贵成,国内外益生菌制品发展现状[J].食品科学, 2004, Vo1.25,(5):194-198.
    30 Gardiner G.E., Atanton C., Lynch P.B. and Collins J.K. Evaluation of Cheddar Cheese as a Food Carrier for Delivery of a Probiotic Strain to the Gastrointestinal Tract[J]. J. Dairy Sci., 1999, Vol.82: 1379-1387.
    31 Gardiner,G.E., Ross R.P., Wallace J.M., and Scanlan F.P. Influence of a probiotic adjunct culture of Enterococcus faecium on the quality of cheddar cheese[J]. J. Agric. Food Chem., 1999, Vol.47: 4907-4916.
    32杨汝德,林勉,陈惠音,益生素及其应用[J].中国乳品工业,2000,Vol.28(1):29-37.
    33孟和毕力格,乌日娜,王立平,杨续金,徐杰,董莹,孙志宏,张和平.不同地区酸马奶中乳杆菌的分离及其生物学特性的研究[J].中国乳品工业,2004,Vol.32(11):6-11.
    34乌日娜,张和平,孟和毕力格.酸马奶中乳杆菌L. casei Zhang和ZL12-1的16S rDNA基因序列及聚类分析[J].中国乳品工,2005,Vol.33(6):175-192.
    35 Junguo Wang ,Xia Chen,Wenjun Liu,Mei Yang,Airidengcaicike,Heping Zhang. Identification of Lactobacillus from Koumiss by Conventional and Molecular Methods, European Food Research and Technology, accepted for publication in 2008.
    36徐杰,云月英,张文羿,邵亚东,孟和毕力格,张和平.酸马奶中干酪乳杆菌发酵特性的研究[J].中国乳品工业,2006,Vol.34(7):23-27.
    37张和平,孟和毕力格,王俊国,孙天松,徐杰,王立平,云月英,乌日娜. L. casei Zhang潜在益生特性的研究[J].中国乳品工业,2006,Vol .34(4):4-9.
    38云月英,王立平,张和平,陈永福,孟和毕力格.喂饲L. acsei Zhang对大鼠体内脂质代谢的影响[J].微生物学通报,2006,Vol.33(3):60-65.
    39张和平,张七斤,任贵强,包秋华.乳酸杆菌对攻毒小鼠的保护作用和对肠道菌群的影响[J].微生物学通报,2007,Vol.34(3):447-451.
    40任贵强,张七斤,张和平,孟和毕力格,阿木尔吉日嘎拉.饲喂乳酸菌对小白鼠血清中IgG及肠道中SIgA影响的研究[J].中国畜牧兽医,2006,Vol.33(5):64-69.
    41张和平,张七斤,孟和毕力格,任贵强,阿木尔吉日嘎拉. L. casei Zhang对小鼠T淋巴细胞亚群及血清IgG和肠黏膜SIgA的影响[J].中国乳品工业,2006,Vol.34(10):4-9.
    42托娅,苏雅勒玛,张和平.乳杆菌L. casei Zhang对小鼠血清中细胞因子水平的影响[J].食品科学,2006,Vol.27(11):488-491.
    43托娅,张和平.一株分离自内蒙古传统酸马奶中的乳酸杆菌L. casei. Zhang对小鼠免疫功能的影响[J].中外医疗,2008,Vol.27:39-42.
    44王俊国,孟和毕力格,张和平,陈永福,包秋华.干酪乳杆菌Zhang对大鼠抗氧化能力的影响[J].营养学报,2008,Vol.30(1):1-6.
    45任贵强,张七斤,张和平,孟和毕力格,阿木尔吉日嘎拉.两株乳酸菌对鸡新城疫HI抗体效价影响的研究[J].中国家禽,2006,Vol.28(4):10-17.
    46宋新宇,张七斤,张和平,孟和毕力格.乳酸杆菌DNA对鸡新城疫疫苗和禽流感疫苗免疫增强作用的研究[J].畜牧与兽医科学,2007,Vol.1:23-25.
    47张七斤,宋新宇,张和平,孟和毕力格.乳酸杆菌成分对疫苗免疫增强作用的研究[C].中国畜牧兽医学会动物微生态学分会第三届第八次学术研讨会论文集,中国,广州:2006.
    48 Zhang W.Y., Yu D.L., Sun Z.H., Chen X., Bao Q., Meng H., Hu S. and Zhang H. Complete nucleotide sequence of plasmid plca36 isolated from Lactobacillus casei Zhang,Plasmid,2008, Vol.60:131-135.
    49李寅,高海军,陈坚,高细胞密度发酵技术[M].北京化学工业出版社,2006.8.
    50熊晓辉,于修鋻,陆利霞.乳酸菌发酵剂高密度培养的研究[J].中国调味品,2004, (5):17-21.
    51 Riesenberg D. High—cell density cultivation of E coli[J].Curr. Opin. Biotechnol. 1991,Vol.2:380—384.
    52 Fitzpatrick J.J., Ahrens M.and Smith S. Effect of manganese on Lactobacillus casei fermentation to produce lactic acid from whey permeate[J]. Process Biochemistry, 2001, 36:671-675.
    53 Parente E., Ricciardi A. and Addario G. Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140NWC during batch fermentation[J]. Appl. Microbiol. Biotechnol., 1994, Vol.41: 388-394.
    54 Wijtzes T., de Wit J.C., Veld H. vant Ried J.H.J. and Zwietering K., Modelling bacterial growth of Lactobacillus curvatus as a function of acidity and temperature[J]. Appl. Environ. Microbiol., 1995, Vol.61: 2533-2539.
    55 Yoo I-K, Chang H-N, Lee E-G, Chang Y-K and Moon S-H. Effect of pH on the production of lactic acid and secondary products in batch cultures of Lactobacillus casei[J]. J. Microbiol. Biotechnol., 1996, Vol.6: 482-486.
    56 Akerberg C., Hofvendahl K., Zacchi G. and Hahn-Haègerdal B. Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole wheat flour[J]. Appl Microbiol Biotechnol, 1998, Vol.49: 682-690.
    57 Han K. , Lim H.C. and Hong J . Acetic acid formation in Escherichia coli fermentation[J]. J.Biotechnol Bioeng., 1992,Vol.39:663—671.
    58吴定,孙德坤.不同酸性条件对保加利亚乳杆菌存在活性影响[J].食品科学,2000, Vol.21 (6) :25-27.
    59魏华,付金衡,李雁群等.影响乳酸菌产率因素的初步研究[J].中国畜产与食品,1998,Vol.5(5):204-206.
    60 Yoshida F.N. and Nakamoto K. Fed-batch hydrocarbon fermentation with colloidal emulsion feed[J]. Biotechnology and Bioengineering, 1973, Vol.15: 257-270.
    61 Pirt S.J. The theory of fed-batch culture with reference to penicillin. Fermentation[J]. J. Appl. Chem. Biotechnol., 1974, Vol.24: 415-424.
    62 Keller R. and Dunn U. Fed-batch microbial culture: Models, errors and applications[J]. J. Appl. Chem. Biotechnol., 1978, Vol.28:508-514.
    63 Yamane, T. and Shimizu, S. Fed-batch techniques in microbial processes[J]. Adv. Biochem. Eng., 1984, Vol.30:147-194.
    64 Yamane T., Hibino W., Ishihara K., Kadotani Y. and Kominami M. Fed-batch cultureautomated by uses of continuously measured cell concentration and culture volume[J]. Biotechnol. Bioeng., 1992, Vol.39(5):550-555.
    65 Suzuki T., Yamane T. and Shimizu S. Mass production of thiostrepton by fed-batch culture of Streptomyces laurentii with pH-stat modal feeding of multi-substrate[J]. Appl. Microbiol. Biotechnol., Vol.25:526-531.
    66 Lee S.Y. and Chang H.N. Production of poly (hydroxyalkanoic acid)[J]. Adv. Biochem. Eng. Biotechnol., 1995, Vol.52: 27-58.
    67 Kleman G.L. and Strohl W.R. Developments in high cell density and high productivity microbial fermentation[J]. Curr. Opin. Biotechnol., 1994, Vol.5: 180-186
    68 Lee S.Y. High cell-density culture of Escherichia coli[J]. Trends Biotechnol., 1996, Vol.14: 98-105.
    69 Suzuki T., Yamane T. and Shimizu S. Mass production of poly-β- hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding[J]. Appl. Microbiol. Biotechnol., 1986, Vol.24: 370-374.
    70 Nakano K., Rischke M., Sato S. and Maèrkl H. Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor[J]. Appl Microbiol Bio- technol., 1997, Vol.48: 597-601.
    71 Korz D.J., Rinas U., Hellmuth K., Sanders E.A. and Deckwer W.D. Simple fed-batch technique for high cell density cultivation of Escherichia coli[J]. J. Biotechnol., 1995, Vol.39: 59-65.
    72 Horn U., Strittmatter W., Krebber A., Knuèpfer U., Kujau M., Wenderoth R., Muèller K., Matzku S., Pluèckthun A. and Riesenberg D. High volumetric yields of functional dimeric mini-antibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions[J]. Appl. Microbiol. Biotechnol., 1996, Vol.46: 524-532.
    73 Park Y.S., Kai K., Iijima S. and Kobayashi T. Enhancedβ-galactosidas production by high cell-density culture of recombinant Bacillus subtilis with glucose concentration control[J]. Biotechnol. Bioeng., 1992, Vol.40: 686-696.
    74 Lee I.Y., Choi E.S., Kim G.J., Nam S.W., Shin Y.C., Chang H.N. and Park Y.H. Optimization of fed-batch fermentation for production of poly-β-hydroxybutyrate in Alcaligenes eutrophus[J]. J. Microbiol. Biotechnol., 1994, Vol.4: 146-150.
    75 Suzuki T. A dense cell culture system for microorganisms using a stirred ceramic membrane reactor incorporating asymmetric porous ceramic filters[J]. J FermentBioeng, 1996, Vol.82: 264-271.
    76 Ohleyer E., Blanch H.W., and Wilke C.R. Continuous production of lactic acid in a cell recycle reactor[J]. Appl. Biochem. Biotechnol., 1985, Vol.11:317-332.
    77 Kim G.J., Lee I.Y., Choi D.K., Yoon S.C., and Park Y.H. High cell density cultivation of Pseudomonas putida BM01 using glucose[J]. J. Microbiol. Biotechnol., 1996, Vol.6: 221-224.
    78 Krahe M., Antranikian G. and Markl H. Fermentation of extremophilic microorganisms[J]. FEMS Microbiol. Rev., 1996, Vol.18: 271-285.
    79 Yano T., Kobayashi T. and Shimizu S. High concentration cultivation of Candida brassicae in a fed-batch system[J]. J. Ferment. Technol., 1985, Vol.63: 415-418.
    80 Lee W.G., Lee Y.S., Chang H.N. and Chang Y.K. A cell retention internal filter reactor for ethanol production using tapioca hydrolysates[J]. Biotechnol Tech., 1994, Vol.8: 817-820.
    81 Suzuki T., Kamoshita Y. and Ochashi R. A dense cell culture system for microorganisms using a shake flask incorporating a porous ceramic filter[J]. J. Ferment. Bioeng., 1997, Vol.84: 133-137.
    82 Hayakawa K., Sansawa H., Nagamune T. and Endo I. High density culture of Lactobacillus casei by a cross-flow culture method based on kinetic properties of the microorganism[J]. Journal of Fermentation and Bioengineering. 1990, Vol.70(6):404-408.
    83 Hjorleifsdottir S., Seevaratnam S., Holst O. and Mattiasson B. Effects of complete cell recycling on product formation by Lactobacillus casei ssp.rhamnosus in continuous cultures[J]. Current Microbiology, 1990, Vol.20:287-292.
    84 Mehaia M.A. and Cheryan M. Production of lactic acid from sweet whey permeate concentrates[J] Process Biochem., 1987, Vol.22:185-188.
    85 Bibal B., Vayssier Y., Goma G. and Pareilleux A. High-concentration cultivation of Lactococcus cremoris in a cell-recycle reactor[J]. Biotechnol. Bioeng., 1991, Vol.37:746-754.
    86 Kang B.C., Lee S.Y. and Chang H.N. Production of Bacillus thuringiensis spore in total cell retention culture and two stage continous culture using an internal ceramic filter system[J]. Biotechnology and Bioengineering, 1993, Vol.42: 1107~1112
    87 Preusting H., Houten R., van Hoefs A., Langenberghe E.K., van Favre Bulle O. and Witholt B. High cell density cultivation of Pseudomonas oleovorans: growth and production of poly (3-hy-droxyalkanoates) in two-liquid phase batch and fed-batchsystems[J]. Biotechnol. Bioeng., 1993, Vol.41: 550-556.
    88 Riesenberg D. and Guthke R. High-cell-density cultivation of microorganisms[J]. Appl. Microbiol. Biotechnol., 1999 Vol.1: 422-430.
    89 Lee C.W., Gu M.B. and Chang H.N. High-density culture of Escherichia coli carrying recombinant plasmid in a membrane cell recycle fermenter[J]. Enzyme Microb. Technol., 1989, Vol.11: 49-54
    90 MacDonald H.L. and Neway J.O. Effects of medium quality on the expression of human interleukin-2 at high cell density in fermentor cultures of Escherichia coli K-12[J]. Appl. Environ. Microbiol., 1990, Vol.56: 640-645.
    91 Chang H.N., Lee W.G. and Kim B.S. Cell retention culture with an internal filter module: continuous ethanol fermentation[J]. Biotechnol. Bioeng., 1993, Vol.41: 677-681.
    92 Suzuki T., Sato T. and Kominami M. A dense cell retention culture system using a stirred ceramic membrane reactor[J]. Biotechnol. Bioeng., 1994, Vol.44: 1186-1192.
    93 Markl H., Lechner M., Goetz F. A new dialysis fermentor for the production of high concentrations of extracellular enzymes[J]. J. Ferment. Bioeng., 1990, Vol.69: 244-249.
    94 Holst O., Manelius A., Krahe M., Markl H., Raven N. and Sharp R. Thermophiles and Fermentation technology[J]. Comp. Biochem. Physiol., 1997, Vol.118: 415-422.
    95 Hartbrich A., Schmitz G., Weuster-Botz D., De Graaf A.A. and Wandrey C. Development and application of a membrane cyclone reactor for in vivo NMR spectroscopy with high microbial densities[J]. Biotechnol. Bioeng., 1996, Vol.51: 624-635.
    96 Hanjing H., Darin R. and Tingyue G. Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy[J]. Bioprocess and Biosystems Engineering, 2004, Vol.24: 67-73.
    97 Chen L., Bastin G. and Van Breusegem V. Adaptive nonlinear regulation of fed-batch biological reactors: an industrial application[J] Decision and Control, 1991,Vol.3:2130-2135.
    98 Dekkers R.M. and Voetter M. Adaptive control of a fed-batch bakers's yeast fermentation[J]. IFAC proceedings series, 1986, Vol.10: 103-110.
    99 Hartnett M., Diamond D. and Barker P.G. Neural network based recognition of flow-injection patterns[J]. Analyst, 1993, Vol.118: 347-354.
    100 Van Dijken W.M. and Heijnen J.J.A. Metabolic network stoichiometry analysis of microbial growth and product formation[J]. Biotechnol. Bioeng., 1995, Vol.48: 681-698.
    101杨洁彬.乳酸菌-生物学基础及应用[M].北京:中国轻工业出版社,1996.
    102 Smith J.S., Hillier A.J. and Lees G.J. The nature of the stimulation of the growth of Streptococcus lactis by yeast extract[J]. Journal of Dairy Research, 1975, Vol.42: 123-138.
    103 Law B.A., Sezgin E. and Sharpe M.E. Amino acid nutrition of some commercial cheese starters in relation to their growth in peptone-supplemented whey media[J]. Journal of Dairy research 1976, Vol.43: 291-300.
    104 Poolman B. and Konings W.N. Relation of growth of Streptococcus lactis and Streptococcus cremoris[J]. Canadian Journal of Bacteriology 1988, Vol.170: 700-707.
    105 Boyaval P. Lactic acid bacteria and metal ions[J]. Lait, 1989, Vol.69: 87-113.
    106 Pandey A., Bringel F. and Meyer J.M. Iron requirement and search for siderophores in lactic acid bacteria[J]. Applied Microbiology and Biotechnology 1994, Vol.40: 735-739.
    107 Desmazeaud M. Current state of research on lactic acid bacteria nutrition[J] Lait, 1983, Vol.63: 267-316.
    108 Jensen P.R. and Hammer K. Minimal requirements for exponential growth of Lactococcus lactis[J]. Applied and Environmental Microbiology 1993, Vol.59: 4363-4366.
    109 Cocaign-Bousquet M., Garrigues C., Novak L., Lindley N.D. and Loubiere P. Rational development of Lactococcus lactis[J]. Journal of Applied Bacteriology 1995, Vol.79: 108-116.
    110 Friedman M.R. and Gaden E.L. Growth and acid production of Lactobacillus delbrueckii in a dialysis culture system[J]. Biotechnology and Bioengineering 1970, Vol.12: 961-974.
    111 Hanson T.P. and Tsao G.T. Kinetic studies of the lactic acid fermentation in batch and continuous cultures[J]. Biotechnology and Bioengineering 1972, Vol.14: 233-252.
    112 Kashket E.R. Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerance[J]. FEMS Microbiol. Rev. 1987, Vol.46: 233-244.
    113 Bender G.R. and Marquis R.E. Membrane ATPases and acid tolerance of Actinomyces viscous and Lactobacillus casei[J]. Appl. Environ. Microbiol., 1987, Vol.53:2124-2128.
    114 Gatje G. and Gottschalk G. Limitation of growth and lactic acid production in batch and continuous cultures of Lactobacillus helveticus[J]. Appl. Microbiol. Biotechnol., 1991, Vol.34: 446-449.
    115 McDonald L.C., Fleming H.P. and Hassan H.M. Acid tolerance of Leuconostoc mesenteroids and Lactobacillus plantarum[J]. Appl. Env. Microbiol., 1990, Vol.56: 2120-2124.
    116 Stadhouders J., Jansen L. A. and Hup G. Preservation of starters and mass production of starter bacteria[J]. Neth. Milk Dairy J., 1969, Vol.23:182-199.
    117 Stanley G. The manufacture of starters by batch fermentation and centrifugation to produce concentrates[J]. J. Soc. Dairy Technol., 1977, Vol.30: 36-39.
    118 Hassan A.N. and Frank J.F. Starter cultures and their use. Applied dairy microbiology. Edited by EElmer H. Marth and James L. Steele. Second edition, revised and expanded Marcel Dekker, Inc. New York·Basel. 2001, 151-206.
    119 Schepers A.W., Thibault J. and Lacroix C. Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part I. multiple factor kinetic analysis[J]. Enzyme and Microbial Technology 2002, Vol.30:176-186.
    120 Oh S., Rheem S., Sim J., Kim S. and Baek Y. Optimizing conditions for the growth of Lactobacillus casei YIT 9018 in tryptone-yeast extract-glucose medium by using response surface methodology[J]. Appl. Environ. Microbiol., 1995, V0l.61:3809-3814.
    121 Bergere J.L. and Hermier J. Mass production of cells of. lactic streptococci II: Growth of Streptococcus luctis in. medium at constant pH[J]. Lait, 1968, Vol.48:13-31.
    122 Peebles M.M., Gilliland S.E. and Speck N.L. Preparation of concentrated lactic streptococcus starters[J]. Appl. Microbiol., 1969, Vol.17:805-810.
    123 Aeschlimann A. and von Stockar U. The effect of yeast extract supplementation on the production of lactic acid[J] Appl. Microbiol. Biotechnol.,1990, Vol.32:398-402.
    124 Olmos-Dichara A., Ampe F., Uribelarrea J.L., Pareilleux A. and Goma G. Growth and lactic acid production by. Lactobacillus casei ssp rhamnosus in batch and membrane bioreactor: influence of yeast extract and Tryptone enrichment[J]. Biotechnol. Lett., 1997, Vol.19:709-714.
    125 Caterine T.W. and Todd R.K. Influence of calcium and manganese on dechaining of Lactobacillus bulgaricus[J] Appl. Envi. Microbiol., 1983, Vol.10:785-792.
    126 Bury D., Jelen P. and Kimura K. Whey protein concentrate as a nutrient supplement for lactic acid bacteria[J]. Int. Dairy Journal, 1998, Vol.8:149-151.
    127张建友,李艳武,赵群波,霍贵成.冻干乳酸菌菌种增菌培养基的优化[J].中国乳品工业, 2002, Vol.30:40-43.
    128张建友,徐静波,王军良,赵培城,霍贵成.冻干乳酸菌菌种增菌培养基增殖因子的优化[J].微生物学通报, 2006, Vol.33:12-15.
    129刘云鹤.高效乳酸菌增殖培养基的筛选[J].淮海工学院学报, 2003, Vol.12:59-62.
    130徐子钧,李剑,梁凤来,马建芳,刘如林.利用SAS软件优化L-乳酸发酵培养基[J].微生物学通报, 2004, Vol.31:85-90.
    131隋欣,姜铁民,王建,陈历俊,周伟明.乳酸菌混合菌株基础培养基及增殖因子的筛选[J].食品研究与开发, 2005, Vol.26:49.
    132吕加平,梁占东,骆承庠,郭彦友[J].乳酸菌增菌培养基的优化设计.中国乳品工业, 1999, Vol.27:12.
    133李志成,徐怀德,王敏,蒋爱民,方勇.嗜热链球菌和保加利亚乳杆菌增菌培养研究[J].西北农林科技大学学报(自然科学版),2002, Vol.30:50.
    134孟祥晨,李艾黎,霍贵成.嗜酸乳杆菌增菌培养基的优化[J].食品科学, 2002, VOl.23:25.
    135张建友,赵培城,徐静波,霍贵成.直投式酸奶发酵剂增菌培养基的优化[J].中国乳品工业, 2005, Vol.33:32.
    136刘丹,潘道东.直投式乳酸菌发酵剂增菌培养基的优化[J].食品科学, 2005, Vol.26:204.
    137黄丽金,陆兆新,袁勇军.响应面法优化德氏乳杆菌保加利亚亚种增殖培养基[J].食品科学, 2005, Vol.26:103.
    138田洪涛,贾英民,马雯,胡彭亮,李丽华.嗜热链球菌促生长物质研究及增殖培养基优化筛选[J].食品科学, 2002, Vol.23:60.
    139房兴利,晋津.酸奶生产液体发酵剂的研究[J].中国乳品工业, 1994, Vol.22:207-208.
    140黄良昌,吕晓玲.保加利亚乳杆菌浓缩培养的研究[J].中国乳品工业, 2002, Vol.30: 12-16.
    141万红兵,田洪涛,马乐辉,桑亚新,孙纪录,王金梅.保加利亚乳杆菌番茄复合汁增菌培养基的优选研究[J].中国乳品工业,2006, Vol.34:14.
    142张功,王瑞君,峥嵘.平菇浸汁促进嗜酸乳杆菌生长的研究[J].微生物学通报, 2002, Vol.29:65
    143张蓉真,李珑,李建才,陈躬瑞,郑玉,铙平凡.大豆水解蛋白对乳酸菌增殖的促进作用[J].中国粮油学报, 1997, Vol.12:40.
    144赵新淮,关瑞,孙慧光,许丽,刘居超.大豆蛋白水解物的乳酸发酵促进作用[J].东北农业大学学报, 1998, Vol.29:102-104.
    145赵毅,马永强,石彦国.大豆蛋白水解物促进乳酸发酵的作用[J].食品与机械, 2000, (1):22.
    146王宇,张兰威,郭清泉.嗜热链球菌和保加利亚乳杆菌的增埴培养基的研制[J].食品工业科技, 2000, Vol.21:15.
    147李春,张兰威,刘丽波.嗜酸乳杆菌增菌培养基的确定[J].广州食品工业科技, 2004, Vol.20:12.
    148史媛英,肖冬光.酸奶发酵剂高浓度培养的研究期[J].天津轻工业学院学报.1999,(4):20-25.
    149孙翠焕,冀宝营,王艳华,刘晓辉,席晓光,吴英春.高活性乳酸菌发酵剂培养条件优化及活性测定[J].微生物学杂志,2006,Vol.26(3):70-73.
    150李春,张兰威.乳酸菌细胞膜冻干损伤研究进展[J ].中国乳品工业, 2004, (3):28-30.
    151李志成,张连斌,王碧德,付少杰,蒋爱民.发酵温度对冻干乳酸菌发酵剂活菌数的影响[J].西北农业学报, 2006, 15:156-158.
    152 Cogan, T.M., Buckley D.J. and Condom S. Optimum growth parameters of lactic streptococci used for the production of concentrated cheese starter cultures[J]. J. Appl. Bacteriol., 1971, Vol.34:403.
    153 Efstathiou, J.D., McKay L.L., Morris H.A., and Zottola E.A. Growth and preservation parameters for preparation of a mixed species culture concentrate for cheese manufacture[J]. J. Milk Food Technol., 1974, Vol.38:444.
    154 Pont, E.G. and Holloway G.L. A new approach to the production of cheese starter. Some preliminary investigations[J]. Aust. J. Dairy Technol., 1968, Vol.23:22-30.
    155 Giraud, E., Lelong B. and Raimhault M. Influence of pH and initial lactate concentration on the growth of Lactobacillus plantarum[J]. Appl. Microbiol. Biotechnol., 1991, Vol.36: 96-99.
    156 Roy D., Le Duy A. and Goulet J. Kinetics of growth and lactic acid production from whey permeate by Lactobacillus helveticus[J]. Canadian J. Chem. Eng., 1987, Vol.65: 597-603.
    157 Norton S., Lacroix C. and Vuillemard J.C. Kinetic study of continuous whey permeate fermentation by immobilized Lactobacillus helveticus for lactic acid production[J]. Enzyme Microb. Technol., 1994, Vol.16: 457-466.
    158 Schiraldi C., Adduci V., Valli V., et al. High cell density cultivation of probiotics and lactic acid production[J]. Biotechnol. Bioeng., 2003, Vol.82(2): 213-222.
    159 Harvey R.J. Damage to Streptococcus lactis resulting from growth at low pH[J]. J. Bacteriol., 1965, Vol.90:1330.
    160 Goncalves L.M.D., Ramos A., Almeida J.S., Xavier A.M.R.B. and Carrondo M.J.T. Elucidation of the mechanism of lactic acid growth inhibition and production in batch cultures of Lactobacillus rhamnosus[J]. Appl. Microbiol. Biotechnol., 1997, Vol.48:346-350.
    161 Sandine W.E. and Ayres J.W. Method and starter compositions for the growth of acid producing bacteria and bacterial compositions produced thereby[P]. 1981, US Pat. 4,282,255.
    162 Thunell R.K. and Sandine W.E. Frozen Starters from Internal-pH-ControI-Grown Cultures[J]. J Dairy Sci, 1984, Vol.67:24-36.
    163山丽杰,田洪涛,贾英民.浓缩乳发酵剂制备中几个技术关键问题[J].中国乳品工业.2002,Vol.30(5):66-69.
    164高松柏,娜日斯,谢小燕.高效嗜酸菌发酵剂制备和嗜酸菌奶粉新工艺的研究[J].中国乳品工业.1991,Vol.19(4):150-158.
    165吕兵,张国农.乳酸菌发酵剂浓缩培养的研究[J].中国乳品工业,2001,Vol.29(3):7-9.
    166冯友军,王静,张淑娟.保加利亚乳杆菌增菌条件的初步研究[J].广西轻工业杂志,2003,(6):10-13.
    167 Champagne C.P., Gardner N. and Doyon G. Production of Leuconostoc oenos Biomass under pH Control[J]. Appl. Envi. Microbiol., 1989, Vol.55: 2488-2492.
    168 Lloyd G.T. and Pont E.G. The production of concentrated starters by batch culture[J]. Aust. J. Dairy Technol., 1973, Vol.28:104-108.
    169 Peebles M.M., Gilliland S.E. and Speck M.L. Preparation of concentrated lactic streptococcus starters[J]. Appl. Microbiol., 1969, Vol.17:805-810.
    170 Pettersson H.E. Studies on batch production of bacterial concentrates from mixed species lactic starters[J]. Appl. Microbiol., 1975, Vol.29:133.
    171 Efstathiou J.D., McKay L.L., Morris H.A. and Zottola E.A. Growth and preservation parameters for preparation of a mixed species culture concentrate for cheese manufacture[J]. J. Milk Food Technol. 1974,Vol.38:444.
    172靳志强,李平兰.补料分批法高密度培养德氏乳杆菌保加利亚亚种S-1[J].中国乳品工业.2007,Vol.35(1)4-9.
    173 Loubiere P.,Cocaign-Bousquet M.,Matos J., Goma G. and Lindley N.D. Influenceof end-products inhibition and nutrient limitations on the growth of Lactococcus lactis subsp. lactis[J]. Journal of Applied Microbiology, 1997,Vol.82:95-100.
    174 Wilkowske H.H. and Fouts E.L. Continuous and automatic propagation of dairy cultures[J]. J. Dairy Sci., 1957, Vol.41:49-56.
    175 Pettersson H.E. Growth of a Mixed Species Lactic Starter in a Continuous"pH-Stat" Fermentor[J]. Applied Microbiolgoy, 1975, Vol.29:437-443.
    176 Lloyd G.T. and Pont E.G. An experimental continuous culture unit for the production of frozen concentrated cheese starters[J]. J. Dairy Res., 1973, Vol.40:149-155.
    177 Lloyd G.T. and Pont E.G. Some properties of frozen concentrated starters produced by continuous culture[J]. J. Dairy Res., Vol.40:157-167.
    178 Yabannavar V.M. and Wang D.I.C. Extractive fermentation for lactic acid production[J]. Biotechnology and Bioengineering, 1991, Vol.37:1095-1100.
    179 Srivastava A., Roychoudhury P.K. and Sahai V. Extractive lactic acid fermentation using ion-exchange resin[J]. Biotechnol. Bioeng., 1992, Vol.39:607-613.
    180 Chen C.C. and Ju L.K. Coupled lactid acid fermentation and adsorption[J]. Appl. Microbiol. Biotechol., 2002, Vol.59:170-174.
    181 Boonmee M., Leksawasdi N., Bridge W. and Rogers P.L. Electrodialysis for lactate removal in the production of the dairy starter culture Lactococcus lactis NZ133[J]. International Journal of Food Science and Technology 2007, Vol.42:567-572.
    182 Osborne R.J.W. Production of frozen concentrated cheese starters by diffusion culture[J]. Soc. Dairy Technol., 1977, Vol.30:40-44.
    183 Portner R., Markl H. Dialysis cultures[J]. Appl. Microbial. Biotechnol., 1998, Vol.50: 403-414.
    184 Vick Roy T.B., Blanch H.W. and Witke C.R. Lactic acid production by Lactobacillus delbrueckii in a hollow fiber fermenter[J]. BiotechnoI. Lett., 1982, Vol.4:483-488.
    185 Vick Roy T.B., Mandd D.K., Dea D.K., Blanch H.W. and Wilke C.R. The application of cell recycle to continuous fermentative lactic acid production[J]. Biotechnol. Lett. 1983, Vol.5:665-670.
    186 Ohleyer E., Blanch H.W. and Wilke C.R. Continuous production of lactic acid in a cell recycle reactor[J]. Appl. Biochem. Biotechnol., 1985, Vol.11:317-332
    187 HjOrleifsdottir S., Seevaratnam S., Holst O. and Mattiasson B. Effects of complete cell recycling on product formation by Lactobacillus casei ssp.rhamnosus incontinuous cultures[J]. Current Microbiology, 1990, Vol.20:287-292.
    188 Bibal B. and Vayssier Y. High-concentration cultivation of Lactococcus cremoris in a cell-recycle reactor[J]. Biotechnology and Bioengineering, 1991, Vol.37:746-754
    189 Kayawake E., Narukami Y. and yamagata M. Anaerobic digestion by a ceramic membrane enclose reactor[J]. J. Ferment. Bioeng., 1991, Vol.71: 122-131.
    190 Kamoshita Y., Ohashi R. and Suzuki T. Improvement of Filtration Performance of Stirred Ceramic Membrane Reactor and Its Application to Rapid Fermentation of Lactic Acid by Dense Cell Culture of Lactococcus lactis[J] J. Ferment. Bioeng., 1998, Vol.85:422-427.
    191陆爱华.浓缩型乳酸菌发酵剂制备工艺的研究[D].安徽农大硕士学位论文,2006.
    192 Giulietti A,Overbergh L,Valckx D,et a1.An overview of real-time quantitative PCR:applications tO quantify cytokine gene expression[J].Methods,2001,Vol.25(4):386-401.
    193 Deborab S G Quantitative real-time polymerse chain reaction for the core facility using TaqMan and the Perkin-ElmerPApplied biosystems division 7700sequence detector[J]. Jouranl of Biomolecular Techniques, 1999, Vol.10: 11-16.
    194 Mackay I.M., Arden K.E. and Nitsche A. Real-time PCR in virology[J] Nucleic Acids Res., 2002, Vol.30(6):1292-1305.
    195 Bustin S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. J. Mol. Endocrinol., 2000, Vol.25:169-193.
    196 Thellin O., Zorzi W., Lakaye B., De Borman B., Coumans B., Hennen G., Grisar T., Igout A. and Heinen E. Housekeeping genes as internal standards: Use and limits[J]. J. Biotechnol., 1999, Vol.75:291-295.
    197 Vandecasteele S.J., Peetermans W.E., Merckx R. and van Eldere J. Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions[J]. J. Bacteriol., 2001, Vol.183:7094-7101.
    198 Tricarico C., Pinzani P., Bianchi S., Paglierani M., Distante V., Pazzagli M., Bustin S.A. and Orlando C. Quantitative real-time reverse transcription polymerase chain reaction: Normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies[J]. Anal. Biochem., 2002, Vol.309: 293-300.
    199 Dheda K., Huggett J.F., Chang J.S., Kim L.U., Bustin S.A., Johnson M.A., Rook G.A. and Zumla A. The implications of using an inappropriate reference gene forreal-time reverse transcription PCR data normalization[J]. Anal. Biochem., 2005, Vol.344: 141-143.
    200 Liu W. and Saint D.A. A new quantitative method of real-time RT-PCR assay based on simulation of PCR kinetics[J]. Anal. Biochem., 2002, Vol.302, 52-59.
    201 Livak K.J. and Schmittgen T.D. Analysis of relative gene expression data using real- time quantitative PCR and the 2(-Delta Delta C(T))method[J]. Methods,2001 Vol.25(4): 402-408.
    202 Winer J., Jung C.K., Shackel I. and Williams P.M. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro[J]. Anal. Biochem. 1999, Vol.270: 41-49.
    203张驰宇,徐顺高,黄新祥.一种新颖简便的荧光实时RT-PCR相对定量方法的建立.生物化学与生物物理进展, 2005, Vol.32(9):883-888.
    204 Furet J.P., Quénée P. and Tailliez. Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR[J]. Int. J. Food Microbiol., 2004, Vol.97(2):197-207.
    205 Grattepanche F., Lacroix C., Audet P. and Lapointe G. Quantification by real-time PCR of Lactococcus lactis subsp. cremoris in milk fermented by a mixed culture[J]. Appl. Microbiol. Biotechnol., 2005, Vol.66(4):414-421.
    206 Haarman M. and Knol J. Quantitative Real-Time PCR assays to identify and quantify fecal Bifidobacterium Species in infants receiving a prebiotic infant formula[J]. Applied and Environment Microbiology, 2005, Vol.71:2318-2324.
    207 Martin B., Jofre A., Garriga M., Pla M. and Aymerich T. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR. Applied and Environment Microbiology, 2006, Vol.72:6040-6048.
    208 Masco L., Vanhoutte T., Temmerman R., Swings J. and Huys G. Evaluation of real-time PCR targeting the 16S rRNA and recA genes for the enumeration of bifidobacteria in probiotic products[J]. International Journal of Food Microbiology, 2007, Vol.113: 351-357.
    209童睿,张媛,郑秋月,谢明杰,曹际娟.食品中乳酸杆菌的实时荧光PCR的快速检测.现代食品科技. 2008, Vol.24:86-88.
    210 Penaud S., Fernandez A., Boudebbouze S., Ehrlich S.D., Maguin E. and van de Guchte M. Induction of Heavy-Metal-Transporting CPX-Type ATPases during Acid Adaptation in Lactobacillus bulgaricus[J] Applied and Environment Microbiology, 2006, Vol.72:7445-7454.
    211 Ramiah K., van Reenen C.A. and Dicks L.M.T. Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR[J] International Journal of Food Microbiology, 2007, Vol.116:405-409.
    212 Marco M.L. and Kleerebezem M. Assessment of real-time RT-PCR for quantification of Lactobacillus plantarum gene expression during stationary phase and nutrient starvation[J] Journal of Applied Microbiology, 2008, Vol.104:587-594.
    213 Weiss R.M. and Ollis D.F. Extracellular microbial polysaccharides. I. Substrate, biomass and product kinetic equations for batch xanthan gum fermentation[J]. Biotechnology and Bioengineering, 1980, Vol.22:859-873.
    214藏荣春,夏凤毅.微生物动力学模型.第一版.北京:化学工业出版社, 2003, pp.144-172.
    215顾瑞霞,刘爱萍,骆承庠.唾液链球菌嗜热亚种LCX2001胞外多糖分批发酵动力学.微生物学通报, 2001, Vol.28(4): 35-39.
    216陈永福,王记成,云振宇,张和平高效液相色谱法测定传统发酵乳中的有机酸组成.中国乳品工业, 2007, Vol.35:54-58.
    217 Marco M.L., Bongers R.S., de Vos W.M. and Kleerebezem M. Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice[J]. Appl. Environ. Microbiol., 2007, Vol.73: 124-132.
    218 Takle G.W., Toth I.K. and Brurberg M.B. Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum[J]. BMC Plant Biol., 2007, Vol.7: 50-58.
    219 Tasara T. and Stephan R. Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-timePCR[J]. FEMS Microbiol. Lett., 2007, Vol.269: 265-272.
    220 Bron P.A., Marco M., Hoffer S.M., Mullekom E.V., de Vos W.M. and Kleerebezem M. Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract[J]. J. Bacteriol., 2004, Vol.186: 7829-7835.
    221 Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A. and Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biol., 2002, Vol.3: research 0034
    222余龙江.发酵工程原理与技术应用[M].北京,化学工业出版社, 2006.9.
    223 IK-KEUN Y., Chang H.N. and Lee E.G. Effect of B Vitamin supplementation on lactic acid production by Lactobacillus casei[J]. Journal of Fermentation and Bioengineering, 1997, Vol.84:172-175.
    224 Hujanen M. and Linko Y.Y. Effect of temperature and various nitrogen sources on L-(+)-lactic acid production by Lactobacillus casei[J]. Appl. Microbiol. Biotechnol., 1996, Vol.45(6):307-313.
    225 Hujanen M., Linko S., Linko Y.Y., et al. Optimization of medium and cultivation conditions for L(+)(s)-lactic acid production by Lactobacillus casei NNRL B-441[J]. Appl. Microbiol. Biotechnol., 2001, Vol.56:126-130.
    226曹军卫,马辉文,微生物工程,北京:科学出版社,2002,8:80-88.
    227 John J. F., Malte A. and Shara S. Effect of manganese on Lactobacillus casei fermentation to produce lactic acid from whey permeate[J]. Process Biochemistry, 2001. Vol.36:671-675.
    228 Senthuran A, Senthuran V., Mattiasson B. et. al. Lactic acid fermentation in recycle batch reactor using immobilized Lactobacillus casei[J]. Biotechnol. Bioeng., 1997, Vol.55:841-853.
    229 Kurmann J.A. Starters for fermented milks[J]. Bulletin of the IDF, 1988, Vol.227:41-52.
    230杨文雄,高彦祥;响应面法及其在食品工业中的应用[J];中国食品添加剂, 2005,(02): 93-96.
    231 Ambat P. and Ayyanna C. Optimizing medium constituents and fermentation conditionsforcitricacid productionfrom palmyra jaggery using response surface method[J]. World Journal of Microbiology &Biotechnology, 2001, Vol.17:331-335.
    232 Ratnam B.V.V., Rao M.N., Rao M.D., et al. Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology[J]. World Journal of Microbiology & Biotechnology, 2003, Vol.19:523-526..
    233 Trupkin S., Levin L. and Forchiassin F. Optimization of aculture medium for ligninolytic enzyme production and synthetic dye decolorization using response surface methodology[J].Ind. Microbiol. Biotechnol., 2003, Vol.30:682-690.
    234郝学财,余晓斌,刘志钰,王蓓.响应面方法在优化微生物培养基中的应用,食品研究于开发, 2006, Vol.27: 38-41.
    235 Azaola A., Bustarnante P., Huertu S., et al. Use of response surface methodologyto describe biomass production of Bifidobacterium infantis in complex media[J]. Biotechnology Techniques, 1999, Vol.13:93-95.
    236黄丽金,陆兆新,袁勇军.响应面法优化唾液链球菌嗜热亚种增殖培养基[J].食品与发酵工业, 2005, (05): 31-35
    237 Murate K., Miya T., Gushima H., et al . Cloning and amplification of a gene for glutathione synthetase in E. coli B[J ] Agric. Biol. Chem., 1983 , Vol.47 : 1381-1383.
    238戚以政,夏杰.生物反应工程[M].北京,化学工业出版社, 2004, 72-112.
    239张大为,张洁,邝仁亮,产细菌素的嗜酸乳杆菌WS发酵动力学模型的建立[J].农业工程学报, 2008, Vol.24(3): 295-297.
    240 Mercier P., Yerushalmi L., Rouleau D. and Dochain D. Kinetics of lactic acid fer-. mentation on glucose and corn by Lactobacillus amylophilus[J] J Chem Technol Biotechnol, 1992, Vol.55: 1111-1121.
    241庄绪亮邱季杰张洪勋谢慧君王晓谊,乳酸链球菌肽发酵动力学的研究[J].微生物学通报, 2005, Vol.32(3):40-45.
    242 Amrane A. and Prigent Y. Differentiation of pH and free lactic acid effects on the various growth and production phases of Lactobacillus helveticus[J]. Journal of Chemical Technology and Biotechnology. 1999, Vol.74:33-40.
    243 Vermeulen N., Pavlovic M., Ehrmann M.A., Ganzle M.G. and Vogel R.F. Functional characterization of the proteolytic system of Lactobacillus sanfranciscensis DSM 20451T during growth in sourdough[J]. Appl. Environ. Microbiol., 2005, 71: 6260-6266.
    244 Wong M.L. and Medrano J.F. Real-time PCR for mRNA quantitation[J]. Biotechniques, 2005, Vol.39(1):116-121.
    245 Huggett J., Dheda K., Bustin S. and Zumla A. Real-time RT-PCR normalization: Strategies and considerations[J]. Genes Immun., 2005. Vol.6: 279-284.
    246 Larionov A.,Krause A. and Miller W. A standard curve based method for relative real time PCR data processing[J].BMC Bioinformatics,2005, Vol.6:62.
    247 Langnaese K., John R., Schweizer H., Ebmeyer U. and Keilhoff G. Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model[J]. BMC Mol. Biol., 2008, Vol.9: 53-67.
    248 Steven G., Paul T., Monis, et al. Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real-time multiplex PCR[J]. Nucl. Acids Res.,2003, Vol.31( 22): 136.
    249 Pieterse B., Leer R.J., Schuren F.H.J. and van der Werf M.J. Unravelling themultiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling[J]. Microbiology, 2005, Vol.151:3881-3894.
    250 Arnold C.N., McElhanon J., Lee A., Leonhart R. and Siegele D.A. Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response[J]. J Bacteriol., 2001, Vol.183: 2178-2186.
    251 Pfaffl M.W., Tichopad A., Prgomet C. and Neuvians T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations[J]. Biotechnol. Lett., 2004, Vol.26: 509-515.
    252 Andersen C.L., Jensen J.L., and Orntoft T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Res., 2004, Vol.64: 5245-5250.
    253 Cappelli K., Felicetti M., Capomaccio S., Spinsanti G., Silvestrelli M. and Supplizi A.V. Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization[J]. BMC Mol. Biol., 2008, Vol.9: 49-56.
    254 Lyng M.B., L?nkholm A.V., Pallisgaard N. and Ditzel H.J. Identification of genes for normalization of real-time RT-PCR data in breast carcinomas[J]. BMC Cancer, 2008, Vol.8: 20-30.
    255 Suarez M.P., Calaza M., Reino J.J.G. and Gonzalez A. Reference genes for normalization of gene expression studies in human osteoarthritic articular cartilage[J]. BMC Mol. Biol., 2008, Vol.9: 17-23.
    256 Infante C., Matsuoka M.P., Asensio E., Ca?avate J.P., Reith M. and Manchado M. Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR[J]. BMC Mol. Bio., 2008, Vol.9: 28-39.
    257 Monedero V., MazéA., Boel G., Zuniga M., Beaufils S., Hartke A. and Deutscher J. The Phosphotransferase System of Lactobacillus casei : Regulation of Carbon Metabolism and Connection to Cold Shock Response[J] J Mol Microbiol. Biotechnol,, 2007, Vol.12:20-32.
    258 Titgemeyer F. and Hillen W. Global control of sugar metabolism: a Gram-positive solution[J]. Antonie van Leeuwenhoek. 2002, Vol.82: 59-71.
    259 Viana R., Monedero V., Dossonnet V., Vadeboncoeur C., Pe?rez-Mart??nez1 G. and Deutscher J. Enzyme I and HPr from Lactobacillus casei: their role in sugartransport, carbon catabolite repression and inducer exclusion[J]. Molecular Microbiology, 2000, Vol.36(3): 570-584.
    260 van de Guchte M., Serror P., Chervaux C., Smokvina T. Ehrlich S.D. and Maguin E. Stress responses in lactic acid bacteria[J]. Antonie van Leeuwenhoek, 2002, Vol.82:187-216.
    261 Sanders J.W., Venema G., Kok J. Environmental stress responses in Lactococcus lactis[J] FEMS Microbiology Reviews, 1999, Vol.23:483-501.
    262 Cotter P.D. and Hill C. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH[J]. Microbiology and Molecular Biology Reviews, 2003, Vol.67:429-453.
    263 Jayaraman G.C., Penders J.E. and Burne.R.A. Transcriptional analysis of the Streptococcus mutans hrcA, grpE and dnaK genes and regulation of expression in response to heat shock and environmental acidification[J]. Mol. Microbiol., 1997, Vol.25:329-341.
    264乌日娜,武俊瑞,孟和,张和平.乳酸菌酸胁迫反应机制研究进展[J],微生物学杂志, 2007, Vol.27:62-66.
    265陈霞,孙志宏,张文弈,孟和,张和平.酸胁迫对干酪乳杆菌H+-ATP酶基因表达的影响[J].微生物学通报,2007,Vol.34:478-483.
    266 Even, S., Lindley N. D., Loubiere P., and Cocaign-Bousquet M. Dynamic response of catabolic pathways to autoacidification in Lactococcus lactis: transcript profiling and stability in relation to metabolic and energetic constraints[J]. Mol. Microbiol., 2002, Vol.45:1143-1152.
    267 Even S., Lindley N.D. and Cocaign-Bousquet M. Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures[J]. Microbiology, 2003, Vol.149:1935-1944.
    268 Even S., Lindley N.D. and Cocaign-Bousquet M. Molecular physiology of sugar catabolism in Lactocuccus lactis IL 1403[J]. J. Bacteriol., 2001, Vol.183:3817-3824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700